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Abstract: Chyulu Hills, Kenya, serves as one of the region’s water towers by supplying groundwater
to surrounding streams and springs in southern Kenya. In a semiarid region, this water is crucial to
the survival of local people, farms, and wildlife. The Chyulu Hills is also very prone to fires, and
large areas of the range burn each year during the dry season. Currently, there are no detailed fire
records or burn scar maps to track the burn history. Mapping burn scars using remote sensing is a
cost-effective approach to monitor fire activity over time. However, it is not clear whether spectral
burn indices developed elsewhere can be directly applied here when Chyulu Hills contains mostly
grassland and bushland vegetation. Additionally, burn scars are usually no longer detectable after
an intervening rainy season. In this study, we calculated the Differenced Normalized Burn Ratio
(dNBR) and two versions of the Relative Differenced Normalized Burn Ratio (RdNBR) using Landsat
Operational Land Imager (OLI) and Sentinel-2 MultiSpectral Instrument (MSI) data to determine
which index, threshold values, instrument, and Sentinel near-infrared (NIR) band work best to map
burn scars in Chyulu Hills, Kenya. The results indicate that the Relative Differenced Normalized
Burn Ratio from Landsat OLI had the highest accuracy for mapping burn scars while also minimizing
false positives (commission error). While mapping burn scars, it became clear that adjusting the
threshold value for an index resulted in tradeoffs between false positives and false negatives. While
none were perfect, this is an important consideration going forward. Given the length of the Landsat
archive, there is potential to expand this work to additional years.

Keywords: East Africa; tropical dry forest; semiarid; grassland; bushland; burned area; dNBR; RdNBR

1. Introduction

The arid and semi-arid lands of Kenya (commonly referred to as ASALs) make up 89%
of the country’s landmass, with 62% and 27% of the country falling in the arid and semi-arid
categories, respectively [1]. Our study focuses on the Chyulu Hills in the semi-arid counties
of Makueni, Kajiado, and Taita-Taveta in southern Kenya. Despite the Chyulu Hills being
lower in elevation than some of Kenya’s other water towers, it plays an important role in the
region’s hydrology [2]. Higher elevations in the Chyulu Hills receive greater precipitation
than the surrounding areas due to orographic uplift. But this rainfall does not result in
much surface runoff due to the porous volcanic rock that makes up the range [3]. Instead,
much of the rainfall infiltrates to feed groundwater which, in turn, supplies nearby rivers
and natural springs [4]. The Mzima Springs to the southwest is one such example, and
it supplies water to the city of Mombasa 300 km away on the coast. Groundwater is also
important to people who live near the Chyulu Hills, as it is a source for irrigation for local
farms and water for domestic use. Water is also a critical resource for local wildlife and
domestic grazing animals.

Fires have a long history in the Chyulu Hills [5], especially between June and October
during the dry season following “long rains” [6]. The Chyulu Hills National Park has the
highest relative frequency of fires among Kenya’s protected areas [7]. Fires continue to be
common due to human activities, including pasture improvement, honey harvesting, plant
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growth stimulation, and clearing for improved visibility [6]. However, there are no detailed
records or burn perimeter maps to assess how much of the Chyulu Hills ecosystem burns
each year or which areas burn repeatedly. Climate change and increasing droughts in the
region are sure to further alter fire activity in this part of Kenya.

The Chyulu Hills has a mixture of vegetation types, including grassland, wooded
grassland, bushland, and forest patches (more information below). Aside from forests,
the vegetation tends to recover quickly after fire, and burn scars are typically not visible
after a rainy season occurs. It is clear from field photos obtained by one of the authors
that even the first rain of the wet season causes grasses to begin regenerating. Given the
frequency and long fire history in this landscape, satellite-based remote sensing could be a
good approach to measure how much of the area burns each year.

The Differenced Normalized Burn Ratio (dNBR) [8] has become a standard method for
mapping burn scars, with many researchers applying it to image data around the world [9–12].
The dNBR is calculated as the difference between pre- and post-fire Normalized Burn
Ratio (NBR) images. Since it measures a change in reflectance over time to highlight
burned areas, it works very well to map burn scars in a range of environments [13,14].
Researchers have applied the dNBR to map burn scars in African ecosystems, including afro-
temperate forests in South Africa [15], savannas in Botswana [14], and tropical dry forests
in Madagascar [13]. These studies typically collect burn severity or burned/unburned field
data to calibrate dNBR to the environment they are mapping [15,16]. Other studies have
used the NBR or dNBR in classification algorithms to map burn scars rather than applying
direct thresholds [17,18] and found that other indices, such as the Normalized Burn Index
(NBI), were more accurate for mapping burn scars in savannas in Zimbabwe.

The Relative Differenced Normalized Burn Ratio (RdNBR) was designed to measure
relative change after a fire rather than absolute change, since the dNBR is correlated with
pre-fire greenness [19]. A further adjustment of the RdNBR includes an offset term that is
subtracted from the dNBR term in the numerator to further account for non-fire changes
in greenness (e.g., phenology) between pre-fire and post-fire images [20,21]; it was found
that this alternate RdNBR was more accurate than the dNBR for mapping burn severity
in grasslands, woodlands, and savannas in Burkina Faso. We believe that both versions
of the RdNBR might be beneficial in the Chyulu Hills, where vegetation greenness varies
dramatically over the year according to wet and dry seasons. Grass-dominated vegetation
types transition from high greenness during the wet season to senescent during the dry
season, and a large decrease in greenness is not associated with fire. Since most fires occur
during the dry season, vegetation usually loses greenness over the fire season even without
being burned.

Chyulu Hills lacks systematic fire records, so it serves as a good regional test envi-
ronment for using spectral burn indices to map burn scars. The biggest challenge with
using remote sensing in this region is cloud cover. Even during dry seasons, there are
often clouds over the landscape—especially at higher elevations. Currently, Landsat has
8-day repeat coverage using both Landsat 8 and Landsat 9 satellites, while Sentinel-2 has
5-day repeat coverage using both Sentinel 2A and Sentinel 2B satellites. Despite there being
frequent coverage, there are often many consecutive weeks where cloud-free images are
unavailable over the Chyulu Hills. Using image pairs from the beginning and end of the
dry season might be the best approach—especially if there is some flexibility in the pre-fire
image date (i.e., the pre-fire image could be from a date long before the fire season as long
as it is not old enough to overlap with the previous year’s fire season).

Sentinel-2 MultiSpectral Instrument (MSI) has two near-infrared NIR bands, namely
the wider Band 8 (784.5–899.5 nm) at a 10 m spatial resolution and the narrower Band
8A NIR band (855–875 nm) at a 20 m resolution (Table 1). Many researchers [22,23] have
used the narrower Band 8A in dNBR calculations because it is the most similar to Landsat
Operational Land Imager (OLI) NIR (851–879 nm). Others have used Sentinel’s wide NIR
band (Band 8) [24,25] when calculating NBR-based indices. The authors of [24] conducted
a study in a shrub forest-dominated landscape in northeastern Spain to evaluate the utility
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of Sentinel-2 to map wildfire burns and detect burn severity. They found the Normalized
Burn Ratio (NBR) for Sentinel-2 using the wider Band 8 NIR, and Band 12 SWIR emerged
as the best index for delineating burned areas. Since the NBR formula only specifies the
NIR in its calculation rather than a specific wavelength, we wanted to determine which
Sentinel NIR band provides the most accurate results in our study area.

Table 1. Band information for Sentinel-2 MultiSpectral Instrument (MSI) and Landsat Operational
Land Imager (OLI). Band names are listed as numbers with their names, central wavelength (nm),
bandwidth (nm), and spatial resolution (m). Sources: [26,27].

Instrument Band
Number Band Name Central

Wavelength (nm)
Bandwidth

(nm)
Spatial Resolution

(m)

Sentinel-2 MSI 1 Coastal Aerosol 443 20 60
2 Blue 490 65 10
3 Green 560 35 10
4 Red 665 30 10
5 Red Edge 705 15 20
6 Red Edge 740 15 20
7 Red Edge 283 20 20
8 Near Infrared 842 115 10

8A Narrow Near Infrared 865 20 20
9 Water Vapor 945 20 60
11 Shortwave Infrared 1610 90 20
12 Shortwave Infrared 2190 180 20

Landsat 8/9 OLI 1 Coastal Blue 443 16 30
2 Blue 482 60 30
3 Green 562 58 30
4 Red 655 38 30
5 Near Infrared 865 28 30
6 Shortwave Infrared 1 1609 85 30
7 Shortwave Infrared 2 2201 188 30

Our objective for this study was to evaluate methods for mapping burn scars in Chyulu
Hills, Kenya. Specifically, we compared the following:

• The Differenced Normalized Burn Ratio (dNBR) and Relative Differenced Normalized
Burn Ratio (RdNBR);

• A range of burn thresholds for dNBR and RdNBR;
• Landsat Operational Land Imager (OLI) and Sentintel-2 MultiSpectral Instrument

(MSI) data;
• Sentinel-2 near-infrared (NIR) bands (narrow and wide).

2. Materials and Methods
2.1. Study Site

The Chyulu Hills of southern Kenya is an elongated chain of volcanic cones oriented
in a northwest–southeast direction, approximately 50 km long and 10 km wide (Figure 1).
The range is volcanic in origin and consists of many cinder cones and lava fields formed
260,000 years ago but had volcanic activity as recent as 700 years ago, with the last eruptions
occurring in the southeastern end of the Chyulu ranges at Shetani Lava [28]. The elevation
ranges from about 957 m at Kibwezi Forest to about 2055 m at the highest peak in the
Chyulu National Park. High elevations receive the most rainfall due to orographic uplift
(over 1000 mm), with the surrounding plains receiving around 600 mm [28]. An analysis of
Climate Hazards InfraRed Precipitation with Station data version 2 (CHIRPS) for the study
area for the period of 1981 to 2024 reveals annual rainfall increases from about 500 mm in
the extreme northwest of the Chyulu ranges to about 950 mm in the southeastern edge.
An analysis of CHIRPS data for the period of 1981 to 2024 for the protected areas (Chyulu
National Park, Chyulu Conservation Area, and Kibwezi Forest) confirms the bimodal
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distribution of rainfall, with a smaller peak from February to April with 246 mm received
on average and a larger peak from October to December with 312 mm received. The driest
period runs from June to September. This also affects fire timing so that the fire season here
follows long rains rather than following short rains as it does in the Aberdares and Mount
Kenya areas [29].
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Figure 1. Location of Chyulu Hills, Kenya, in East Africa. Protected areas are shown in hatch-filled
areas with labels in legend. Study area falls within three counties, Kajiado, Makueni, and Taita Taveta,
as shown in map. Elevation is also shown in map, with higher elevations in white. Major roads
include Mombasa Road to east of study area.

Montane or mist forest patches occur above 1800 m and consist of Prunus africana-
Ilex mitis communities [30]. In the absence of detailed vegetation maps, we do not have
specific numbers for the forest area in Chyulu Hills, but the Afromontane forests there
have been described as “islands or remnant refugia” [30]. Lower elevations (1000–1600 m)
contain a variety of communities, such as grasslands with scattered Acacia drepananolo-
bium, Acacia woodlands, Olea-Cussonia-Commiphora bushlands in lava flow areas, and
Ozoroa/Dombeya/Combretum woodlands. The Juniperus forest is found between 1300 and
1600 m, while the islands of Erythrina abyssinica and wooded grasslands are found at el-
evations of 1600 to 1800 m. Upland grassland occurs above 1600 m, while a crater forest
is dominated by Pistacia spp., and Vepris spp. and Trichocladus spp. occur between 1300
and 1800 m. Toward the southeastern end of the Chyulu Hills range are montane forests
dominated by Drypetes spp., Strychnos spp., and Heinsenia spp. at slightly higher elevations,
and both have crater forests and southern montane forests below mist forests. Grasslands
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occur at different elevations, including lower-elevation wooded grasslands and upland
grasslands that occur over 1600 m [31]. The field locations used in this study are all the
non-forested vegetation types, including grasslands, wooded grasslands, and bushlands.

The Chyulu Hills is managed by Kenya Wildlife Service (KWS) in Chyulu Hills
National Park, local communities (Mbirikani and Kuku Group Ranches) in Chyulu Conser-
vation Area, and Kenya Forest Service (KFS) in Kibwezi Forest. The Chyulu Hills National
Park is part of the Tsavo Conservation Area (TCA), which also includes Tsavo East and
Tsavo West National Parks. Past management plans for the TCA list unprescribed fire
as a threat to conservation in river–lake systems, mountain forests, Acacia-commiphora
bushlands, grasslands, and riparian habitats [32]. Fire is also identified as having unknown
impacts on the forest fragments found in the Chyulu Hills [32]. Our study area was defined
using the protected areas of the Chyulu Hills to ensure that most of the study area would
include natural vegetation rather than agriculture and other human land uses. However,
part of the protected area was excluded from both Landsat and Sentinel-2 data due to being
near scene/tile edges. The area amounts to reductions of about 7500 ha from Landsat (6.2%
of the study area) and 5150 ha from Sentinel-2 (4.3% of the study area).

2.2. Data
2.2.1. Satellite Image Data

Analysis procedures are summarized in Figure 2. We acquired image pairs to approxi-
mately cover the dry season for 2021 for Chyulu Hills, Kenya. These data include Landsat
8 Operational Land Imager (OLI), Landsat 9 Operational Land Imager 2 (OLI-2), Sentinel
2A and 2B, and MultiSpectral Instrument (MSI). For simplicity, we refer to OLI and OLI-2
collectively as “Landsat OLI”, since the band designations are the same between them. Im-
age dates are listed in Table 2. Level 2, Collection 2 Landsat images were downloaded from
USGS EarthExplorer [33], while Sentinel-2 data were downloaded from ESA Copernicus
Browser [34]. Landsat data were imported as surface reflectance images using included
metadata. All bands of Collection 1, Level 2A (surface reflectance) Sentinel-2 image data
were resampled to a 10-m spatial resolution using the ESA SNAP resampling tool [35].
Since Sentinel-2 data are acquired at a range of spatial resolutions, resampling all bands to
10 m allowed for a seamless analysis in ENVI 5.7 [36] and ArcGIS Pro 3.4 [37].

Table 2. A list of satellite image data used in this project. The images acquired early in the year
were used as pre-fire images since they were acquired before the dry season. Images acquired
later in the year were used as post-fire images since they were acquired at the end of the dry season.
OLI = Operational Land Imagery; OLI2 = Operational Land Imager 2; MSI = MultiSpectral Instrument.

Instrument Date (mm/dd/yyyy) Timing Processing Level Path/Row or Tile

Landsat 8 OLI 03/03/2021 Pre-fire Collection 2, Level 2 167/062
Landsat 9 OLI2 11/09/2021 Post-fire Collection 2, Level 2 167/062
Sentinel 2A MSI 02/27/2021 Pre-fire Collection 1, Level 2A T37MCT
Sentinel 2B MSI 11/09/2021 Post-fire Collection 1, Level 2A T37MCT

Images were selected with the goal of minimizing cloud cover. However, all images
contained at least some cloud cover. Landsat data cloud masks were created by recoding
the “QA_PIXEL” band provided with the data so that all pixels corresponding to clouds or
cloud shadows were assigned the value of 0, while all other pixels were assigned the value
of 1. The binary cloud mask for each image in the pair was then combined to create a cloud
mask that accounted for clouds and shadows on both dates, and then it was applied to the
Landsat burn index images. Sentinel-2 data cloud masks were provided as binary images
in the “opaque_clouds” band. The cloud masks from both dates were combined to create a
combined cloud mask and applied to the Sentinel-2 burn index images.
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Figure 2. Flow chart showing methods used in this study. OLI = Operational Land Imager, OLI2 = Op-
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NBR = Normalized Burn Ratio; dNBR = Differenced Normalized Burn Ratio; RdNBR = Relative
Differenced Normalized Burn Ratio; RdNBR2 = Relative Differenced Normalized Burn Ratio alternate
calculation. Boxes with bold outline indicate inputs to final analysis.

2.2.2. Field Data

On 7 and 8 October 2021, one of the authors visited several locations in the Chyulu
Hills to record vegetation types and burn status by taking geotagged photos using a
Garmin Montana 650 handheld GPS (spatial accuracy < 5 m [38,39]). These photos were
later labeled as burned or unburned, and vegetation types were identified. Our aim was
not to determine burn severity but rather to identify which locations had burned or not
burned. A field assessment of burned areas would be challenging to conduct on a per-fire
basis in this setting since fires are frequent and short-lived and local managers have other
priorities. For this study, we visually identified burned areas by noting charred vegetation
and ash, bare, blackened ground or snags during the field visit and in the photos.

Photo locations that had clouds or cloud shadows in the satellite imagery were ex-
cluded from the study to create two subsets from the original set—one set that matched
cloud-free areas in both Landsat OLI scenes and one that matched cloud-free areas in both
Sentinel-2 scenes. Through visual inspection, we also excluded photos that were located
in the same pixel of Sentinel-2 data to avoid duplicate pixel observations (many photos
were taken in clusters at the same field stop). Any photos taken of unrelated subjects or
outside the study area were also removed. A total of 145 photos were used for Landsat OLI
data, which were a subset of the 163 photos used for Sentinel-2 data. We used these data to
extract pixel values from each burn index image for accuracy testing.
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2.3. Methods
2.3.1. Satellite Image Data Processing

Each image was used to calculate the Normalized Burn Ratio (NBR) since it was an
input for all other burn indices used in this study (Table 3). Each pair of NBR images was
then used to calculate the dNBR: one for Landsat, one for Sentinel-2 using Band 8 (broad
NIR band), and one for Sentinel-2 using Band 8A (narrow NIR band). The dNBR for each
instrument was then used to calculate the RdNBR. We also calculated an alternate version
of the RdNBR (hereafter referred to as RdNBR2) that includes a dNBR offset for unburned
vegetation [20]. To determine the offset value, we selected 32 random points of unburned
vegetation, ensuring that the points were located in protected areas. The mean unburned
dNBR values were 0.3369, 0.2612, and 0.2492 for Landsat OLI, Sentinel-2 (calculated using
the broad NIR band), and Sentinel-2 (calculated using the narrow NIR), respectively. In our
burn index calculations, dNBR and RdNBR2 had values that typically ranged from −1 to 1,
but the RdNBR values scaled with the decimal place shifted two places to the right due to
the 1/1000 term in the calculation.

Table 3. Spectral burn indices used in this research. NBR = Normalized Burn Ratio, NIR = near
infrared, SWIR = shortwave infrared, dNBR = Differenced Normalized Burn Ratio, NBRprefire = pre-fire
NBR image, NBRpostfire = post-fire NBR image, RdNBR = Relative Differenced Normalized Burn Ratio,
RdNBR2 = alternate calculation of Relative Differenced Normalized Burn Ratio, dNBRoffset = average
dNBR value for unburned vegetation.

Burn Index Abbreviation Calculation Source

Normalized Burn Ratio NBR NBR = NIR−SWIR
NIR+SWIR Key and Benson, 2006 [8]

Differenced Normalized
Burn Ratio dNBR dNBR = NBRpre f ire − NBRpost f ire Key and Benson, 2006 [8]

Relative Differenced Normalized
Burn Ratio RdNBR RdNBR = dNBR

√ABS
(

NBRpre f ire
1000

) Miller and Thode, 2007 [19]

Relative Differenced Normalized
Burn Ratio (Alternate Calculation) RdNBR2 RdNBR2 =

dNBR−dNBRo f f set
√ABS(NBRpre f ire)

Cansler and McKenzie, 2012 [20]

The Relative Differenced Normalized Burn Ratio (RdNBR) was designed to measure
relative change after a fire rather than absolute change, since dNBR is correlated with
pre-fire greenness [19]. The alternate calculation of RdNBR includes an offset term to
further account for non-fire changes in greenness (e.g., phenology) between pre-fire and
post-fire images [20].

2.3.2. Analysis of Burn Index Images

After processing, we had nine different images to compare (listed in Table 4) from
three different indices and two different satellite series (Landsat and Sentinel), and we used
the broad and narrow NIR bands (8 and 8A) from Sentinel-2 data (see Figure 2).

Table 4. A list of spectral indices tested in this project and abbreviations used in the results. We tested
dNBR, RdNBR, and an alternate calculation of RdNBR for Landsat, Sentinel using Band 8 for the
near-infrared band, and Sentinel using Band 8A for the near-infrared band. dNBR = Differenced
Normalized Burn Ratio, RdNBR = Relative Differenced Normalized Burn Ratio, RdNBR2 = alternate
calculation of Relative Differenced Normalized Burn Ratio.

Burn Index Satellite/Band Abbreviation

dNBR Landsat L_dNBR
RdNBR Landsat L_RdNBR
RdNBR2 Landsat L_RdNBR2
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Table 4. Cont.

Burn Index Satellite/Band Abbreviation

dNBR Sentinel-2 Band 8 S28_dNBR
RdNBR Sentinel-2 Band 8 S28_RdNBR
RdNBR2 Sentinel-2 Band 8 S28_RdNBR2

dNBR Sentinel-2 Band 8A S28A_dNBR
RdNBR Sentinel-2 Band 8A S28A_RdNBR
RdNBR2 Sentinel-2 Band 8A S28A_RdNBR2

2.3.3. Testing Thresholds of Burn Index Images

There are published and widely used dNBR values that are used to denote burn
severity classes [8]. However, we aimed to map burned and unburned vegetation and
needed to calibrate each index to the Chyulu Hills ecosystem. We used the burned and
unburned classes we identified from field photos to select new thresholds for burned
vegetation in dNBR, RdNBR, and RdNBR2. (Table 5). To test burned/unburned thresholds,
we used values from the literature that indicate low (0.10) or moderate–low (0.27) severity.
Additionally, we tested several thresholds near 0.27 since that threshold had good accuracy
in initial testing.

Table 5. A list of minimum burn thresholds tested in this study. The table includes descriptions of
the selection process used for each threshold value. dNBR = Differenced Normalized Burn Ratio,
RdNBR = Relative Differenced Normalized Burn Ratio, RdNBR2 = alternate calculation of Relative
Differenced Normalized Burn Ratio.

Threshold Tested Description

0.10 Published minimum low-severity burn
(Key and Benson, 2006) [8]

0.27 Published minimum moderate–low-severity burn
(Key and Benson, 2006) [8]

0.20, 0.21, 0.22, 0.23, 0.24, 0.25, 0.26 New thresholds tested for dNBR, RdNBR, RdNBR2

For each burn threshold, we calculated overall accuracy (percent of pixels that were
mapped correctly), kappa, κ (a measure of accuracy that accounts for pixels correctly
mapped by chance), omission error (percent of burned pixels that were mapped as un-
burned), and commission error (percent of unburned pixels that were mapped as burned)
for each index and satellite instrument. Omission errors can be considered false negatives,
while commission error includes false positives. This resulted in a total of 81 combinations
of spectral burn index, instrument or NIR band, and burn threshold values to compare
(nine burn index variations x nine thresholds). We conducted a crosstabs analysis in SPSS
29.0.1.1 [40] and performed calculations for the overall accuracy, omission error, and com-
mission error in Microsoft Excel v. 2410 [41]. We determined the best combination for the
highest overall accuracy but also made comparisons between satellite instruments, burn
indices, and Sentinel-2 NIR bands (Band 8 or Band 8A).

3. Results

A summary of accuracy measures is listed in Tables 6–8. For variable abbreviations,
see Table 4. For simplicity, we discuss all values using the dNBR and RdNBR2 scales (e.g.,
0.10). For discussion purposes, we used an 80% overall accuracy as a good value and also
report omission and commission errors below 50%. These accuracies would not likely be
sufficient for actually mapping burned areas but serve as a point of comparison between
burn indices, satellite instruments, NIR bands, and burn threshold values.
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Table 6. The accuracy of Landsat-based spectral indices for mapping burn scars. Each row shows re-
sults for a combination of spectral burn index and burn threshold value for Landsat data. dNBR = Dif-
ferenced Normalized Burn Ratio, RdNBR = Relative Differenced Normalized Burn Ratio, and
RdNBR2 = alternate calculation of Relative Differenced Normalized Burn Ratio. The number at the
end of each index name indicates the burn threshold used (e.g., 10 = 0.10; 20 = 0.20). OE = omission
error; CE = commission error.

Index Overall
Accuracy Kappa Burned OE (%) Burned CE (%)

dNBR_10 30.36 0.048 0.0 75.5
dNBR_20 38.10 0.084 5.3 73.9
dNBR_21 39.29 0.093 5.3 73.5
dNBR_22 41.67 0.111 5.3 72.7
dNBR_23 42.86 0.112 7.9 72.7
dNBR_24 44.64 0.117 10.5 72.4
dNBR_25 47.02 0.137 10.5 71.4
dNBR_26 49.40 0.158 10.5 70.4
dNBR_27 52.38 0.186 10.5 69.1

RdNBR_10 35.71 0.084 0.0 74.0
RdNBR_20 83.33 0.605 7.9 41.7
RdNBR_21 85.71 0.627 18.4 35.4
RdNBR_22 90.48 0.717 26.3 17.6
RdNBR_23 91.67 0.743 28.9 10.0
RdNBR_24 90.48 0.687 39.5 4.2
RdNBR_25 87.50 0.566 52.6 5.3
RdNBR_26 86.90 0.530 57.9 0.0
RdNBR_27 85.12 0.446 65.8 0.0

RdNBR2_10 72.62 0.370 26.3 56.3
RdNBR2_20 79.76 0.422 44.7 44.7
RdNBR2_21 79.76 0.399 50.0 44.1
RdNBR2_22 79.76 0.375 55.3 43.3
RdNBR2_23 80.36 0.375 57.9 40.7
RdNBR2_24 80.36 0.375 57.9 40.7
RdNBR2_25 80.95 0.374 60.5 37.5
RdNBR2_26 84.52 0.457 60.5 16.7
RdNBR2_27 85.12 0.472 60.5 11.8

Table 7. The accuracy of Sentinel-2-based spectral indices using Band 8 for mapping burn scars.
Each row shows results for a combination of a spectral burn index and burn threshold value for
Sentinel data using Band 8 as the near-infrared band. dNBR = Differenced Normalized Burn Ratio,
RdNBR = Relative Differenced Normalized Burn Ratio, and RdNBR2 = alternate calculation of
Relative Differenced Normalized Burn Ratio. The number at the end of each index name indicates
the burn threshold used (e.g., 10 = 0.10; 20 = 0.20). OE = omission error; CE = commission error.

Index Overall
Accuracy Kappa Burned OE (%) Burned CE (%)

dNBR_10 32.74 0.064 0.0 74.8
dNBR_20 51.19 0.174 10.5 69.6
dNBR_21 52.98 0.182 13.2 69.2
dNBR_22 54.76 0.190 15.8 68.6
dNBR_23 57.14 0.215 15.8 67.3
dNBR_24 58.33 0.208 21.1 67.4
dNBR_25 59.52 0.221 21.1 66.7
dNBR_26 60.12 0.228 21.1 66.3
dNBR_27 62.50 0.235 26.3 65.4

RdNBR_10 36.90 0.093 0.0 73.6
RdNBR_20 79.76 0.520 15.8 46.7
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Table 7. Cont.

Index Overall
Accuracy Kappa Burned OE (%) Burned CE (%)

RdNBR_21 83.33 0.572 21.1 40.0
RdNBR_22 87.50 0.640 28.9 27.0
RdNBR_23 88.69 0.661 31.6 21.2
RdNBR_24 88.69 0.647 36.8 17.2
RdNBR_25 86.90 0.579 44.7 19.2
RdNBR_26 85.71 0.531 50.0 20.8
RdNBR_27 84.52 0.480 55.3 22.7

RdNBR2_10 70.24 0.294 36.8 60.0
RdNBR2_20 77.38 0.316 57.9 50.0
RdNBR2_21 79.76 0.363 57.9 42.9
RdNBR2_22 80.36 0.375 57.9 40.7
RdNBR2_23 80.36 0.362 60.5 40.0
RdNBR2_24 80.36 0.362 60.5 40.0
RdNBR2_25 81.55 0.387 60.5 34.8
RdNBR2_26 81.55 0.362 60.5 34.8
RdNBR2_27 82.14 0.401 60.5 31.8

Table 8. The accuracy of Sentinel-2-based spectral indices using Band 8A for mapping burn scars.
Each row shows results for a combination of a spectral burn index and burn threshold value for
Sentinel data using Band 8A as the near-infrared band. dNBR = Differenced Normalized Burn
Ratio, RdNBR = Relative Differenced Normalized Burn Ratio, and RdNBR2 = alternate calculation of
Relative Differenced Normalized Burn Ratio. The number at the end of each index name indicates
the burn threshold used (e.g., 10 = 0.10; 20 = 0.20). OE = omission error; CE = commission error.

Index Overall
Accuracy Kappa Burned OE (%) Burned CE (%)

dNBR_10 33.93 0.072 0.0 74.5
dNBR_20 51.19 0.156 15.8 70.4
dNBR_21 53.57 0.179 15.8 69.2
dNBR_22 55.95 0.202 15.8 68.0
dNBR_23 60.12 0.247 15.8 65.6
dNBR_24 61.31 0.241 21.1 65.5
dNBR_25 62.50 0.255 21.1 64.7
dNBR_26 63.10 0.252 23.7 64.6
dNBR_27 65.48 0.272 26.3 63.2

RdNBR_10 37.50 0.097 0.0 73.4
RdNBR_20 85.71 0.607 26.3 33.3
RdNBR_21 87.50 0.646 26.3 28.2
RdNBR_22 89.29 0.676 31.6 18.8
RdNBR_23 87.50 0.610 39.5 20.7
RdNBR_24 84.52 0.480 55.3 22.7
RdNBR_25 85.71 0.510 55.3 15.0
RdNBR_26 83.93 0.429 63.2 17.6
RdNBR_27 81.55 0.313 73.7 23.1

RdNBR2_10 71.43 0.323 34.2 58.3
RdNBR2_20 79.17 0.350 57.9 44.8
RdNBR2_21 79.76 0.363 57.9 42.9
RdNBR2_22 81.55 0.400 57.9 36.0
RdNBR2_23 82.14 0.413 57.9 33.3
RdNBR2_24 82.14 0.413 57.9 33.3
RdNBR2_25 82.14 0.401 60.5 31.8
RdNBR2_26 82.74 0.414 60.5 28.6
RdNBR2_27 84.52 0.457 60.5 16.7
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3.1. Most Accurate Burn Index

Across the satellite instruments (Landsat, Sentinel-2), the RdNBR using the original
calculation resulted in the highest accuracy (see Table 6). For most thresholds tested, the overall
accuracies for RdNBR were over 80%. Exceptions to this were Landsat using a threshold
of 0.10, Sentinel-2 Band 8 using thresholds of 0.10 and 0.20, and Sentinel-2 Band 8A using a
threshold of 0.10. The fact that this index performed well across different burn thresholds and
instruments indicates that it is a robust index for mapping burn scars in this environment.

Accuracy using dNBR was poor across thresholds, satellite instruments, and NIR
bands ranging from 30.36% (kappa = 0.064) for Landsat using a threshold of 0.10 to 60.12%
(kappa = 0.247) for Sentinel-2 Band 8A using a threshold of 0.23. The commission error for the
lowest accuracy was 75.5%, and the omission error for the highest overall accuracy was 15.8%.

We expected the alternate calculation of the RdNBR (RdNBR2) to have good re-
sults given the seasonal phenology of the Chyulu Hills, and the overall accuracy ranged
from 70.24% (kappa = 0.294) using Sentinel-2 Band 8 with a threshold of 0.10 to 82.14%
(kappa = 0.487) using Sentinel-2 Band 8A with a threshold of 0.23. However, the commis-
sion and omission errors were often very high. The lowest accuracy had a commission
error of 60.0%, and the highest accuracy had an omission error of 57.9%. There was only
one combination of satellite instrument and threshold that was able to keep both omission
and commission errors below 50%. Using Landsat data and a burn threshold value of
0.20 resulted in both the omission and commission errors being 44.7%. Otherwise, if the
omission error was below 50%, then the commission error was greater than 50%. It appears
that the offset term used in this RdNBR calculation is not beneficial for mapping burn scars
in the Chyulu Hills, and the standard RdNBR works best.

3.2. Most Accurate Burn Thresholds

The highest accuracy typically resulted from using a threshold of 0.23 for RdNBR and
RdNBR2, although Sentinel-2 Band 8A RdNBR2 had higher accuracy using a threshold
of 0.22. Using a threshold of 0.23 with Landsat RdNBR resulted in an overall accuracy of
91.67% (kappa = 0.743). For Sentinel-2 Band 8 RdNBR, the overall accuracy was 88.69%
(kappa = 0.661) for a threshold of 0.23. The overall accuracy using a threshold of 0.23 was
similar for the Sentinel-2 Band 8A RdNBR, with a value of 87.50% (kappa = 0.610). Accuracy
was lower when using the RdNBR2 across satellite instruments and NIR bands. Using a
threshold of 0.23, Landsat RdNBR2 had an overall accuracy of 80.36% (kappa = 0.375); the
Sentinel-2 Band 8 RdNBR2 had an overall accuracy of 80.36% (kappa = 0.0.661); and the
Sentinel-2 Band 8A RdNBR2 had an overall accuracy of 82.14% (kappa = 0.413).

None of the overall accuracies for the dNBR were over 80% using a threshold of 0.23,
although using a threshold of 0.23 for the Sentinel-2 Band 8A dNBR resulted in an overall
accuracy of 60.12% (kappa = 0.247). The commission error for that test was 65.6%, so it
incorrectly mapped a lot of unburned areas as burned. The trend across satellite instruments
and NIR bands was that the dNBR increased in overall accuracy as the burn threshold
value increased. At the same time, the omission error increased, and the commission error
decreased as the burn threshold value increased. For example, with Landsat, the omission
error went from 0.0% at a threshold of 0.10 to 10.5% at threshold of 0.27. For the same range,
the commission error went from 75.5% at 0.10 to 69.1% at 0.27. Similar patterns were found
using both NIR bands of the Sentinel-2 data as well. At low threshold values, there were
extremely high commission errors, showing that almost all unburned pixels were assigned
to the burned category.

3.3. Most Accurate Satellite Instrument

For the data tested here, Landsat had the highest accuracy for mapping burned areas
in Chyulu Hills, Kenya. The highest overall accuracy in our tests resulted from the Landsat
RdNBR using a burn threshold of 0.23 at 91.67% with a kappa of 0.743 (Table 6 and Figure 3).
The omission error for this combination was 28.9%, and the commission error was 10.0%.
The best results from Sentinel-2 data were obtained using the Sentinel-2 Band 8A RdNBR
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using a threshold of 0.22 with an overall accuracy of 89.29% and a kappa of 0.676. The
omission error was 31.6%, and the commission error was 18.8% (Table 8 and Figure 4). This
Sentinel-2 result was similar to the best Landsat result, but higher errors indicate that more
burned areas would be missed, and additional areas that had not actually burned would
be mapped as burned. The next best Sentinel-2 accuracy was obtained with the Sentinel-2
Band 8 RdNBR using a threshold of 0.23. This resulted in an overall accuracy of 88.69%
and a kappa of 0.661, but the omission error was the same at 31.6%, and the commission
error was slightly higher at 21.2%.
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Figure 4. Mapped burn scars for the 2021 fire season in Chyulu Hills, Kenya. Yellow shows areas
mapped as burned using Sentinel-2 RdNBR with a threshold of 0.22. Clouds and cloud shadows are
masked out and shown in black. Purple boundaries indicate protected areas in the Chyulu Hills.

The best Landsat-based map had a burned area of 14,413 ha. The Sentinel-2-based
map had a burned area of 10,750 ha. However, it is difficult to make a direct comparison
between burned areas because of differences in cloud cover and the study area being
cropped differently due to scene/tile characteristics. The Sentinel-2 study area was larger
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at 114,374 ha (compared to Landsat’s 111,708 ha), with less area masked out for clouds
and cloud shadows at 13,594 ha (compared to Landsat’s 17,254 ha). After subtracting the
cloud-masked area from each study area size, Landsat mapped 15.26% of the study area as
burned, while Sentinel-2 mapped 10.67% of the study area as burned. It seems likely that
Sentinel-2 missed more burned areas, and this is indicated by the omission error of 18.8%
compared to Landsat’s value of 10.0%.

3.4. Most Accurate Sentinel-2 Near-Infrared Band

While the Landsat-derived RdNBR was the most accurate for mapping burn scars
in the Chyulu Hills, we also compared Sentinel-2 Band 8 (wide NIR band) and Band 8A
(narrow NIR band). Accuracy was similar between NIR bands, with the RdNBR with the
highest overall accuracy being obtained using Band 8A and a threshold of 0.22 at 89.29%
(kappa = 0.676) and using Band 8 and a threshold of 0.23 at 88.69% (kappa = 0.661). The
omission error was the same for those calculations at 31.6%, with Band 8 having a slightly
higher commission error of 21.2% (compared to 18.8%).

Similar patterns were found between NIR bands, with the omission error increasing
as the burn threshold increased and the commission error decreasing. However, in both
cases, the commission error reached its minimum at a 0.22 or 0.23 burn threshold and
then increased again at 0.26 or 0.27. The omission error continued to increase as the burn
threshold increased for both Band 8 and Band 8A.

4. Discussion

Our results show that the dNBR is not well suited for mapping burn scars in Chyulu
Hills, Kenya. This pattern was consistent whether using Landsat or Sentinel-2 data, both
Sentinel NIR bands, and across a range of burn threshold values. The seasonal changes in
greenness that coincide with wet seasons in the Chyulu Hills may explain why the RdNBR
is more accurate for mapping burn scars. Justification for the development of the RdNBR
was the correlation between pre-fire greenness and the dNBR [19]. Published values of the
dNBR were used to identify low-severity burns in Western USA forests starting at 0.10. For
this study area, unburned vegetation had higher dNBR values than what would be mapped
as unburned elsewhere. This is further evidenced by the dNBR offset we used to calculate
the alternate RdNBR ranging from 0.2492 to 0.3369. Those were locations with unburned
vegetation, but the absolute change in greenness was great due to the seasonal phenology
of the vegetation. The pre-fire images we used were acquired at the end of the long rain
season and were quite green in comparison to the post-fire images due to seasonal changes
not related to fire. The authors of [20] listed dNBR minimum burn threshold values from
studies across forests in Western North America ranging from 177 (0.177 scaled to our data)
to 333 (0.333 scaled to our data). For the RdNBR, the minimum values were higher (316 to
371 or 0.316 to 0.371) [20]. Our threshold of 0.23 (230 to match their scale) falls within the
ranges they list despite there being a difference in vegetation types.

One pattern we consistently found across satellite instruments and burn indices was
a trade-off between omission and commission errors. In the most extreme cases, this led
to some burn thresholds mapping all of our field points as burned, when only 38 out of
168 points were actually identified as burned in the field. When applying these methods
to additional data in the Chyulu Hills, the trade-offs between false positives and false
negatives should be considered. There might be contexts when managers would prefer
to “miss” some burned areas rather than falsely identifying unburned areas as burned.
Lava flows of the Chyulu Hills that make up over 12% of the study area consist of black
boulders and stone outcrops and complicate the mapping of burn scars because of their
similar spectral characteristics. One has to be careful not to over-map burn areas because
of this. But there could also be cases where any location that had possibly burned should
be identified.

Locations with the most apparent false positives were nearby agricultural fields outside
the study area. These were not the focus of our study specifically, but many agricultural



Fire 2024, 7, 472 15 of 18

fields were mapped as burn scars in our initial results. Local farmers use fire to prepare
soil and clear crop residue, and some small active fires can be seen in the post-fire images
(both Landsat and Sentinel-2). However, we were not able to verify fires in those areas
using Visible Infrared Imaging Radiometer Suite (VIIRS) active fire detection [42]. The
agricultural fields are small relative to VIIRS’s 375 m spatial resolution, so it is possible that
they were not detected for that reason. Fires from agricultural burning are also likely more
short-lived than wildfires.

It is likely that our mapping missed or underestimated the size of other burn scars from
fires earlier in the dry season. Almost all fires detected by VIIRS hotspot data in the Chyulu
Hills burned between August and November 2021. One burn scar that was flagged as a
hotspot by VIIRS in August already showed vegetation regrowth in the early-November
images used in our analysis. Short rains usually begin in October or November, so it is
likely that precipitation had caused grassland regeneration before our post-fire images
were acquired.

Even with our best results, there were some burned areas missed by the Landsat
RdNBR. These included some locations on the edges of lava flows and the edges of places
that had burned quite recently. There is one particular burn scar visible in the post-fire
image data, and when checked against VIIRS active fire detection [42], it had burned the
day before post-fire image acquisition. The scar appears darker in color than older burn
scars when viewed in a SWIR false color composite (OLI Band 7 shown in red, Band 5 in
green, and Band 3 in blue). Yet the burn index values at the edges were just outside our
threshold value of 0.23 (they were between 0.22 and 0.23). Misclassification problems at
low-severity pixels are common and have been reported by different studies [10,43,44].
We did not attempt to map burn severity levels, but there would have been a range of
burn effects across our study area, and low-severity burns could be spectrally similar to
unburned vegetation.

These are important considerations when determining which threshold to use when
mapping burn scars in the Chyulu Hills or elsewhere in Kenya. There is clearly a tradeoff
between false positives (areas mapped as burned that did not burn) and false negatives
(areas that burned but were mapped as unburned). Depending on the end users’ goals, it
might be preferable to exclude false positives or vice versa. Given that our best results for
both Landsat and Sentinel-2 used burn thresholds of 0.22 and 0.23 and the accuracy levels
were also good for slightly higher thresholds, we could recommend using values ranging
from 0.22 to 0.25 in this setting. Using a lower threshold like 0.22 would result in more false
positives, while a threshold of 0.25 would result in more false negatives. Researchers and
land managers could decide which is preferable in future burn mapping.

It is interesting that Landsat had the highest accuracy for mapping burn scars in the
Chyulu Hills given the coarser spatial resolution of Landsat OLI instruments compared
to Sentinel-2 MSI. However, maps based on both sensors reached an acceptable level of
accuracy (kappa > 0.60). The authors of [45] compared the utility of Landsat 8, Sentinel-
2, and Deimos for assessing burn severity in Mediterranean fire-prone ecosystems and
found that Sentinel-2 MSI only slightly improved the performance of NBR-based indices
compared to Landsat 8. For our data, it appears that spatial resolution might not have
been an issue given the size of most burn scars. If mapping smaller burned areas like
agricultural fields, perhaps the finer spatial resolution of Sentinel-2 data would prove to
be more effective. Our results agree with the findings obtained by the authors of [46] in
mapping burned areas in a heterogenous savanna landscape in northwestern Zimbabwe,
who found that maps derived from Landsat OLI resulted in a higher classification accuracy
(kappa = 0.85) compared to those from Sentinel-2 (kappa = 0.74).

The spectral bands used in calculating the burn indices were near-infrared (NIR) and
shortwave infrared (SWIR). Landsat OLI has similar wavelength ranges and bandwidths
for SWIR bands when compared to Sentinel-2 MSI Band 12, but NIR bands differ between
instruments (Table 1). Landsat OLI NIR (Band 5) is more similar to Sentinel-2 MSI Band
8A in wavelength range but has a wider bandwidth. Sentinel-2 MSI Band 8 has a wider
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bandwidth than Band 8A or OLI NIR, but all three NIR bands have some overlap between
them. It is possible that the Landsat NIR wavelength range is a good tradeoff between the
two Sentinel-2 NIR bands when it comes to mapping burn scars in this setting. With respect
to comparing Sentinel-2 NIR bands, the wider NIR band (8) had a higher commission error
than Band 8A despite having a finer spatial resolution.

Another difference between the Landsat and Sentinel-2 data we used in this study
was the image acquisition dates. The pre-fire (end of wet season) image for Landsat was
acquired on 03 March 2021, while the pre-fire Sentinel-2 image was acquired on 27 February
2021—a difference of four days. It is unlikely that the slightly different acquisition dates
for the Landsat OLI and Sentinel-2 pre-fire images affected the results as both periods fall
right in the middle of the dry season. Both post-fire (late dry season) images were acquired
on 09 November 2021 within an hour of each other. The local time at acquisition for both
satellites was the late morning, so the solar angles were also similar for the images acquired
near the same dates.

Spectral burn indices like the dNBR and RdNBR need to be calibrated in each new
ecosystem and vegetation type where they are applied, but unburned areas in the Chyulu
Hills, Kenya, had unexpectedly high values compared to other environments. One reason
for this may be the prevalence of volcanic rock, soil, and lava flows that dominate the
landscape in and around the Chyulu Hills. These rocks and soils are darker in color (in the
visible wavelengths), so they provide a dark soil background for vegetation dominated by
grasses and shrubs. During the dry season when grasses are senescent, near-infrared
reflectance decreases, and shortwave infrared reflectance increases. This would lead
to higher values in both the dNBR and RdNBR given how they are calculated using
both wavelengths.

5. Conclusions

The results of our study show that the Landsat-based RdNBR is best for mapping burn
scars in the Chyulu Hills, Kenya. When compared to the dNBR, an alternate calculation
of the RdNBR (RdNBR2) and Sentinel-2 data using either NIR band, the accuracy was
higher. These initial tests are a first step, but our findings suggest that it would be possible
to use the same methods on additional years of image data to reconstruct fire history in the
Chyulu Hills. Landsat OLI data dating back to 2013 are available, and Landsat 7 Enhanced
Thematic Mapper Plus (ETM+) data are available starting from 1999; even with scan line
corrector (SLC)-off data, it might be possible to map burn scars in the Chyulu Hills for those
years. Despite the higher accuracy of Landsat OLI in our study, Sentinel-2 MSI data also
had respectable results. Given the more frequent repeat coverage of Sentinel-2 compared to
Landsat, it is still a viable option, but we would recommend using the narrow NIR band
(8A) in NBR calculations.

This study focused on distinguishing burned and unburned pixels. Future studies
could include a reconstruction of fire history from archived satellite imagery. The availabil-
ity of detailed field data during the fire season could allow for an assessment of fire severity
and resultant ecosystem effects. Persistent cloud cover remains a major hinderance to the
timely mapping of wildfires and the assessment of their effects. Future studies should
evaluate the utility of burn indices derived from the all-weather, all-day, and all-night
Synthetic Aperture Radar (SAR) to map fire perimeters and fire severity.
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