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Abstract: LANDFIRE (LF) has been producing periodic spatially explicit vegetation change maps
(i.e., LF disturbance products) across the entire United States since 1999 at a 30 m spatial resolution.
These disturbance products include data products produced by various fire programs, field-mapped
vegetation and fuel treatment activity (i.e., events) submissions from various agencies, and distur-
bances detected by the U.S. Geological Survey Earth Resources Observation and Science (EROS)-based
Remote Sensing of Landscape Change (RSLC) process. The RSLC process applies a bi-temporal
change detection algorithm to Landsat satellite-based seasonal composites to generate the interim
disturbances that are subsequently reviewed by analysts to reduce omission and commission errors
before ingestion them into LF’s disturbance products. The latency of the disturbance product is
contingent on timely data availability and analyst review. This work describes the development
and integration of the Spatially Adaptable Filter for Error Reduction (SAFER) process and other
error and latency reduction improvements to the RSLC process. SAFER is a random forest-based
supervised classifier and uses predictor variables that are derived from multiple years of pre- and
post-disturbance Landsat band observations. Predictor variables include reflectance, indices, and
spatial contextual information. Spatial contextual information that is unique to each contiguous
disturbance region is parameterized as Z scores using differential observations of the disturbed
regions with its undisturbed neighbors. The SAFER process was prototyped for inclusion in the
RSLC process over five regions within the conterminous United States (CONUS) and regional model
performance, evaluated using 2016 data. Results show that the inclusion of the SAFER process
increased the accuracies of the interim disturbance detections and thus has potential to reduce the
time needed for analyst review. LF does not track the time taken by each analyst for each tile, and
hence, the relative effort saved was parameterized as the percentage of 30 m pixels that are correctly
classified in the SAFER outputs to the total number of pixels that are incorrectly classified in the
interim disturbance and are presented. The SAFER prototype outputs showed that the relative
analysts’ effort saved could be over 95%. The regional model performance evaluation showed that
SAFER’s performance depended on the nature of disturbances and availability of cloud-free images
relative to the time of disturbances. The accuracy estimates for CONUS were inferred by comparing
the 2017 SAFER outputs to the 2017 analyst-reviewed data. As expected, the SAFER outputs had
higher accuracies compared to the interim disturbances, and CONUS-wide relative effort saved was
over 92%. The regional variation in the accuracies and effort saved are discussed in relation to the
vegetation and disturbance type in each region. SAFER is now operationally integrated into the RSLC
process, and LANDFIRE is well poised for annual updates, contingent on the availability of data.
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1. Introduction

Monitoring land cover and land use over time is fundamental in understanding our
environment and environmental change [1–4]. Over the last five decades, several organiza-
tions have developed and commissioned space-based platforms to systematically observe
and map the Earth with remote sensing (RS) technologies [5–8]. This has resulted in system-
atic and repeatable synoptic collections of measurements and imagery for monitoring and
studying the biosphere [4,6,9–11], leading to the rapid development of RS methodologies
to derive geophysical, biophysical, and environmental variables for inventorying and
detecting subsequent change.

The Landscape Fire and Resource Management Planning Tools (LANDFIRE) pro-
gram [12] (http://www.LANDFIRE.gov (accessed 6 February 2024)) relies on RS imagery-
based change detection for monitoring and updating its products. LANDFIRE (LF) is
an interagency collaboration that provides consistent and comprehensive vegetation and
wildland fuel data for the entire United States [12,13]. LF products are used for strate-
gic planning and/or tactical decision making [14] on wildfire incidents, resource man-
agement plans [15], fuel treatment projects [16,17], and many other nonfire applications
(e.g., [18–20]).

LANDFIRE products have been updated bi-annually to account for changes on the
landscape due to natural and anthropogenic disturbances. These products provide national,
regional, and local information that is needed by fire ecologists, researchers, land managers,
and conservationists to update an assortment of predictive models or planning documents.
Hence, high product accuracy and frequency of delivery, along with low product latency,
are important.

LANDFIRE disturbance mapping is the first step in understanding where vegeta-
tion and fuels have changed. Disturbance layers not only inform how vegetation was
initially altered, but also, when used in conjunction with vegetation and fuels transition
rulesets, how vegetation has recovered through time. A major component of LF disturbance
mapping is the use of RS imagery and change detection algorithms (CDA) via the U.S.
Geological Survey Earth Resources Observation and Science (EROS)-based Remote Sensing
of Landscape Change (RSLC) process. LANDFIRE’s RSLC disturbance mapping frame-
work (detailed in Section 2.2) uses a modified form of the Multi-Index Integrated Change
Analysis (MIICA) [21] algorithm. The interim RSLC MIICA detections are subsequently
reviewed in detail by analysts to verify vegetation disturbances.

CDAs often use thresholds that define the cut-off between what is considered nat-
ural variability and change. Algorithmic errors are typically caused by the improper
characterization of the natural variability of a land surface because of changes in local
conditions that include viewing geometry, cloud/cloud shadow, and atmospheric effects.
To resolve this, these globally applicable CDAs use thresholds that are derived using large
databases [22–25]. Physically based models, e.g., [26–29] use modeled seasonal landcover
phenology to estimate observed departures. The advantage of a physically based model is
its generalized applicability, restricted only by the assumptions in the model.

A conservative threshold in the CDA followed by a commission error filter [25,30]
have been found useful to minimize errors of omission and commission. Such filters often
use the temporal domain (temporal persistence/consistency of disturbance) to validate
the change. For example, the Continuous Change Detection and Classification (CCDC)
algorithm, operationally used in the Land Change Monitoring, Assessment, and Projection
(LCMAP) program, requires consecutive observations to concur change to validate a
spectral break [28]. Similarly, operational [25,31] fire characterization algorithms use both
spatial and temporal filters for omission and commission error reduction. The Landscape
Change Monitoring System (LCMS; [32]) uses an ensemble of CDAs to detect changes that
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are later refined by using decision trees that have been trained using a reference dataset to
reduce errors rates.

The motivation for this research stems from the fact that human interpreters use
spatial contexts [33], intuitive and adaptive skills [34], and their expertise to successfully
interpret satellite imagery. Although it is perhaps not currently possible to match human
skills, computer algorithms can be adapted to mimic human interpretation by including
contextual information and regionally derived models.

This work describes the Spatially Adaptable Filter for Error Reduction (SAFER) pro-
cess, which integrates contextual information in a machine learning environment; spatial
contextual information is parameterized as spatial change Z scores, and these scores are in-
cluded alongside the pre- and post-disturbance observations as predictor variables. SAFER
is trained using prior years of analyst-reviewed remotely sensed disturbance data. We
show that the inclusion of the SAFER process increases classification accuracy and has the
potential to reduce product latency by reducing the required analyst effort.

2. Data and Preprocessing

LANDFIRE ingests data from multiple sources (refer to Supplementary Table S1) for
product generation and uses Landsat satellite series reflectance observations for remotely
sensed disturbance detections. Landsat-based imagery is composited (refer to Section 2.2.1)
and divided into 98 (Figure 1) nonoverlapping tiles [35]. Based on analysts’ experiences,
tiles that encompass a variety of vegetation types and disturbances were selected for
prototyping and are highlighted in Figure 1.
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2.1. The LF Disturbance Product

LF disturbance products provide raster maps of annual disturbances on the landscape
along with attributes for each pixel, including the type of disturbance, time since distur-
bance, and severity of disturbance. The sources of LF disturbance data are separated into
three categories: Fire Program data, Events, and RSLC.
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On an annual basis, LF actively solicits and collects field data Events from federal,
state, local, and nonprofit cooperating organizations. An Event is a management practice or
natural occurrence that is larger than 0.02 acre (greater than 1/10th of a 30 m pixel) that has
reportedly affected the vegetation on the landscape and been captured and characterized
by the managing agency. Events include disturbances that are not always detected by RS
techniques like fuel treatments, chemical/herbicide treatments, and insect or disease infes-
tations. Submitted Events typically include information on the type of disturbance, which
can be distilled down to various causative agents such as fire, development, clearcutting,
harvest, thinning, mastication, other mechanical, weather, insecticide, chemical, insects,
disease, insect/disease, herbicide, and biological. Some change agents take precedence
over other types of disturbance if they are overlapping; for example, harvest overrides
fire if both occur in the same year. Submitted event data are collected and processed
into a standardized format and maintained within the LF Reference Database (LFRDB) as
individual vector files (LFRDB; [12]). These vector data are later rasterized and included in
the LF disturbance product.

Fire Program data are generated by the U.S. Forest Service (USFS) and U.S. Geological
Survey (USGS) and includes Monitoring Trends in Burn Severity (MTBS; [36,37]), Burned
Area Emergency Response (BAER; [38]), and Rapid Assessment of Vegetation Condition
After Wildfire (RAVG; [39]). The MTBS program is an interagency program, run by the
USGS and the USFS, that assesses burned areas that are greater than 1000 acres in the
western United States and greater than 500 acres in the eastern United States. MTBS relies
on the differenced Normalized Burn Ratio (dNBR) to discern fire boundaries and includes
an estimate of the severity of the fire along with other attributes for each fire [36]. The BAER
products were designed to assess the immediate post-fire soil effects for the USFS [40].
Burned area delineation methods for BAER are like MTBS; however, the soil burn severity
is ground-validated. The BAER product requests are typically restricted to U.S. Department
of Interior (DOI)- and USFS-managed lands, so spatial coverage is restricted. The RAVG
product [41] maps the condition of the vegetation after a wildfire. The USFS creates the
RAVG burn severity maps and translates those outputs to loss of canopy cover, basal
area, and other metrics designed for restoration efforts. The RAVG program, like MTBS,
maps fires that are greater than 1000 acres on USFS lands in the West and 500 acres in the
East using both Landsat and Sentinel imagery before and after a fire. All these data are
aggregated by calendar year to be included in the LF disturbance data.

LANDFIRE actively maps remotely sensed disturbances with the RSLC process. This
process is described in detail in Section 2.2. Disturbance pixels detected using the RSLC
process are subsequently aggregated with fire program data and submitted Events. In this
pixel-based process, fire program data typically rank the highest in topological hierarchies.
More information on the LF disturbance products is available at https://www.usgs.gov/
media/videos/understanding-landfire-disturbance-suite (accessed on 6 February 2024).

2.2. The Remote Sensing of Landscape Change (RSLC) Process
2.2.1. Compositing

LF uses Landsat reflectance observations to generate seasonal composites from all
available Landsat scenes across a seasonal date range [35], to which change detection
algorithms are applied. Image compositing helps reduce the noise in the time series data
by using only the most representative observations that are not contaminated by clouds
or cloud shadows or affected by other atmospheric effects. During the prototyping phase
of SAFER, Top of Atmosphere (TOA) reflectance data were used operationally; however,
in 2017, LF began using atmospherically corrected Landsat surface reflectance (SR) data,
resulting in the SAFER process transitioning to SR. Currently, LF uses the USGS (EROS)
system Landsat Product Generation System (LPGS), which processes the raw Landsat data
into a Level 1 product. These data are terrain-corrected with well-characterized radiometry
that is intercalibrated across the different Landsat instruments. Next, the Level 1 products
are converted into Level 2 products by the LPGS2 (LPGS Level 2) system processes. Once
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LPGS/LPGS2 finishes processing, the Level 2 products are then made publicly available
via Earth Explorer. LANDFIRE compositing is currently based on the 50th percentile for
available imagery within the tile-specific season. The tile-specific seasonal date ranges were
informed by phenology data from the USA National Phenology Network [42] but were
generally centered around day of year (DOY) 175 and DOY 250 (Supplementary Figure S1).
Two seasonal composites (early and late) were generated per year.

2.2.2. Urban, Water, and Agricultural Masks Data

LF has less confidence in changes over urban (i.e., impervious), water/wetland, and
crop landcovers and excludes them by using masks if the commission error is significant.
The National Land Cover Database (NLCD) urban classes [10,43] are used to derive the
urban mask for LF purposes. The surface water mask, including perennial snow and ice, is
derived from the Level-3 Dynamic Surface Water Extent (DSWE) science product [44,45].
The agricultural mask is derived from the U.S. Department of Agriculture Cropland Data
Layer (CDL) [46,47].

2.2.3. Automated Change Detection

An adapted form of the MIICA [21] is used by RSLC to detect vegetation disturbance.
MIICA uses four differenced spectral indices that are calculated using two Landsat ac-
quisitions near anniversary dates and encompassing the year of disturbance. The four
differenced indices used in MIICA are the dNBR, the differenced Normalized Difference
Vegetation Index (dNDVI), the Change Vector (CV), and the Relative Change Vector Maxi-
mum (RCVMAX). These indices are derived as

dNBR = (ρ t2
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swir2

)
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where ρ is the reflectance of Landsat Band [i] for the times t1 (pre) and t2 (post). The MIICA
algorithm calculates regional (tile-wise) means and standard deviations for these four
indices, and then sorts each index into ranks/classes according to the spectral departure
from their regional means using the standard deviation as a unit measure. A vegetation
disturbance is detected by MIICA if the pixel’s CV is greater than its tile-wise mean,
RCVMAX is greater than its tile-wise mean plus 3.0 times its standard deviation, and
dNDVI is less than its tile-wise mean.

MIICA was optimized for mapping spectral changes over the conterminous United
States CONUS for the NLCD program and has relatively high regional commission and
omission errors for vegetation-related disturbances in LF tiles. To reduce the omissions
in the LF application, MIICA is applied to seasonal composites encompassing the year of
the disturbance and its previous year, with thresholds defined using tile-wide summary
statistics. These thresholds were optimized [21] to minimize errors of omissions for opera-
tional use over CONUS. MIICA explicitly tests for decreases or increases in biomass using
a series of conditional statements that evaluate combinations of spectral indices against set
thresholds that were empirically derived in areas of diverse land cover types.

2.2.4. Analysts’ Review

The two seasonal MIICA outputs indicating a decrease in biomass for each season
are combined to create the RSLC annual interim disturbance product that is visually
examined by the analyst(s) to verify if the observed spectral change is correctly classified as
a vegetation-related disturbance [48]. A wide array of geospatial tools are available in the
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analysts’ toolbox, including prior- and subsequent-year MIICA detections, multiple years
of observations using true and false color composites, spatially explicit differenced indices,
and available high-resolution imagery to manually edit residual errors in the map. Human
interpreters use spatial contextual information [33] and intuitive and adaptive skills [34]
along with their expertise to successfully interpret satellite imagery. LANDFIRE analysts are
therefore crucial in ensuring accuracy. Analysts visually interpret LF tile-specific seasonal
dNBR images [36] to supplement vegetation disturbances that are incorrectly identified by
the seasonal MIICA. These supplemental detections are only applied where MIICA did
not accurately map a disturbance or missed it entirely. LANDFIRE analysts frequently
review each other’s work as a measure of quality control and intercalibration assurance to
minimize errors and improve consistency.

3. Methods

This section describes the development and integration of the SAFER process into the
heritage RSLC process (Figure 2). The RSLC interim disturbances that were encountered
by the analysts not only include the detections by MIICA that are applied to seasonal com-
posites but may also include optional supplemental disturbance detections. Supplemental
detections are disturbance detections using liberal thresholds on each of the seasonal dNBR
images. The supplemental disturbance detection thresholds are defined using the sum of
the mean and fractional multiples of the standard deviation of the dNBR distribution in
the tile, but excluding regions that are already detected by MIICA as disturbed vegetation.
Parameters defining the fractional multiples for supplemental disturbance detections to
MIICA are set to be optionally available to the analyst, based on prior experiences.
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SAFER was prototyped over select tiles (Figure 1). SAFER is a supervised random
forest classifier that develops statistical classification rules using training data [49]. For the
random forest model, we use the previous years’ analyst-reviewed disturbance data and a
suite of predictor variables (Section 3.1.1) to train the model. The predictor variables are
defined over the RSLC interim disturbance locations only over the multitemporal periods
encompassing the disturbances. This random forest model is applied to the subsequent
mapping year’s predictor datasets (Figure 2). The model implicitly assumes that the
relationships between the predictor variables and disturbances in a given LF tile are
representative of the subsequent year in the same tile.
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3.1. Random Forest Model

Random forests [50,51] are an ensemble form of decision tree classifications, where
several trees are grown by recursively partitioning a random subset of the training data
predictor variables into more homogeneous subsets, referred to as nodes. The predictor
variable values (Section 3.1.1; Table 1) are only extracted for the RSLC interim disturbance
detection pixels’ locations and include multiple years of remotely sensed reflectance obser-
vations, their corresponding indices, and spatial change Z scores (described in Section 3.2).
The random forest classifier is used because it is an established supervised classifier that
can accommodate nonmonotonic and nonlinear relationships between predictor variables,
makes no assumptions concerning the statistical distributions of the variables, and can
handle correlated variables [50,51].

Table 1. List of predictor variables used for SAFER random forest prototype model. Top of the
Atmosphere (TOA) Landsat reflectance (ρ) values were used to derive the indices, their corresponding
temporal differences, the spectral angle, and the spatial change Z scores (SCZs). For each year (Y), the
two seasonal (DOY 175/250) composites are used individually and with their corresponding seasonal
composite for paired years. The random forest model used three years of data from 2013–2015 for
training and 2014–2016 to map 2016 disturbances. A total of 73 predictor variables were used in
this process.

Variable Formulation and Variable Name Training Prediction

TOA multispectral band
reflectance

ρY
blue DOY 2013, 2014, 2015 2014, 2015, 2016

ρY
green DOY 2013, 2014, 2015 2014, 2015, 2016

ρY
red DOY 2013, 2014, 2015 2014, 2015, 2016

ρY
nir DOY 2013, 2014, 2015 2014, 2015, 2016

ρY
swir1 DOY 2013, 2014, 2015 2014, 2015, 2016

ρY
swir2 DOY 2013, 2014, 2015 2014, 2015, 2016

Indices

(ρnir − ρswir2)/(ρnir + ρswir2)NBRY DOY 2013, 2014, 2015 2014, 2015, 2016

(ρnir − ρred)/(ρnir + ρred) NDVIY DOY 2013, 2014, 2015 2014, 2015, 2016

(ρnir − ρswir1)/(ρnir + ρswir1) NDMIY DOY 2013, 2014, 2015 2014, 2015, 2016

Differenced variables
Difference indices and
Spectral Angle Mapper (SAM)

dNBR DOY Y
Post

-Y
Pre 2013–15, 2014–15 2014–16, 2015–16

dNDVI DOY Y
Post

-Y
Pre 2013–15, 2014–15 2014–16, 2015–16

dNDMI DOY Y
Post

-Y
Pre 2013–15, 2014–15 2014–16, 2015–16

cos−1
(

∑7
b=5 ρ

y1
b ∗ ρ

y2
b /

√
∑7

b=5

(
ρ

y1
b

)2
∗ ∑7

b=5

(
ρ

y2
b

)2
)

SAM DOY Y
Post

-Y
Pre

2013–15, 2014–15 2014–16, 2015–16

Differenced Spatial Change Z
scores (SCZs)

(6) SCZ_dNBR Y
Post

-Y
Pre 2014–15 2015–16

(6) SCZ_dNDVI Y
Post

-Y
Pre 2014–15 2015–16

(6) SCZ_dNDMI Y
Post

-Y
Pre 2014–15 2015–16

Training data are generated using the prior target years’ analyst-reviewed disturbance
and are screened using a landcover mask (Section 2.2.2) to exclude regions that are classified
as urban, perennial snow and ice, water/wetlands, and agricultural lands. The random
forest classification algorithm also allows for the exploration of variable importance to
the model using the internal Gini impurity estimates. Predictor variables with lower Gini
impurity rank relatively higher for their importance.

The ranger implementation of the random forest machine learning algorithm [52] in
the R programming environment was specifically chosen for its ability to use multiple cores
and handle large data volumes in the High-Performance Computing (HPC) environment.
Default random forest parameter settings were used. All available data from the year prior
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to the mapping year were used for training the random forest. This implicitly assumes
similar class distributions over consecutive years and can maximize accuracy [53].

3.1.1. Multitemporal Predictor Variables

Predictor variables were developed from a suite of Landsat reflectance bands, their
corresponding indices, and temporal differenced indices for each LF tile (Table 1). Four
consecutive years of Landsat observations that include the year of disturbance and the three
years of observations prior to the year of disturbance are used to generate the predictor
variables for both training and prediction. For example, to map a 2016 disturbance, Landsat
observations for the years 2016, 2015, 2014, and 2013 are used (Table 1). The 2015, 2014, and
2013 data are used for training the random forest and are applied to 2016, 2015, and 2014
data. The Landsat observations used were consistently either TOA during development of
SAFER for all the four years or SR for operational purposes. All reflectance bands, from
visual to Shortwave Infrared bands [54], contain useful vegetation-related information,
but some bands are more sensitive to vegetation-related changes [55] than others. The
coastal aerosol Landsat 8 band 1 was not used, because it is strongly affected by the
atmosphere [56]. In addition to reflective observations, LF’s predictor variables included a
suite of indices and difference indices that are known for their ability to identify vegetation-
related disturbances [55,57–59]. Spatially explicit change Z scores [60] are also computed
(Section 3.1.2) and included as predictor variables.

The original random forest [50] was designed for large number of predictor variables.
The ideal number of variables to use is assigned internally by the random forest algorithm
as the square root of the number of predictors that lowers the number of predictor variables
used in a particular split, thereby reducing the probability of over-fitting with deep trees.
Because each split is independent of other variables, including a combination of variables
helps generate exploratory depth in the model. However, this may lead to a more complex
model and will bias internal variable importance estimates. The inclusion of such corre-
lated variables may also decrease computational efficiency and model parsimony [61,62];
however, the highest output accuracy was achieved when all the variables were used,
including ones with a low explanatory power. By design, the modularly scripted software
framework of the RSLC and SAFER process allows for easy inclusion/exclusion of any
additional layers as predictor variables for future mapping efforts. This modeling frame-
work also allows for easy adaptations from the current usage of random forest’s machine
language to algorithms like XGBoost [63], deep learning [64], or state-of-the-art artificial
intelligence-based algorithms [65] in the future.

3.1.2. Spatial Change Z Scores (SCZs) Predictor Variable

The predictor variables described above characterize per-pixel observations over the
temporal domain for each of the remotely sensed disturbance detections; however, the
information from the spatial domain has been ignored. Spatial information and disturbance-
specific contextual information have previously been used by remote sensing algorithms to
define disturbance types [61,66]. Classification algorithms have also used textural infor-
mation that is sensitive to spatial kernel size [67], but are computationally simple. Spatial
contextual information is more computationally intensive than kernel-based algorithms,
because each disturbed region will have its unique contextual neighbors. Spatial contex-
tual algorithms, despite their computational complexities, have successfully been used to
reduce errors of commission [22,30] due to the additional information that they bring in.
An implicit assumption is that the immediate neighboring undisturbed regions are repre-
sentative of the conditions prior to the disturbance. Spatially explicit change Z scores [60]
are then computed as spatial change probabilities between a pixel inside a disturbed re-
gion and the statistical summary of the immediate undisturbed region around the given
disturbance region.

To compute the spatial change Z scores (SCZs), each contiguous (i.e., queen’s case) cluster
of interim RSLC-detected changed pixels are first assigned a unique cluster id k. For each
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clusterk, an encompassing n pixel(s) of wide unique background ring(s)j is generated. The
background ring includes only immediate undisturbed pixels that are both inside (islands
of undisturbed regions) and outside a given disturbance cluster. The background ring is
designated with the same id as the disturbance cluster. If the background ring intersects with
any other nearby ring(s), the intersecting pixels are flagged as invalid. Growing larger rings
decreases the chances of these pixels being representative of the undisturbed conditions,
while keeping the ring small increases the chances of using disturbed pixels. The RSLC
interim process is designed to liberally detect disturbances; hence, background rings were
defined around each disturbance cluster without any buffer pixels in between. To iteratively
select the background ring, two such background rings that are (n = 1) and (n = 2) pixels
wide are grown independently around each cluster, and the mean and standard deviation
are computed from the spatial reference image when there are at least five valid background
pixel values per ring. The spatial reference image (e.g., dNBR) is expected to exhibit the
contrast between the disturbed and nondisturbed regions. A valid background ring includes
only pixels without clouds or cloud shadows that are unique to one disturbance. The SCZ is
computed as follows:

SCZRe f erence
i,k =

(
Re f erencei,k − µ

Re f erence
k,j

)
/σ

Re f erence
k,j (5)

where SCZi,k is the Z score of the pixel “i” belonging to a disturbance region “k”, Reference
is the spatial reference image, and µ

Re f erence
k,j and σ

Re f enrece
k,j are the mean and standard

deviation, respectively, of the background pixel values of the jth ring in the spatial reference
image. The background ring “j” with the lower coefficient of variation σ/µ is selected from
the two rings. The rationale for this selection is that the coefficient of variation should
be lower for the background ring that mainly encompasses homogenous undisturbed
regions. Figure 3 illustrates this procedure. In case of insufficient (<5) background pixels, a
backup algorithm that computes tile-wide statistics, defined using the mean and standard
deviations derived over all one-pixel (n = 1)-wide background rings over all disturbance
regions over the spatial reference image, is used. In the case of an RSLC change detection
schema, which includes the two-anniversary seasonal datasets, two spatial change Z scores
are estimated for each epoch and then combined using a function that maximizes the
probability of loss of vegetation to generate the annual spatial change Z scores. Three
such annual SCZ predictor variables are computed using the dNBR, dNDVI, and dNDMI
(differenced Normalized Difference Moisture Index) as spatial reference images. The
dNDMI is computed similarly to the computation of dNBR, (1) but by using Landsat 8
band 6 (Short Wavelength Infrared 1) instead of band 4 (Near Infrared). The SCZ algorithm
modules were implemented in C++ for efficient multithreaded applications to be deployed
in an HPC environment. R scripts were used to automate the processes.

3.2. SAFER Evaluation

Accuracy assessments need independent and reliably accurate data sources for com-
parisons [68,69]. In this work, the purpose is to evaluate the SAFER process to improve
the disturbance detection accuracy of the interim inputs so that the analysts’ workload
is reduced, and this work is not intended to be a validation study of the LANDFIRE dis-
turbance suite. Three different ways to generate confusion matrices to parameterize the
accuracy of disturbance mapping are used to characterize the SAFER process. Accuracy
measures including Cohen’s kappa [70], the overall accuracy, errors of omissions, and errors
of commission are derived using the confusion matrices [68,70–72]. Although these accu-
racy metrics are commonly used, they do not capture the analysts’ effort of reviewing and
correcting residual errors in the map. We address this with a simple metric: 100 × SAFER
output pixels correctly classified (disturbed or undisturbed)/total number of pixels incor-
rectly classified in RSLC interim detections. This is different to the overall accuracy, which
is defined as the total number of the correctly classified (disturbed or undisturbed) to the
total number of pixels in the study region. The relative effort saved ranges from 0% to
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100%, with 0% indicating no agreement between SAFER outputs and analyst-reviewed
disturbances and thus no reduction in effort, 100% indicating perfect agreement and a 100%
reduction in effort, and so forth for more intermediate levels of agreement. However, this
relative effort score does not directly translate to time saved, but it does provide a helpful
proxy for it.
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Figure 3. Graphical illustration of the spatial change Z scores (SCZs) computation. The left-most is
the reference image (a), whose values for disturbance (lighter and browner shades) and its neighbors
(greener shades) are expected to be different. Contiguous disturbance (b) clusters are assigned a
unique id k. Two rings ((c); j = 1 pixel and (d); j = 2 pixel wide) are grown around each unique
cluster and are assigned the corresponding ids. Pixels in rings that are common to more than one
ring(s) are identified (gray) and marked as invalid. Pixel values from the reference image with land
observations for the valid ring pixel locations are extracted and used to calculate the mean (m) and
the standard deviation (s). The ring with the lowest coefficient of variation (σ/µ) is selected, and the
corresponding µ and σ are used in Equation (5) for each disturbance and results in the SCZ (e) values
for each pixel in the disturbance. Refer to Section 3.1.2 for more details.

3.2.1. SAFER Prototype Evaluation

The SAFER prototyping process is the test bed that is used to evaluate the feasibility
of the inclusion of the SAFER process within the existing RSLC framework. Accuracies and
variable importance were estimated for model evaluation in the prototyping process only.
Accuracy is estimated by comparing the outputs at different stages of the RSLC process
to the final analyst-reviewed disturbances. Internal accuracies are parameterized using
the confusion matrix that is created internally by random forest’s Out of the Bag (OOB)
data [50] function, which randomly selects from training data for an unbiased internal
accuracy estimate. Random forest importance measures are also computed and used to
interpret model performance. Accuracies of the RSLC interim disturbances and SAFER
outputs are inferred using the confusion matrix that is generated using the SAFER outputs
to the corresponding year of analyst-reviewed disturbance data. Differences in accuracies
measured by the different methods are discussed vis-a-vis vegetation type and nature of
the disturbance.
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3.2.2. 2017 SAFER Evaluation

The SAFER process was operationally applied over the whole CONUS to test its
operational capability. Accuracies of the interim RSLC and SAFER outputs along with
metrics for CONUS-wide relative effort are reported herein in both tabular form and
spatially explicit maps. In this application, SAFER variable importance measures were
not computed, and model parameters were not tuned to save computational time, but for
future applications, studies are underway to optimize model performance.

4. Results
4.1. SAFER Prototype Accuracy Results

Table 2 lists the accuracy metric, Cohen’s kappa, and overall accuracy for each of the
study tiles used for prototyping. The classification accuracies were not all uniformly high
and were low in regions that are known to have sparser vegetation. The kappa value is
affected by the relative proportion of classes [72], and hence, lower values were expected
in regions with relatively smaller fractions of disturbances (Table 2). Hence, the relative
accuracy values for corresponding tiles matter more than their individual absolute values.

Table 2. Accuracy metrics (kappa and overall) were derived by comparing the output of SAFER
over the five prototyping tiles (Figure 1). Accuracy values were computed using the confusion
matrix generated internally by the random forest algorithm using the training year 2015 data and
using the confusion matrices generated by comparing the 2016 RSLC interim detections and 2016
SAFER outputs to the 2016 analyst-reviewed disturbances. The fraction column reports the relative
proportion of disturbance in the training sample in that tile for the year 2015. More metrics are
presented in the Supplementary Table S2.

kappa [0–1] Overall [%] Relative

Tile Fraction Internal Interim SAFER Interim SAFER Effort Saved [%]

r01c02 0.27 0.94 0.19 0.82 96.21 99.82 95.38
r02c15 0.35 0.94 0.16 0.59 92.53 99.10 87.89
r06c03 0.04 0.92 0.02 0.32 95.50 99.96 99.19
r09c08 0.24 0.78 0.06 0.24 92.17 99.76 96.91
r08c12 0.89 0.94 0.45 0.81 96.58 99.37 81.55

Median 0.27 0.94 0.16 0.59 95.50 99.76 95.38

The results over the prototyping tiles show that SAFER outputs had a higher median
kappa~0.59 and overall accuracy~99.76 compared to the accuracy of RSLC interim distur-
bances, which had a kappa of 0.16 and overall accuracy of 95.50%. The results also indicate
that SAFER can potentially reduce analyst effort by more than 95%. Of note, this saved
effort does not translate directly into saved time for analysts, because they must still review
all interim pixels. Nevertheless, with SAFER in the analysts’ toolbox (Section 2.2.4), one
could expect higher mapping efficiencies and time savings as well.

The prototype results also show that despite an improvement in accuracies, the increases
in accuracies were not similar across tiles, and none of the tiles had a perfect accuracy score.
Further, the kappa values estimated using random forest’s internally generated contingency
tables and those of the analyst-reviewed disturbances were not always similar. For example,
unlike tiles r01c02 and r08c12 that had a similar and high kappa for both internal and SAFER
estimates, tiles r02c15 and r06c03 had a high internal kappa but a relatively lower SAFER kappa.
Tile r06c03 had a low training fraction, and as such, a low kappa was expected. Despite the low
training fraction, the internal kappa for tile r06c03 was high. However, the SAFER kappa was
low, and the relative effort saved was high at 99.11%. Tile r09c08 had a relatively low internal
and SAFER kappa. The tiles r01c02, r02c15, r06c03, and r09c08 were also visually inspected for
qualitative interpretation. Both kappa and overall accuracies increased with SAFER; however,
SAFER outputs still have errors and need analyst review. The relative analyst effort saved is
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fairly high at over 95% and indicates that including SAFER in the RSLC process can potentially
increase the accuracy and reduce latency of the disturbance products.

The top 30 most important variables to the random forest model during prototyping
for tile-wise disturbance detections are illustrated in Figure 4. The complete list of variable
importance of all variables is shown in Supplementary Figure S2. The differenced variables
dNBR, dNDVI, and dNDMI generally ranked higher in importance than the other variables,
which is likely due to their sensitivity in detecting vegetation-related disturbances [55], but
they were not always the most influential variables in all tiles. Single DOY indices and TOA
observations in some tiles ranked the highest (e.g., tiles r06c03, r08c12, r09c08). The spatial
change probability Z score variable was within the top 25 of three of the five prototyped tiles,
and generally exhibited a positive relationship with the difference indices. The fact that the
difference indices and SCZs were low in some cases, but single-date observations were high,
indicate that the disturbance signals in these tiles had poor spectral contrast. Tiles with lower
ranking of difference indices and SCZ scores indicate that the vegetation disturbance spectral
signatures were not prominent or that the vegetation had recovered within the compositing
period, thereby minimizing the spectral contrast in pre- and post-image differences.
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Tile r01c02 (Figure 5) had a high internal and SAFER kappa (Table 2). It lies in the north-
western part of the United States, where the dominant vegetation class is Tree (Figure 1),
and most of the disturbances are fire-related or mechanical harvests. These disturbances
leave strong spectral contrast that last months to years and are reliably detected using
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interannual composite derivative data. In this tile, the difference indices of the late sea-
son composite are the most important variables (Figure 4). The SAFER outputs closely
match the LF-disseminated disturbance product. Tile r02c15 (Figure 6), which is from
the northeastern United States and has similar disturbance types (fire and mechanical
harvest) as Tile r01c02, did not show a high SAFER kappa. The disturbances in this tile were
smaller but nevertheless were expected to leave persistent disturbance scars that are readily
captured by the seasonal composites. The dominant vegetation class in these northwest
and northeast tiles is trees (Figure 1). The difference indices could be expected to rank
higher (Figure 4), but in contrast to tile r01c02, tile r02c15 had a high internal kappa and
relatively low SAFER kappa. A closer examination of the tile illustrated in Figure 6 shows
that the scenes with the scan line corrector (SLC) failure error [73] from Landsat 7 resulted in
substantial error. In addition, nondisturbance seasonal changes and other (non-Landsat 7)
compositing artifacts make this area extremely difficult to map accurately. Despite these
difficulties, the supervised algorithm was able to reject most of the commission errors. The
analyst effort saved is less (~88%) for tile r02c15 than for the other tiles (Table 2), as the
SAFER process did not eliminate all SLC off errors, and these errors had to be manually
cleaned up by the analysts.

Figures 7 and 8 illustrate tiles r06c03 and r09c08, respectively. These tiles each had
relatively small training datasets for their tile-specific random forest model (Table 2), and the
internal kappa was relatively higher than the SAFER kappa. The dominant vegetation types in
r06c03 are Herb and Shrub (Figure 1), which made it difficult to distinguish between intact
and disturbed vegetation. This is corroborated by the fact that the most important variables
in this tile were single-date observations and not the difference indices. Figure 8 shows
that most commission errors were eliminated by the supervised classification algorithm;
however, certain disturbances were incorrectly discarded. The change products did not
capture a new road under construction, but this was identified by an LF analyst. Such
features with little vegetation can be missed by the automated processes, but usually, they
are correctly identified during the analyst review and mapping. These residual errors
requiring correction by LF analysts are minimal, as reflected by the relative analyst effort
that is saved over these tiles (97%, Table 2).

LF’s use of analysts to review and correct the disturbance maps after the automated
RSLC process produces a high-quality mapped product. For example, Figure 8 illustrates
mapped disturbances for tile r09c08, where the dominant vegetation types are Herb and
Shrub (Figure 1). This tile had a high internal kappa but low independent kappa, a reasonable
finding given the relatively small number of training samples for the area. Like tile r06c03,
the difference indices were not the most important variables in the model. The pre- and post-
disturbance false color images for tile r09c08 (Figure 8) show strong spectral disturbance
signals in the post-image, but similar contrast is seen over the undisturbed preimage as
well, confounding change detection. Active efforts are underway at LANDFIRE to use
different compositing procedures, including the use of different percentiles, e.g., the 20th
and 90th, that may assist in better capturing stable and ephemeral disturbances.

4.2. 2017 SAFER Evaluation

The principal motivation for this work is to improve the accuracy and reduce the
latency of data products that are dependent on LF disturbance mapping processes. The
analysis of the prototype results indicate an increase in accuracy and a reduction in relative
analyst effort, which implies a more efficiently produced disturbance product. Based on the
results of the prototype, SAFER has been implemented into the LANDFIRE RSLC process.
Presented below are the results of its first operational application for 2017 disturbance
mapping. The atmospherically corrected LANDSAT 2015–2018 surface reflectance was used
to ensure consistent data for all years of data, including training and predictive mapping of
disturbances for the year 2017.
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As expected from the prototype results, an increase in accuracies of the SAFER outputs
compared to the heritage RSLC outputs (Supplementary Table S3 and Figure 9) is seen.
Similar to the prototyping results, the median accuracy was 0.11 (kappa) and 94.55 (overall)
for interim disturbance outputs and 0.47 (kappa) and 99.6 (overall) for SAFER outputs. The
median omission and commission errors for disturbances were 36.87% and 28.81% in the
SAFER outputs, with a range of 5–99% depending on the tile and fraction of disturbances.
These results indicate that although the inclusion of SAFER processes increased accuracies,
an analyst review is still required, but to a lesser extent, to ensure LANDFIRE accuracy
standards. Figure 9 shows the kappa classification accuracy metrics for the interim RSLC
disturbances, the SAFER outputs, and the relative effort saved. The kappa for SAFER
(cyan) is higher than the one for the heritage RSLC (red) for most of the tiles. The overall
accuracies of the SAFER (blue) are higher than RSLC (brown), but this is not as evident
as in the case of the kappa. The relative effort (gray) saved ranged from 47.7% (marked
by a solid black circle in Figure 9) to 99.4% (dashed black circle), and the median was
relatively high at 92.4%, implying that the effort saved is fairly high for most tiles. Figure 9
shows that the relative effort saved is high in most regions and is low in regions that
have disturbed vegetation in proximity to croplands. SAFER relies on spectral contrasts in
time and space, with an implicit assumption that regions next to disturbed regions have
undisturbed vegetation, which may not be the case when the vegetation is a mix of wildland
and cropland. Despite regions with challenging conditions, SAFER still saved analyst effort
and improved accuracy. A more comprehensive list of accuracy measures, including the
kappa and overall accuracies, are given in Supplementary Table S2. It should be noted that
the accuracy values that are reported in this table are in comparison to the analyst-reviewed
product and are not an independent reference dataset. Future validation efforts using
independent datasets such as LCMAP’s reference dataset are being actively considered.
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LANDFIRE (LF) tiles (gray rectangles) over the LF 2016 life form classes [74].



Fire 2024, 7, 51 17 of 21

5. Discussion and Conclusions

Loveland et al. (2002) [3] remarked that “The Holy Grail of change detection is still
total automation and high accuracy. However, methods that reduce labor costs while
maintaining consistency and accuracy are needed”. Despite substantial developments in
the field of RS-based change detection algorithms over the last two decades, fully automatic
and accurate change detection is still an active area of research.

Many federal programs, such as the LF, LCMAP, NLCD, and LCMS, have been produc-
ing national-scale landcover products that include disturbance. Although similarities exist
among these programs, such as the use of remotely sensed imagery and scripted algorithms
for change detection, differences also exist, such as the kind of imagery used, algorithms
used, training data, and characterization of disturbance. For example, LF, LCMAP, and
NLCD primarily use Landsat imagery, whereas LCMS uses Landsat and Sentinel as well.
LF uses MIICA with multiple seasons and years of data for disturbance detection, LCMAP
uses CCDC, LCMS uses MIICA and CCDC, and NLCD uses MIICA. With respect to the
automation of disturbance mapping, LF is the only program to use human analysts to
examine and correct disturbances that are mapped by these aforementioned algorithms.
This additional analyst review increases the product’s accuracy but comes at the cost of
product latency. SAFER brings the program closer to full automation and is hence expected
to reduce latency.

Feedback from LF analysts indicates that SAFER outputs are reliable and substan-
tially reduce the level of effort when producing accurately mapped disturbance products.
Estimates in time savings for editing a tile ranged from 1 h or less in dry/desert-like
environments (like tile r06c03; Figure 1) to 8 h in tiles with persistent cloud cover, data
gaps, and large amounts of disturbance such as in the northeastern United States (like tile
r02c15; Figure 1).

The operational worthiness of SAFER is proven by the fact that LANDFIRE has now
moved from bi-annual updates to annual updates and is on the cusp of reducing its product
latency to less than one year. The fully scripted and automated SAFER procedure is
critical for this expedited schedule. The comparison of the RSLC interim disturbances,
SAFER outputs, and the analyst-reviewed LF disturbances to the LCMAP reference dataset
showed that the automated SAFER process brought the accuracies closer to the analyst-
reviewed product. However, an analyst’s review is still required to maintain the legacy of a
high-quality, accurate LF disturbance dataset.

The variable importance results showed that the single-date observations ranked
higher than difference indices and the spatial change Z scores for certain tiles. This may
occur if the difference images do not have spectral contrast, because the vegetation distur-
bance spectral signatures are not distinct, or they have recovered within the compositing
period, thereby minimizing the spectral contrast in the pre- and post-image differences.
Therefore, image selection close to the time of disturbance is important, and future efforts
by LANDFIRE may explore the use of newer data streams like the Harmonized Landsat
Sentinel (HLS) data and the recent Landsat 9 satellite. The increased temporal frequency of
scene availability may help in identifying disturbances that are closer to the actual time
of disturbance.

The accuracies of automated processes are sensitive to a multitude of factors including
a poor disturbance spectral contrast, a lack of clear images to composite, poor timing of
composites in relation to the time of disturbance, or too large a geographic extent to fit a
single random forest model. The fact that in certain tiles, the internal and independent
accuracy estimates were not always correlated strongly indicates that assuming similar
relationships between predictor variables and disturbance even over consecutive years may
not always be valid within an LF tile. Future studies could include more regional models
based on ecoregions instead of arbitrary LF tiles, attempt to remove variables that do not
have any explanatory power, and fine-tune the models’ training parameters. Future studies
may also include using an additional mid-season composite to capture disturbances that
may recover quickly. Further, the compositing algorithm itself is being actively researched
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given that the advent of Landsats 8 and 9 and Sentinels 2A and 2B can increase the temporal
density of image acquisitions.

Additionally, newer published algorithms are being continuously tested for possible
adoption in the LF disturbance mapping framework. Newer operational products like the
LCMAP using time series CDAs [28] and LCMS using an ensemble of CDAs [32] are being
actively considered for ingestion into our disturbance mapping efforts. By design, the
modular RSLC software framework for disturbance detection allows for easy inclusion of
additional disturbance (e.g., LCMAP change or LCMS loss detections) and predictor vari-
ables (e.g., different percentile composites, indices, and newer satellite data) in the future for
more accurate and computationally efficient disturbance mapping. Further, this framework
also allows for the assimilation of machine learning model tuning, easy migration from the
currently deployed random forest [50] to algorithms like XGBoost [63], deep learning [64],
or the state-of-the-art machine learning artificial intelligence-based algorithms [65] that are
well suited for such applications. These updates to the LANDFIRE disturbance product are
planned to continue LANDFIRE’s history of improvement between iterations.

Supplementary Materials: The following supporting information can be downloaded at https://www.
mdpi.com/article/10.3390/fire7020051/s1: Figure S1: Spatially explicit Landscape Fire and Resource
Management Planning (LANDFIRE) tile specific growing season date ranges; Figure S2:Variable
importance of all 73 predictor variables inferred using Gini Impurity for the random forest model for
each of the five prototyping tiles. Please refer to Section 3.1.1 of the manuscript for variable name
and their formulation; Table S1: Data sets described in this work (refer to Section 2); Table S2: 2016
Spatially Adaptable Filter for Error Reduction (SAFER) prototype evaluation results after inclusion to
the remote sensing of landscape change (RSLC) process; Table S3: 2017 Remote Sensing of Landscape
Change (SAFER) evaluation results.
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