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Abstract: Determining fire source in underground commercial street fires is critical for fire analysis.
This paper proposes a method based on temperature and machine learning to determine information
about fire source in underground commercial street fires. Data was obtained through consolidated fire
and smoke transport (CFAST) software, and a fire database was established based on the sampling
to ascertain fire scenarios. Temperature time series were chosen for feature processing, and three
machine learning models for fire source determination were established: decision tree, random forest,
and LightGBM. The results indicated that the trained models can determine fire source information
based on processed features, achieving a precision exceeding 95%. Among these, the LightGBM
model exhibited superior performance, with macro averages of precision, recall, and F1 score being
99.01%, 98.45%, and 99.04%, respectively, and a kappa value of 98.81%. The proposed method for
determining the fire source provides technical support for grasping the fire situation in underground
commercial streets and has good application prospects.

Keywords: underground commercial street; machine learning; temperature time series; fire source
determination

1. Introduction

Since the “12th Five-Year Plan” period, the development and utilization of urban
underground space in China have shown a trend of scale and growth, making China a vast
country in developing and utilizing urban underground space [1]. In underground space
development, underground commercial streets have rapidly expanded, relying on the vast
pedestrian flow brought by rail transit, effectively alleviating urban land pressure, and
promoting economic and social development. However, large-scale fires can quickly occur
due to the complex internal structure, high personnel density, and flammable materials in
underground commercial streets, causing severe economic losses or casualties [2].

Grasping the correct fire source information can help firefighting and rescue personnel
to understand the development of the fire and to make correct firefighting decisions. When
a fire occurs in above-ground buildings, the fire source location or fire development can
be identified by observing the firelight and smoke outside the building. However, after a
fire breaks out in an underground commercial street, the fire scenario cannot be directly
observed, resulting in a lack of information during firefighting decision making, leading to
incorrect judgments [3].

In the field of quantitative risk analysis (QRA), the determination of fire source infor-
mation is crucial [4]. The identification of fire source information directly impacts the design
of evacuation routes, the establishment of smoke propagation models, the optimization of
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emergency response resource allocation, and aspects of risk prediction and assessment. In
the study and practice of fire risk analysis, it is imperative to develop efficient fire source
identification technologies.

Many scholars have recently applied machine learning methods to predict fire parame-
ters after a fire occurs. Machine learning is inputting a dataset from numerical simulation or
loT devices into a model for training and testing, thus obtaining the coupling relationship
of specified parameters in the dataset [5]. Machine learning algorithms can predict param-
eters by collecting data on fire parameters, such as temperature, smoke, and gas. Deng
et al. [6] used three parameters to establish a gated recurrent unit (GRU) neural network
model to predict the highest temperature of the tunnel ceiling. The results showed that the
machine learning algorithm was consistent with the verification experiment. Saeed et al. [7]
established a fire detection convolutional neural network model based on smoke and heat,
which can effectively predict fires with an accuracy of 91%. Liu et al. [8] established a
fire detection model based on six machine learning algorithms, such as logistic regression,
among which the K-nearest neighbor algorithm demonstrated the best classification per-
formance. Hodges et al. [9] predicted the temperature distribution in a room based on
transposed convolutional neural networks; the prediction accuracy reached 95%. These
studies selected appropriate feature parameters based on their predictive objectives and
achieved relatively good prediction results.

Regarding fire source determination technologies, Yan et al. [10] proposed the use of
the least squares method based on the Gaussian plume model for fire source localization and
the application of the K-means clustering method to reduce localization errors. However,
this technique requires the deployment of a large number of gas concentration sensors.
Sun [11] introduced a method for fire source localization using distributed fiber optic
temperature sensors, effectively measuring temperature and determining the fire source’s
location, yet was unable to ascertain other key parameters like the heat release rate. Chu [12]
et al. developed a fire source localization model based on computer vision, although it
is limited to the detection and localization of fire sources. Shen [13] used thermal flux
parameters to infer fire source diameter and heat release rate, however, thermal flux sensors
are expensive and prone to failure. Zhang et al. [14–16] established a large tunnel fire
database, creating a machine learning model that inputs temperature to predict tunnel
fire source location, time of danger, and temperature field parameters. This method is
cost-effective and relatively precise, yet it does not cover other key parameters of the fire
source. However, previous studies have not applied machine learning algorithms that
demonstrate good predictive performance to fire source determination in underground
commercial streets, which is an area that requires further research.

In the study of information identification of fire source, existing AI fire determination
models, such as OpenCV systems [12], Bayesian machine learning [13], and neural net-
works [16], show unique advantages and limitations compared to traditional fire source
determination techniques like wireless sensor networks and distributed fiber optic tempera-
ture sensing systems. Traditional fire source determination methods, such as direct physical
measurement and real-time monitoring, offer the advantages of accurate measurements
and instant data on temperature and fire source location. However, these methods are
limited by the spatial coverage of sensors and are costly in terms of maintenance and
initial investment. On the other hand, existing AI models for fire source determination
excel in handling complex data, automatically selecting influential features, enhancing
predictive performance, and adapting to new data, making them suitable for dynamic
fire scenarios. Nevertheless, these AI models face challenges in interpretability, especially
complex ones like neural networks, and their performance is heavily dependent on the
quality and representativeness of the data.

To address the issues of poor interpretability and data dependency in existing AI fire
source determination models, this study proposed the establishment of machine learning
models with strong interpretability, such as decision tree, random forest, and LightGBM
models. To tackle the challenge of data dependency, it suggested creating a more realistic
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fire database through sampling to determine fire scenarios. Therefore, this study aimed to
determine fire source information, like the specific location and heat release rate, via ana-
lyzing temperature time series. The study began by selecting fire scenarios using sampling,
and simulating them with CFAST 7.7.4. software to build a database for underground
commercial street fire scenarios. Subsequently, the obtained temperature was used for fea-
ture extraction and processing. Finally, the study developed and applied various machine
learning models to accurately determine the fire source in underground commercial streets.

2. The Principle of Machine Learning Models

In machine learning, the objective of fire source classification is to allocate data to
predefined fire source categories. The training involves learning the mapping relationship
between data features and fire source categories. This paper established three machine
learning models: decision tree (DT), random forest (RF), and LightGBM.

2.1. Decision Tree [17]

A decision tree builds a tree by recursively splitting the dataset. Each split is based on
features that maximize the purity of fire source determination. The decision tree model
in this study utilized the Gini index as the splitting criterion, selecting features and split
points that significantly reduced uncertainty after the split.

The Gini index formula [18]:

Gini(D) = 1 − ∑m
i=1 p2

i (1)

Here, D represents the established training set.
m is the number of fire source categories.
pi is the proportion of samples of the i-th fire source category in the training set D.
For each split in the tree, the algorithm chooses the feature and split point that mini-

mizes the Gini index of the child nodes. The reduction in the Gini index for a given node
due to a split is defined as:

∆Gini(D, f ) = Gini(D)− (

∣∣∣Dle f t

∣∣∣
|D| Gini

(
Dle f t

)
+

∣∣∣Dright

∣∣∣
|D| Gini

(
Dright

)
) (2)

Here, f is the feature considered for splitting.
Dle f t and Dright are the two subsets of the dataset after the split.

|D|,
∣∣∣Dle f t

∣∣∣ and
∣∣∣Dright

∣∣∣ are the number of samples in the parent node and the two
child nodes, respectively.

2.2. Random Forest [19]

Random forest is an ensemble learning method composed of multiple decision trees.
Each tree is built independently, and randomness is introduced in the construction process.
This randomness was achieved through Bootstrap sampling of the training data and
selecting the best split from a random subset of features at each node. The random forest
model can be represented as follows:

RF(x) = model{DT1(x), DT2(x), . . . , DTn(x)} (3)

Here, DTi(x) refers to the output of the i-th decision tree.
RF(x) refers to the output of the random forest, which was determined via aggre-

gating the predictions of all trees through a voting mechanism for the classification of
the fire source.
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2.3. LightGBM

LightGBM is a gradient-boosting algorithm that iteratively adds a decision tree to
minimize the loss function [20]. Each new tree in the algorithm was constructed to address
the residual errors made by the previous trees in the sequence.

Fm(x) = Fm−1(x) + α · hm(x) (4)

Here, Fm(x) represents the prediction of the model at the m-th step,
hm(x) is the prediction of the new tree added in that step,
α is the learning rate.
Distinct from the traditional gradient boosted decision trees (GBDT), LightGBM incor-

porates two primary technological advancements: histogram optimization and a leaf-wise
growth strategy [21].

Histogram optimization: LightGBM constructs histograms by dispersing the values of
continuous features into discrete bins, thereby reducing computational requirements.

Leaf-wise growth strategy: LightGBM opts to grow the leaf to maximize loss reduction,
focusing more on minimizing the model’s error.

2.4. Application Examples

For instance, if the input features of the model are denoted as x = (x1, x2), and the
output fire source classification results are A, B, C, then a simplified decision tree may
employ rules of the following form:

If x1 > threshold1, then:
If x2 > threshold2, then:

Classify as A;
Else

Classify as B;
Else

Classify as C.

In this example, x1 and x2 are features, and the thresholds determined how nodes
were split. Random forest aggregates the results of multiple decision trees and decides the
final classification through voting, while LightGBM iteratively optimizes each decision tree
towards an optimal solution.

The model output y is a function of the input vector x, which can be mathematically
represented as follows:

y = f (x; Θ) (5)

where f represents the model function, Θ is the parameters.
For the three established machine learning models, the input was a feature vector

x = (x1, x2, . . . , xn) processed from data, and the output was a fire source prediction
classification based on the data distribution and structure learned by the model. In practical
applications, the implementation and optimization of these models involve more details,
including feature selection, model parameter adjustment, and overfitting prevention. Each
model provides a fire source classification label for the input feature vector x.

3. Dataset Description
3.1. Introduction to CFAST

CFAST 7.7.4. is a dual-zone fire simulation software developed by the National
Institute of Standards and Technology (NIST) [22]. When simulating with CFAST 7.7.4.
software, the location of the fire is divided into an upper hot smoke gas zone and a
lower cold air zone. The parameters in each zone are assumed to be uniform, and
no diffusion and mixing of material across the interface between the two zones are
considered. Using the CFAST software for fire simulation, the fire development status of
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multiple rooms, such as temperature and gas concentration as a function of time, can be
obtained relatively quickly.

When using CFAST software for fire simulation, the simulation results are more
accurate when the simulated space is smaller. However, for larger spaces, to make the
simulation of the smoke movement more realistic, the simulated large space is usually
divided into smaller sub-zones [23].

3.2. Introduction to CData

CData is a CFAST input data generator that creates one or multiple CFAST input
files and creates batch processing programs [24]. This tool utilizes Monte Carlo sampling
based on user-specified ranges and distributions of parameters to generate the input
files for CFAST.

3.3. The Validity of the CFAST Model

NIST and many researchers have demonstrated the effectiveness of the CFAST model.
Peacock et al. validated the CFAST model against fire phenomena in nuclear power plants,
concluding that the simulated results of the temperature and height of the hot gas layer
and oxygen and carbon dioxide concentrations were consistent with the experimental
results [25]. Still, the smoke concentration tended to be overestimated. The delay of smoke
propagation in corridors [26] and the chimney effect in shafts [27] were also validated
against experimental data. Fan used CFAST to simulate fires in narrow and confined spaces,
with a reasonable subdivision of sub-zones, and validated the simulation results [28].

3.4. Model Building

The research object was an underground commercial street with a length of 63 m, a
width of 14 m, and a height of 4 m, encompassing a total construction area of 882 m2 and a
volume of 3528 m3. The street included a 4 m wide pedestrian passage in the center. On
both sides of the pedestrian passage were 16 shops and 2 emergency exits, each with a
length of 7 m and a width of 5 m. Temperature sensors were installed on the corridor’s
ceiling in the underground commercial street.

3.4.1. Construction of CFAST Model

(1) Geometric model.

The CFAST software demonstrates higher precision in simulating building fires in
smaller spaces. However, its accuracy decreases with the increase in the size of the sim-
ulated space, leading to larger errors. To improve its efficacy for regional simulation of
building fires, an enhancement of this simulation method is required. This refinement is
crucial for achieving more accurate simulations across various spatial dimensions. Chow
found that in the CFAST simulation of the tunnel fire, the simulation results of dividing
the tunnel area into less than or equal to 15 sub-zones were scientifically effective [29]. The
corridor area was uniformly divided into 9 sub-zones to create this fire model. Figure 1
below shows the CFAST model, with zones 1–16 as shops, 17–18 as emergency exits, and
19–27 as subdivided corridor sub-zones. The corridor area is demarcated by horizontal
light-blue dashed lines. The fire source determination conducted in this study was solely
for validating the proposed method. Therefore, fire sources were set in room 1, 2, 3, 4 and
5 in the CFAST simulation. To simplify the model, it was idealized that only the door of
the store where the fire occurred was open, the influence of other shops on the fire was
ignored, and all other shops were set to be closed.
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Figure 1. CFAST model diagram of underground commercial street.

(2) Determining initial conditions.

Environmental parameters such as temperature and atmospheric pressure inside
and outside the building must be determined when constructing a fire model. The
parameters inputted into this simulation were divided into fixed and random parameters
generated via Monte Carlo sampling using CData, as shown in Tables 1 and 2. The
selected random parameters incorporated five crucial elements identified in previous
studies: opening width, opening height, thermal conductivity, wall thickness, and ceiling
thickness [30]. In the next step, more parameter indicators were selected to improve the
model’s generalization ability.

Table 1. Fixed parameter.

Parameter Configuration

Fire simulation time (s) 1200
Indoor/outdoor temperature (◦C) 20
Indoor/outdoor relative humidity 50%

Atmospheric pressure (Pa) 101,325
Wind speed (m/s) 0

Floor material Insulated, no heat conduction
Ceiling material Gypsum board

Wall material Gypsum board
Fire type Ultra-fast fire
Sensor Temperature sensors set every 7 m

Table 2. Random Parameter.

Parameter Minimum Average Maximum Distribution Function

Opening Width (m) 0.81 2.03 3.24 Normal Distribution
Opening Height (m) 1.93 2.27 3.5 Normal Distribution

Thermal Conductivity (W/m·K) 0.19 0.20 0.21 Normal Distribution
Wall Thickness (mm) 13.5 14.3 15.9 Normal Distribution

Ceiling Thickness (mm) 13.5 14.3 15.9 Normal Distribution

(3) Fire scenario construction

1⃝ Fire source location. The location of the fire source is crucial for understanding
the fire situation during a fire incident, particularly affecting the temperature distribution
within an underground commercial street. Different fire source locations can lead to varied
propagation paths of heat and smoke, thereby impacting temperature distribution. Due to
the symmetrical architecture of this commercial street and the initial database established
primarily for validating this study’s proposed fire source determination method, the chosen
fire source locations were rooms 1, 2, 3, 4, and 5. The five fire source locations corresponded
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to distinct fire source conditions, with each condition being associated with a single point
of ignition.

2⃝ Heat release rate (HRR) of fire source. HRR is one of the most crucial parameters
in underground commercial street fires. Following the ‘technical standard for smoke
management systems in buildings,’ the maximum HRR for public places with and without
sprinklers was set at 2.5 MW and 8 MW, respectively [31]. In this study, the maximum HRR
was set at 3 MW in rooms 1 to 4, while in room 5, it was set at below 3 MW (1 MW, 1.5 MW,
2 MW, 2.5 MW), 3 MW, 4 MW, 5 MW, 6 MW, 7 MW, 8 MW, and above 8 MW (8.5 MW,
9 MW, 9.5 MW, 10 MW). This setup was based on the t2 fire model, with a typical t2 curve
where HRR increases to its maximum over 75 s, maintains for 1050 s, and then decreases to
0 kW in 75 s, encompassing 18 fire source categories.

3.4.2. Simulation Results

This paper utilized CData to generate CFAST input files. Among them, 400 test files
were generated for fire sources of below 3 MW, 3 MW, 4 MW, 5 MW, 6 MW, 7 MW, 8 MW,
and above 8 MW, respectively, resulting in a total of 4800 simulations with a temperature
output every 1 s.

After the onset of a fire, a substantial amount of smoke is generated and accumulates
at the ceiling. Initially, it does not spread to the corridors; hence, sensors placed there show
no significant change in readings. As the smoke spreads from the fire-originating room to
the corridor and gradually to the adjacent corridors, the smoke layer temperature in the
corridor’s upper part progressively increases. Various factors, including the location and
heat release rate of the fire source, the size and position of openings, and the layout of the
space, influence the movement and distribution of the smoke. As illustrated in Figure 2,
data curves from temperature sensor 1 were selected under simulations of 12 different
fire source settings. This paper aimed to utilize artificial intelligence models to identify
the relationship between temperature data or its processed feature parameters and the
fire source, thereby facilitating the determination of the fire source. The specific process is
depicted in Figure 3:

Figure 2. Temperature curve for corridor 1.
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Figure 3. The work-flow of the proposed model.

4. Machine Learning Model
4.1. Data Preprocessing

Data preprocessing is a pivotal step in artificial intelligence, directly impacting the
model’s performance and accuracy. This study primarily employed preprocessing measures
such as categorization, segmentation, normalization, and removal of irrelevant data.

4.1.1. Label Categorization

The processed sample data needs to be labeled to train machine learning models more
effectively. The current dataset labels were set based on the different fire source positions
and HRR in the CFAST simulation. The database established for this study involved
categorizing and labeling different types of fire sources.

4.1.2. Segmentation Processing

Selecting a period as the input allows the model to capture and learn the dynamic
changes and trends of data over time. This approach is beneficial for identifying the
complex nonlinear relationships between temperature and fire source information. When a
machine learning model can discriminate temperature curves throughout the fire process,
it can obtain more accurate information about the fire source. Although, it will lose the
ability to perform in real time. In this paper, the dataset was processed in segments with
a selected time interval of 30 s. The obtained data were respectively 30–60 s, 60–90 s, . . .,
1170–1200 s. After segmenting, 39 samples were obtained for each fire scenario. This study
simulated 4800 fire scenarios, resulting in 187,200 samples.

4.1.3. Data Standardization

Normalization of the acquired sample data by converting dimensional expressions
into dimensionless expressions, solving the comparability problem of the data.

4.1.4. Deletion of Useless Data

Each CFAST simulation obtained a data curve of 1200 s. As the sensors had a specific
activation time, the data obtained during this period did not contribute to the model
training. To improve the accuracy and efficiency of the model, the useless data in the first
30 s were removed, and only the data from the 30 s to 1200 s were used.

4.2. Feature Extraction

Feature extraction is a crucial process for obtaining feature vectors of data infor-
mation. This paper extracted nine manual features based on temperature time series
{T1, T2, · · · , Ti, · · · , Tn} to better describe the information on different fire sources and to
achieve optimal classification performance. Each sample had nine temperature curves,
resulting in 81 features generated for each sample.

1⃝ Maximum (Tmax): the highest value in the selected temperature time series.
2⃝ Mean (µ): the arithmetic average of a selected temperature time series, which reflected

the average level of a temperature segment.
3⃝ Minimum (Tmin): the lowest value in the selected temperature time series.
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4⃝ Standard deviation (σ): the arithmetic square root of the arithmetic mean of the
squared deviations from the mean of a selected temperature time series, reflecting the
degree of temperature dispersion in a period. The formula for calculating standard
deviation is as follows:

σ =

√
∑n

i=1(Ti − µ)2

n
(6)

5⃝ Mean absolute deviation (MAD): the average of the absolute deviations of all indi-
vidual observed values in the selected temperature time series from their arithmetic
mean, which avoided the situation where errors in a temperature segment cancelled
each other out. The calculation formula is as follows:

MAD =
1
n

n

∑
i=1

|Ti − µ| (7)

6⃝ Interquartile range (IQR): the interquartile range (IQR), which was the difference
between the upper quartile (Q3, located at 75%) and the lower quartile (Q1, located at
25%) of the selected temperature time series, reflected the dispersion of the middle
half of the temperature. The formula for calculating IQR is as follows:

IQR = Q3 − Q1 (8)

7⃝ Coefficient of variation (c): the ratio of the standard deviation to its corresponding
mean in the selected temperature time series, a normalized measure of the temperature
dispersion. The calculation formula is as follows:

c =
σ

µ
(9)

8⃝ Skewness (SK): the ratio of the difference between the mean (µ) and median (m0)
of a selected temperature dataset to its standard deviation, reflecting the degree of
skewness of the temperature. The calculation formula is as follows:

SK =
µ − m0

σ
(10)

9⃝ Kurtosis (γ2): the number that reflected the sharpness of the peak of the selected
temperature time series at the mean value. The calculation formula is as follows,
where µ4 represents the fourth central moment:

γ2 =
µ4

σ4 − 3 (11)

4.3. Construction of Fire Source Determination Model

This study used 81 (9 × 9) extracted features from a 30 s temperature time series as the
input for the fire source determination model, which outputted the fire source classification
results. The obtained samples were randomly shuffled and divided into quantities of 70%
for training and 30% for testing. Furthermore, five-fold cross-validation was employed dur-
ing the training process. Decision tree, random forest, and LightGBM were selected in this
study and were individually fine-tuned using random search random searchand Bayesian
optimization [32]. Random parameter tuning involved selecting parameters randomly from
a given range of hyperparameters, while Bayesian tuning was an optimization method
based on Bayesian probability principles. The tuning results are shown in Tables 3–5.
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Table 3. Decision Tree Parameter Tuning Results.

Parameter Explanation Tuning Range Tuning Results

Max_depth The maximum depth of the decision tree. Depth was the
number of nodes along the longest path from the root to a leaf. (1, 30) 20

Min_samples_split The minimum number of samples a node must have before it
can be split. (2, 50) 15

Min_samples_leaf The minimum number of samples a leaf node must have. (1, 50) 5

Max_features The maximum number of features to consider when looking for
the best split. [‘sqrt’, ‘log2’] Log2

Table 4. Random Forest Parameter Tuning Results.

Parameter Explanation Tuning Range Tuning Results

Nestimators The number of trees in the random forest. (50, 300) 238
Max_depth The maximum depth of the trees. [3, 5, 10, None] None

Max_features The maximum number of features considered
when finding the best split. (1, 15) 6

Min_samples_split The minimum number of samples required to
split a node. (2, 15) 10

Min_samples_leaf The minimum number of samples required to be
at a leaf node. (1, 11) 4

Bootstrap Whether bootstrap sampling was used when
building trees. [True, False] False

Class_weight The weights used for classes in handling
imbalanced datasets.

[‘balanced’,
‘balanced_subsample’, None] balanced

Table 5. LightGBM Parameter Tuning Results.

Parameter Explanation Tuning Range Tuning Results

Bagging_fraction The proportion of sub-samples used in the bagging process. (0.5, 1) 0.9511
Min_data_in_leaf The minimum amount of data required in a leaf node. (1, 100) 40

Max_depth The maximum depth of the trees. (3, 20) 16
Min_split_gain The minimum gain required to perform a split. (0, 5) 0.001

Num_leaves The maximum number of leaf nodes in a tree. (16, 128) 81
Lambda_l1 The weight of the L1 regularization term. (0, 1) 0.3516
Lambda_l2 The weight of the L2 regularization term. (0, 1) 0.4062

4.4. Evaluation Metrics

In this paper, precision (P), recall (R), and F1-score (F1) were used as evaluation metrics
for the classification model. Pi represents the proportion of samples predicted as class i that
were actually class i. In contrast, Ri represents the ratio of correctly predicted class i samples
to actual class i samples. The F1 score was the weighted harmonic mean of precision and
recall. Specifically, the formulas for calculating the three metrics are as follows:

Pi = TPi/(TPi + FPi) (12)

Ri = TPi/(TPi + FNi) (13)

F1i = 2PRi/(Pi + Ri) (14)

In which, TPi (true positive) represents the samples of class i that were correctly
predicted as class i; FPi (false positive) represents the samples of other classes that were
predicted as class i; FNi (false negative) represents the samples of class i that were predicted
as other classes.

In this task, since it involves the classification of multiple categories, macro average
metrics needed to be used to evaluate the classification model’s performance from an
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overall perspective. The specific calculation formula for the macro-average is shown below
where k = 10 is the arithmetic average of accuracy and recall, and F1 score of each category.
Macro-average was commonly used to evaluate a classification model’s performance on
multiple datasets.

Pmacro =
1
k

k

∑
i=1

Pi (15)

Rmacro =
1
k

k

∑
i=1

Ri (16)

F1macro =
1
k

k

∑
i=1

F1i (17)

4.5. Performance Evaluation of the Model

Based on the evaluation metrics, to verify the effectiveness of the three machine
learning models established in the task of underground commercial street fire source
determination, the experiment used the extracted features of the test set as model inputs
and compared the classification performance of decision tree, random forest, and LightGBM
models. The comparative experimental results are shown in Figure 4.

Figure 4. Comparison chart of classification results.

As can be seen from Figure 4, the LightGBM model achieved the best evaluation
metrics, with macro averages of precision, recall, and F1 score being 99.01%, 98.45%,
and 99.04%, respectively. These metrics indicated that the LightGBM model accurately
identifies and classified fire sources. A precision rate of 99.01% suggests that the model
rarely made false positive predictions, while a recall rate of 98.45% indicated that nearly
all actual fire sources were correctly identified, with minimal missed detections. An F1
score of 99.04% emphasized the model’s excellent balance between precision and recall.
These results demonstrated LightGBM’s formidable capability in handling challenging
multi-classification tasks, primarily due to the training set’s complex nonlinear relationship
between temperature data and fire source information. Compared to the RF and DT
models, LightGBM’s histogram algorithm and controllable depth leaf-wise growth strategy
significantly leveraged its advantages.

Furthermore, the RF model’s evaluation metrics were all higher than the DT model’s,
with increases in macro averages of precision, recall, and F1 score by 2.38%, 1.93%, and
2.13%, respectively. This improvement was attributed to the random forest’s ensemble
method and its ability to handle high-dimensional data, resulting in a higher predic-
tion accuracy than a single decision tree in complex multi-classification tasks like fire
source classification.
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In summary, the LightGBM, RF, and DT models exhibited unique strengths. Light-
GBM exceled in this task, owing to its outstanding class differentiation ability and high-
dimensional data processing capability, enabling it to identify and classify complex data
patterns effectively. As an ensemble method of decision trees, the random forest also
demonstrated excellent performance, particularly in reducing overfitting and handling of
high-dimensional data. In contrast, a single decision tree may be less effective in complex
classification problems. Therefore, considering the characteristics of fire source classifica-
tion, LightGBM, and RF models are more suitable for further research and improvement.

4.6. Kappa Coefficient

The kappa coefficient is a statistical method used to evaluate consistency and is
commonly used to evaluate multi-class models accurately. The coefficient ranges [−1, 1]
but is typically normalized to [0, 1] in practical applications. The higher the coefficient
value, the higher the accuracy of the classification achieved by the model. The kappa
coefficient is calculated using the following formula:

k =
p0 − pe

1 − pe
(18)

In which, p0 represents the ratio of the sum of the correctly classified samples in each
fire source category to the total number of samples. pe refers to the probability of the
classifier agreeing with the actual labels by chance in a completely random scenario.

The kappa coefficients of the three models are illustrated in Figure 5. The figure shows
that the LightGBM model exhibited the best performance with a kappa value of 98.81%,
signifying near-perfect classification performance and demonstrating remarkable consis-
tency. Meanwhile, although the kappa value of the RF model was slightly lower than that
of LightGBM, it still surpassed the DT model. This advantage was attributed to its random
feature selection and multi-tree voting mechanism, which maintained good accuracy.

Figure 5. Kappa coefficients of the three algorithms.

4.7. Application of Fire Source Determination Technology in Real Fire Situations

Fire source identification is crucial to fire risk assessment and emergency response.
In an underground commercial street, the application of artificial intelligence fire source
determination technology for fire risk assessment and emergency response in real fire
situations can proceed as follows.
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(1) Real-time fire source identification

1⃝ The artificial intelligence model analyses temperature sensor data from the corridors
of the underground commercial street to locate fire source information accurately.

2⃝ The system automatically triggers a fire alarm and communicates the fire source
information to the emergency response center and the building management system.

(2) Fire emergency response

Based on fire source information, the emergency response center rapidly deploys
firefighting, medical, and rescue teams, ensuring effective response tailored to the specific
details of the fire source.

(3) Evacuation plan optimization

1⃝ The building management system automatically adjusts evacuation instructions
based on the specific location of the fire source, guiding personnel through electronic
displays or broadcast systems within the commercial street to the safest evacuation routes.

2⃝ The monitoring center continuously tracks the evacuation of personnel, ensuring
the safe withdrawal of all individuals.

(4) Risk assessment and safety strategy

1⃝ After the event, using data provided by the artificial intelligence model and records
of the fire situation, assess the fire risk of the underground commercial street.

2⃝ Based on the risk assessment results, adjust and optimize the underground commer-
cial street’s fire prevention measures, safety system design, and emergency response plans.

(5) Continuous monitoring and improvement

1⃝ In day-to-day operations, continuously monitor and analyze temperature sensor
data to promptly identify potential risks and implement preventive measures.

2⃝ Regularly review and update the artificial intelligence model to ensure accuracy
and adaptability, thereby better addressing potential fire incidents.

5. Conclusions

This paper established a fire source determination method for underground com-
mercial streets based on temperature and machine learning. It constructed fire source
determination models for underground commercial streets using three machine learning
algorithms: RF, DT, and LightGBM. The paper calculated the macro averages of precision,
recall, and F1 scores for the three models and performed a comparative analysis of their
kappa values, leading to the following conclusions:

(1) The LightGBM model performed best in determination with its exceptional class
differentiation ability and high-dimensional data processing capability. Its macro
averages for precision, recall, and F1 score were 99.01%, 98.45%, and 99.04%, and its
kappa value was 98.81%.

(2) The high determination performance of the three machine learning models indicated
that the fire database established through CFAST simulation, based on random sam-
pling for determining fire conditions, was more aligned with the objective laws of the
real world.

(3) This study’s three machine learning models demonstrated strong classification capa-
bilities and interpretability.

The fire source determination method proposed in this study offers technical support
for the management of fire situations in underground commercial streets. In subsequent
research, consideration should be given to how artificial intelligence technology can be
better applied in fire risk assessment and emergency response. Furthermore, the variety of
fire sources and the development of fires in real scenarios are more complex. To enhance
the precision and practical value of fire source determination in underground commercial
streets, future research should focus on two aspects: firstly, increasing sample data to
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enable the model to understand new categories better and to capture fire source character-
istics, thereby improving determination accuracy; secondly, improving training models,
such as adopting more advanced machine learning algorithms, to enhance the model’s
generalizability and practical application value.
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