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Abstract: Intense burning phenomena (fire disasters) need to be prevented in the combustible gas
utilization and transportation processes to ensure industrial safety. Nonmetallic spherical spacers
(NSSs) have been investigated and applied in lots of explosive atmospheres to prevent explosion
execution in a confined space. In this work, a novel fuzzy-based analytic hierarchy process (FAHP) is
developed to take into account the uncertainty in decision-making and effectively solve the prob-
lem of factor weight allocation in multi-objective optimization. Optimal Latin Hypercube Design
(Opt LHD), Chebyshev Orthogonal Polynomials (COP), and Adaptive Simulated Annealing (ASA)
were combined. A multi-objective optimization method is proposed for the structural parameter
optimization problem on NSSs in order to achieve conflicting multiple-objective optimization of low
displacement rate and minimal deformation. That is to say, the small volume (low displacement rate)
and high explosion-suppression performance (minimal deformation) of NSSs were optimized simul-
taneously. The results show that, compared with the original NSS model’s deformation (2.85 mm) and
displacement rate (3.63%), the optimized NSSs with weight allocation had optimized the deformation
by 12.98% and displacement rate by 6.1%. Compared with the optimized design model of NSSs
without weight allocation with a deformation of 2.75 mm and a displacement rate of 3.48%, the
deformation has been optimized by 9.82%, and the displacement rate has been optimized by 2.0%.
It was verified that the proposed method is effective. At the same time, it was verified that the
suppression effect of NSSs can be enhanced by changing the shape of the NSS spacer reasonably by
experimental verification.

Keywords: fire prevention; novel fuzzy analytic hierarchy process; multi-objective optimization;
weight allocation; nonmetallic spherical spacers

1. Introduction

Flame-vortex-induced flame propagation acceleration [1,2]. Under suitable condi-
tions, uncontrollable autoignition occurs on trapped and compressed end-gas, resulting
in DDT. The perforated plate is usually set to reduce the impact of fuel inertia on the fuel
vessel. There is a general perception that the flame propagation rate is enhanced when
passing through perforated plates [3–6]. The flame passing through perforated plates will
induce higher flame velocity and further lead to overpressure and end-gas autoignition
phenomena [3], which may exacerbate the explosion process. The flame- perforated plate
interaction will result in higher flame velocity and further lead to overpressure and end-gas
autoignition phenomena [7]. The damage caused by overpressure and end-gas autoignition
is more harmful than that caused by the ensuing fires [8]. However, both intense burn-
ing phenomena (fire disasters) need to be inhibited in the utilization and transportation
processes to ensure industrial safety.
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Based on the flame blocking effect and heat conduction effect [9,10], explosion-
suppression structures such as nonmetallic spherical spacers (NSSs) have been investigated
and applied in lots of explosive atmospheres to prevent explosion execution in a confined
space. Yang [11] analyzed the effects of propane explosion overpressure on NSSs in a long
cylindrical tube. NSSs showed excellent suppression characteristics. Lu [12] verified the
explosion-suppression performance of NSSs through shock tube tests, equivalent static
explosion tests, and deflagration bomb tests. Zhao [13] set up a mesoscale circular tube
confined space experimental bench and confirmed that NSSs reduced the overpressure of
gasoline-air mixture explosions, weakened turbulence development, and accelerated the
oscillating strengthening process. Flame intensity was tested in a closed space. Although
flame propagation was not completely prevented, NSSs shortened the flame duration
and reduced the flame intensity. Our work [14] researched the energy attenuation be-
havior of propane-air premixed combustion on account of NSSs in a confined space with
two perforated plates. NSSs show a good energy attenuation effect on propane normal
combustion, jet autoignition, and deflagration evolution behavior; however, during the
evolution of weak detonation, the attenuation effect is relatively weak. But Song [15]
also discovered that the overpressure of hydrogen explosion under the influence of NSSs
increased gradually; NSSs promoted hydrogen explosion and formed detonation. As a
result, high-intensity flame evolution was not suppressed by NSSs. But inhibiting effects
can be enhanced by structural optimization of NSSs, and the influences of NSS construction
under high-intensity combustion modes need to be in-depth researched.

Combustible oil and gas explosions were suppressed by filling NSSs in confined spaces,
such as fuel tanks, gas tanks, and oil and gas pipelines. Combustion was easily induced
on account of improper operation. The risk of deflagration or detonation was increased in
enclosed spaces with double-perforated plates on account of accelerating flames [16]. Un-
der the impact of flame acceleration, the spacer structure of NSSs undergoes deformation,
absorbs energy, and attenuates energy. Flames with higher combustion intensity can cause
significant deformation, directly affecting structural stability and explosion suppression
performance. On the other hand, our work typically considers lightweight factors, focus-
ing on mass and strength, when optimizing the structural parameters of NSSs [17]. The
optimization problems of the NSS structure were complex, with multiple variables and
nonlinear relationships. Engineering goals were influenced by many factors that interact
with each other; it was difficult to define the degree of their impact on the goal using an
“either/or” approach. Especially when multiple conflicting objectives were involved, the
contribution of each factor needed to be quantitatively represented. In multi-objective
optimization methods, factor weight assignment was usually determined by engineering
experience, which was subject to significant errors due to human subjectivity and uncer-
tainty. Therefore, multi-criteria and multi-factor decision-making methods that are suitable
for solving complex problems, as well as more accurate and efficient multi-objective op-
timization research, have important theoretical value and engineering significance. The
Analytic Hierarchy Process (AHP) is a widely used multi-criteria decision-making method
that determines the weight of each criterion and the priority of each alternative solution in
a structured manner through pairwise comparisons. This method has been widely used
in many fields [18–22]. On the contrary, some limits have been found for the traditional
AHP approach [23]: (1) the consistency of the judgment matrix is very costly to achieve;
(2) preferences mismatch the objective priority; and (3) the uncertainty of subjective evalua-
tion reduces the accuracy. To overcome the above shortages, fuzzy-based AHP (FAHP) was
developed to take into account the uncertainty in decision-making. A fuzzy scale is used to
express the preference or relative importance of the target property instead of adopting
an exact value from a pairwise comparison. In addition, the fuzzy consistency matrix [24]
used in the FAHP can be determined by membership functions, so the consistency of
the judgment matrix is met automatically [25]. The traditional weighting approach was
improved by the FAHP.
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Research on multi-objective decision-making mainly focuses on the application of
solving problems in different fields. The research methods mainly focus on the combination
of various methods such as AHP and the entropy method, TOPSIS, fuzzy set theory, and
gray correlation. Ashish [26] proposed a hybrid multi-objective decision-making model
based on AHP, fuzzy set theory, and the goal programming method. The model used the
goal programming method, transforming multiple objectives into a single objective function
in order to find a solution. It is used to select compromise solutions for multiple objectives
in post-disaster recovery projects. Guo [27] combined AHP and TOPSIS based on fuzzy
rough numbers and proposed a fuzzy rough number-enhanced design concept evaluation
group decision-making framework. Through research, it has been shown that the fuzzy
rough number method has superiority in dealing with the uncertainty and subjectivity
of design concept evaluation in group decision-making environments. Lishu et al. [28]
proposed a multi-objective decision-making method for processing technology schemes.
The method is based on AHP to determine the combination weights, and the importance of
indicators is determined by considering the correlation between subjective and objective
weights using the CRITIC method. Then, the TOPSIS method was used for similarity
ranking, setting positive and negative reference sequences, and using gray correlation and
Euclidean distance to rank each experimental group (processing parameters) to determine
the best process parameters, achieving multi-objective coordinated optimization. However,
the low displacement rate and high explosion-suppression performance of NSSs were
optimized simultaneously on structural parameters; allocating weights has problems
such as poor objectivity in determining indicator weights and difficulty in verifying the
consistency of judgment matrices. And the allocation weights of multiple objectives need
to be developed.

In this work, a novel fuzzy-based analytic hierarchy process (FAHP) is developed to
take into account the uncertainty in decision-making and effectively solve the problem of
factor weight allocation in multi-objective optimization. Optimal Latin Hypercube Design
(Opt LHD), Chebyshev Orthogonal Polynomials (COP), and Adaptive Simulated Annealing
(ASA) were combined. A multi-objective optimization method is proposed for the structural
parameter optimization problem on NSSs in order to achieve conflicting multiple-objective
optimization of low displacement rate and minimal deformation. That is to say, the small
volume (low displacement rate) and high explosion-suppression performance (minimal
deformation) of NSSs were optimized simultaneously. At the same time, it was verified
that the explosion-suppression effect of NSSs can be enhanced by changing the shape of
the NSS spacer reasonably by experimental verification.

2. Analytical Method
2.1. Multi-Factor Analysis of Variance

Many changes in phenomena are the result of multiple factors. The conditional error
and random error were decomposed from the total variation by a multi-factor analysis of
variance (MANOVA) involving the factorability of the mathematical model, and then the
main factors affecting the test results from multiple factors were found.

The mathematical model of MANOVA is established, which obeys the normal distri-
bution Xijk~(µ,σ2):

xijk··· = µ + ai + bj + · · ·+ (ab)ij + · · ·+ εijk··· (i = 1, 2, · · · , m; j = 1, 2, · · · , r; k = 1, 2, · · · , l; · · · ) (1)

where ai and bj are the main effects, εijk is the independent random error, (ab)ij is the
interaction effect, µ is the average value, σ is the variance.

The variance of each effect is decomposed by the mutation separator of xijk. . .. The
mean square value of each effect was acquired by dividing the variance of each effect by
the degrees of freedom. The F-value for each effect was acquired by the mean square of
each effect divided by the mean square error. The probability P of ≥F was acquired by
F-distribution. The p-value is used to determine whether the effect term has a significant
influence on the dependent variable. If p > 0.05, it indicates that the effect term has no
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significant effect on the dependent variable. If p < 0.05, it indicates that the effect term has a
significant influence on the dependent variable. According to the F-value, the degree of
influence of each effect term can be judged on the dependent variable.

In our work, this method is applied to address the multi-structure contribution prob-
lem on NSSs. The contributions of the NSS structural parameter variables were determined
by MANOVA on deformation and displacement rate, respectively.

2.2. The Novel Fuzzy Analytic Hierarchy Process (FAHP) Method

The optimization objective was directly affected by the weight allocation of factors
in the optimization process. A fuzzy judgment matrix that is more in line with the actual
situation was constructed by FAHP. The “reversed order” issue in AHP can be effectively
solved due to the “additivity” of the fuzzy judgment matrix. In addition, the fuzzy
judgment matrix can be converted into a fuzzy consistency matrix through membership
relations, thus effectively avoiding the problem of consistency in the AHP judgment matrix.

The detailed process of the FAHP can be described as follows:
Step 1: Establish the fuzzy judgment matrix A from pairwise comparisons. Determine

the fuzzy judgment matrix A = [aij]n×n according to the relative importance of factors in
the same layer. The elements in matrix A are in the range of 0.1 to 0.9, where 0.5 represents
that the two factors are equally important.

Step 2: Calculate the fuzzy consistency matrix R and the reciprocal matrix M. Trans-
form A = [aij]n×n into R = [rij]n×n. The calculation can be performed using the
following equation:

rij =
1

2n
(

n

∑
k=1

aik − ajk) + 0.5 (2)

Then, the matrix R can be converted into the reciprocal fuzzy consistency matrix M
through mij = rij/rji.

Step 3: Calculate the initial weighting vector ω0. The initial weighting vector
ω0 = [ω1 ω2 · · · ωn] can be obtained by the least-squares method: ω0 = 1

n − 1
2∂ + 1

n∂

n
∑

j=1
rij

∂ = n−1
2

(3)

Step 4: Calculate the final weighting vector W:
(1) Initialize W0 = [v0,1 v0,2 · · · v0,n] by ω0;
(2) For k = 1, 2, 3, . . ., n,

Wk+1 = MWk. (4)

(3) Check the convergence by using the following equation:

||Wk+1||∞ − ||Wk+1||∞ ≤ ε (5)

(4) If convergence is met, output the final weighting vector as follows:

Wk+1 = [
Wk+1,1

n
∑

i=1
Wk+1,i

Wk+1,2
n
∑

i=1
Wk+1,i

Wk+1,3
n
∑

i=1
Wk+1,i

· · ·
Wk+1,n
n
∑

i=1
Wk+1,i

] (6)

Otherwise, jump back to Step 2.
Step 5. Calculate the combined weight, Wk.
Suppose the weight vector of k − 1 layer elements towards the overall goal is Wk−1,

and the weight of the k layer elements towards the k − 1 layer elements Ck_1
j is Pk

j . The
specific description is as follows:

Wk−1 = (wk−1
1 , wk−1

2 , . . . , wk−1
nk−1

)
T

(7)
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Pk
j = (pk

1j, pk
2j, . . . , pk

nk j)
T

, j = 1, 2, . . . , nk−1 (8)

Pk = [Pk
1 , Pk

2 , . . . , Pk
nk
] (9)

Matrix Pk is a matrix of dimension nk × nk−1. The weight matrix of k layer elements to
the total target is Wk.

Wk = Pk · Wk−1 = (wk
1, wk

2, . . . , wk
nk
)

T
(10)

Step 6. A good element weight distribution can be obtained for impact elements
of a single-objective optimization problem by the FAHP method. However, in practical
engineering, multi-objective optimization problems are often urgent to solve. Multiple
elements interact with each other for multi-objective optimization problems. The element
weight distribution needs to consider multiple optimization objectives. Such problems
were solved by improving the FAHP method; thus, a comprehensive optimization result
can be achieved for multiple objectives. The improvement method is as follows:

According to Formula (10), calculate the weight matrix (wki
1 , wki

2 , . . ., wki
j , . . ., wki

n k )T of

each individual objective. Assume that the multi-objective is a total target Wt = {Wk1, Wk2,
. . ., Wkn}, and each individual objective Wki is an element. According to the FAHP method,
the weight matrix of the overall target{W1

kt
, W2

kt
, . . ., Wn

kt
} was obtained. Then, based on

the weight matrices of Wki and Wt, the weight matrix of Wk was reallocated to obtain a
comprehensive multi-objective weight allocation matrix:

Wk′ =
(

wk′
1 , wk′

2 , . . . , wk′
j , . . . , wk′

n k

)T
(11)

where wk′
j = Wt·

(
wk1

j , wk2
j , . . . , wkn

j

)
.

Individual objectives were treated as elements, and a more realistic fuzzy judgment
matrix that better reflects the actual working conditions was reconstructed. Then, through
membership relationship transformation, a fuzzy consistent matrix was obtained, and in
order to calculate the multi-objective weight allocation matrix, the weights were reallocated.
The weights of the elements were allocated by calculating Wk’. The problem of factor
weight allocation was solved in multi-objective optimization. Therefore, in this work, the
problem of FAHP’s inability to allocate factor weights in multi-objective optimization was
solved by improving the FAHP method.

This method was developed to take into account the uncertainty in decision-making
and effectively solve the problem of factor weight allocation in multi-objective optimization.
In our work, taking into account both the deformation and displacement rate objectives,
the weights of R1, R2, R3, and R4 of NSSs were calculated by Equation (11).

3. Multiple-Objective Optimization Method

The multi-objective optimization method of structure optimization is developed by
MANOVA and the improved FAHP method (addressing conflicting multiple objective
weight allocations), integrating Opt LHD, COP, and ASA. This method is applied to address
the multi-objective structure optimization problem on NSSs in order to achieve the multiple
objectives of low displacement rates and minimal deformation.

3.1. Multiple Objective Optimizations of NSS Structure

Combustible oil and gas explosions were suppressed by filling NSSs in confined spaces,
such as fuel tanks, gas tanks, and oil and gas pipelines. Combustion was easily induced
on account of improper operation. Large fuel tanks, gas tanks, and pipelines usually have
built-in double-perforated plates, which prevent the shock effect. However, the risk of
deflagration or detonation was increased in enclosed spaces with double-perforated plates
on account of the accelerating flame. Under the impact of flame acceleration, the spacers of
NSSs undergo deformation. Flames with high-intensity combustion can cause significant
deformation, directly affecting structural stability and explosion suppression performance.
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The minimal deformation indicates the outstanding fire resistance of NSSs and their ex-
plosion suppression performance. Our research [17] found that explosion suppression
performance is proportional to spacer strength (affecting deformation). In addition, NSSs
should occupy a small actual volume in fuel tanks or gas tanks. A lightweight factor was
typically considered in structural design; a relatively large percentage of space while having
a small actual volume requirement was occupied by the NSS structure. That is to say, it
indicates a low displacement rate. It is an important criterion in the application of NSSs.
Both a low displacement rate and minimal deformation were in conflict with each other
and needed to be achieved simultaneously. Thus, it is a difficult question. In this work,
considering both minimal deformation and a low displacement rate under accelerated
flame impact, the structure of NSSs was optimized. The goal is to enhance the explosion
suppression performance of NSSs while reducing the displacement rate. The optimization
process is illustrated in Figure 1. First, the strength simulation and volume calculation
were conducted on the initial model of NSSs. Deformation and displacement rates were
produced under different conditions. Secondly, the deformation and displacement rate pre-
diction models of NSSs were obtained by the Opt LHD and COP. The structural parameter
variables were optimized for the deformation and displacement rates of NSSs by the ASA
optimization algorithm. Then, the contributions and weights of the structural parameter
variables were determined by MANOVA and improved FAHP. Once again, the structural
parameter variables were optimized by the COP and ASA optimization algorithms. The
results of two calculations were compared. Finally, the results were verified by experiment.
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Figure 1. Procedure of the structure parameter optimization.

3.2. The Optimization Goals of NSSs

The spacers of NSSs undergo significant deformation and can even be severely dam-
aged under the impact of a quasi-detonation flame [14]. Spacers in NSSs resisted de-
formation and absorbed energy, thus suppressing flame evolution [29]. According to
reference [29], the overpressures had been tested under quasi-detonation conditions in
a confined space where NSSs are placed. With a pressure of 4.98 MPa as the boundary
condition on the flame contact surface in the finite element model, the deformation results
were obtained by simulation analysis. The maximum deformation of spacers under the
impact of the accelerated flame reaching quasi-detonation is shown in Figure 2, with the
position marked by a white circle indicating the highest deformation, measuring 2.85 mm.
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Figure 2. Deformation analysis of NSSs.

According to the calculation method of displacement rate specified in the Chinese
standard JT/T 1046-2016, «Technical Requirements for Explosion-proof Safety of Road
Transport Vehicle Fuel Tanks and Liquid Fuel Transportation Tanks» [30], the displacement
rate Ψ is as follows:

Ψ =
V1 − 1800

1800
× 100% (12)

where V1 is the volume of the contacting medium after immersion in explosion-suppression
material (mL).

The optimized-designed NSSs are filled in the 2000 mL volumetric measuring cylinder
model, reaching a position of 1800 mL. The filling method is shown in Figure 3, with a
total of 84 NSSs being filled. The volume of a single NSS is V = 776.9 mm3. According to
Formula (12), the displacement rate of the designed NSSs is calculated to be 3.63%.
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Figure 3. Distribution of NSSs in measuring cylinder.

As shown in Figure 4, the spacer structural parameters R1, R2, R3, and R4 of NSSs do
not affect the overall space. However, they have a significant impact on the deformation of
the structural components in the strength analysis. Therefore, these parameters are chosen
as optimization parameters for multi-objective optimization design, aiming to achieve a
low displacement rate and minimal deformation simultaneously.
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3.3. Sampling Structural Parameters

The range intervals of structural parameters R1, R2, R3, and R4 are shown in Table 1.
A total of 20 samples were taken by the Opt LHD method, and the displacement rate and
deformation were calculated through Equation (12) and strength simulation analysis, as
shown in Table 2.

Table 1. Variable range of the structure parameters.

Parameters R1 (mm) R2 (mm) R3 (mm) R4 (mm)

Variable scope 2–30 6.8–9.7 9.9–12.5 6–50

Table 2. Samples of the structure parameters.

No. R1 (mm) R2 (mm) R3 (mm) R4 (mm) Deformation
(mm)

Displacement
Rate (%)

1 21.16 7.56 10.58 50.00 2.93 3.62
2 16.74 8.17 11.13 29.16 3.54 3.49
3 25.58 7.72 12.23 43.05 4.48 3.38
4 9.37 7.11 10.99 10.63 3.29 3.51
5 4.95 8.33 11.54 47.68 4.00 3.33
6 24.11 9.39 11.27 45.37 3.37 3.37
7 13.79 8.94 11.95 8.32 4.70 3.26
8 28.53 6.95 10.86 24.53 3.08 3.61
9 27.05 8.48 9.90 31.47 2.41 3.64
10 12.32 9.24 10.17 40.74 2.70 3.50
11 22.63 8.02 10.45 6.00 2.95 3.57
12 3.47 9.55 11.41 26.84 4.02 3.19
13 2.00 7.87 12.09 22.21 4.50 3.18
14 6.42 8.63 10.31 12.95 2.86 3.48
15 30.00 8.78 11.82 19.89 4.00 3.42
16 7.89 7.41 10.04 33.79 2.50 3.63
17 19.68 9.70 10.72 17.58 3.26 3.38
18 10.84 6.80 11.68 38.42 3.71 3.45
19 18.21 7.26 12.36 15.26 4.52 3.35
20 15.26 9.09 12.50 36.11 5.27 3.19

3.4. Deformation and Displacement Rate Prediction

According to the aforementioned samples, in this work, predictive models of deforma-
tion and displacement rates were conducted by three fitting methods, namely COP, RBF,
and RSM. The predicted results of these three different methods were compared with the
numerical experimental results, as shown in Figures 5 and 6. The comparison of the results
obtained from the three prediction systems is presented in Table 3. From the comparison in
Table 3 and the accompanying figures, it can be observed that the COP prediction results
are most consistent with the numerical experimental results compared with the RSM and
RBF methods. This clearly indicates that the COP prediction system exhibits the highest
prediction accuracy among these three methods.

The fitting accuracy of the established surrogate model can be evaluated by R-squared
(R2). The higher the R2, the better the model. The formula for R2 is as follows:

R1
2= 1 − ∑n

i=1(Xi − Yi)
2

∑n
i=1(Yi − Li)

2 (13)

The R-squared values of the three prediction models are as follows: For the COP
method, the R-squared value of deformation is 0.98552, and that of displacement rate is
0.9704. For the RBF method, the R-squared value of deformation is 0.97514, and that of
displacement rate is 0.96584. For the RSM method, the R-squared value of deformation
is 0.95093, and that of displacement rate is 0.96187. It can be observed that the COP
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prediction results are most consistent with the numerical experimental results. Therefore,
the subsequent analysis and optimization will be conducted by the COP prediction system.
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Table 3. Comparison between three prediction systems and FE analysis.

No.
R1

(mm)
R2

(mm)
R3

(mm)
R4

(mm)

Deformation (mm) Displacement Rate (%)

FE COP RBF RMS FE COP RBF RMS

1 26.89 8.41 12.5 40.22 5.05 5.004 4.799 4.794 3.28 3.295 3.322 3.315
2 20.67 9.7 10.77 15.78 3.31 3.253 3.280 3.242 3.37 3.378 3.376 3.390
3 14.44 6.8 10.19 20.67 2.53 2.400 2.566 2.634 3.66 3.641 3.672 3.667
4 17.56 9.38 11.06 50 3.57 3.417 3.437 3.366 3.38 3.396 3.380 3.384
5 30 8.09 10.48 35.33 2.90 2.874 2.793 2.747 3.60 3.664 3.610 3.598
6 5.11 8.73 9.9 30.44 2.48 2.537 2.433 2.468 3.51 3.494 3.529 3.537
7 23.78 7.44 11.92 10.89 4.19 4.117 4.172 4.105 3.41 3.408 3.424 3.448
8 2 7.77 11.34 6 4.05 3.864 3.764 3.615 3.27 3.28 3.320 3.311
9 11.33 7.12 11.63 45.11 3.75 3.778 3.744 3.826 3.45 3.467 3.452 3.439

10 8.22 9.06 12.21 25.56 4.91 4.786 4.968 5.013 3.20 3.204 3.161 3.159

3.5. Multi-Objective Optimization of NSS Structural Parameters

Tables 2 and 3 show that the low displacement rate and minimal deformation are
conflicting. Both conflicting multiple objectives optimization problems need to be solved,
that is to say, the small volume (low displacement rate) and high explosion-suppression
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performance (minimal deformation) of NSSs were optimized simultaneously. The multi-
objective optimization problem of NSS deformation and displacement rate on structural
parameters was calculated by a combination of the COP prediction model and the ASA
optimization algorithm.

Objective: Find y = f (R1, R2, R3, R4). Minimize: Deformation (y1), displacement rate
(y2). Constraint conditions: as shown in Table 1. Here, Ri (i = 1, 2, 3, 4) represents the
structural parameter variables.

The minimum and maximum values of the design variables in the constraint conditions
are determined according to material characteristics and engineering experience. The
deformation and displacement rates are determined by the COP-fitted model during the
optimization iteration process. The maximum number of iterations was set to 200. As shown
in Table 4, the optimal combination of structural parameters was obtained by the ASA
algorithm. Based on the optimal structural parameter combination, the deformation results
are shown in Figure 7, with a model volume of 745.94 mm3 and 84 NSSs filled. According to
Equation (12), the displacement rate was calculated to be 3.48%. The optimized prediction
results of deformation and displacement rate are compared with the calculated simulation
verification results in Table 4. Compared with the initial design model of NSSs with a
deformation of 2.85 mm and a displacement rate of 3.63%, the deformation is optimized by
4.6% and the displacement rate is optimized by 4.1%.

Table 4. Optimal structure parameter combination and verification results.

R1 (mm) R2 (mm) R3 (mm) R4 (mm)
Deformation (mm) Displacement Rate (%)

Optimal Verification Optimal Verification

7.89 9.09 10.17 38.42 2.75 2.72 3.48 3.48
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4. The Application of Improved FAHP Method to Multi-Objective Optimization

Some improvements were achieved by the optimization process mentioned above
on deformation and displacement rates. However, during the optimization process, the
method assumed that the structural parameters (R1, R2, R3, and R4) had equal importance
to the objectives (deformation and displacement rate) without allocating weights. The
degree of optimization was affected by the results. Therefore, in this work, the MANOVA
and an improved FAHP method combined with the ASA algorithm were proposed to
calculate weights separately and optimize the objectives (deformation and displacement
rate) on the structural parameters (R1, R2, R3, and R4).

As shown in Figures 8 and 9, the contributions of the structural parameter variables R1,
R2, R3, and R4 of NSSs were determined by MANOVA on deformation and displacement
rate, respectively. From the figures, it can be observed that R3 and R2 have a significant
impact on deformation, accounting for 76.69% and 11.47%, respectively. R3, R2, and R1 have
a substantial influence on the displacement rate, accounting for 47.95%, 26.48%, and 21.76%,
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respectively. Other structural parameters have comparatively smaller effects compared
with these variables.
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The fuzzy consistency judgment matrix and initial value calculation of weight iteration
are performed, and the final weights are computed by iterative calculations of the reciprocal
matrix. The results are shown in Tables 5 and 6.

Table 5. Weight factors of the different structure parameters on deformation.

Parameters R1/mm R2/mm R3/mm R4/mm

weight 0.08 0.15 0.70 0.07

Table 6. Weight factors of the different structure parameters on Ψ.

Parameters R1/mm R2/mm R3/mm R4/mm

weight 0.12 0.21 0.56 0.11

Taking into account both the deformation and displacement rate objectives, the pri-
mary requirement is to satisfy the explosion suppression performance of NSSs, which
is the most important indicator. Additionally, a small occupancy space is also desired.



Fire 2024, 7, 28 12 of 17

Therefore, there is a slight preference for objectives with minimal deformation compared
with objectives with a low displacement rate. According to the improved FAHP method,
the weights of R1, R2, R3, and R4 were calculated by Equation (11), and they were 0.096,
0.174, 0.644, and 0.086, respectively. The weight ranking was R3 > R2 > R1 > R4.

Once again, combining the COP prediction model and ASA optimization algorithm,
the weights of each factor and objective are allocated to seek the Pareto optimal solution.
The maximum number of iterations is set to 200. As shown in Figure 10, the Pareto front is
obtained by ASA. Figure 10a–d shows the Pareto front of R1, R2, R3, and R4 on deformation
and displacement rate, respectively.
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Figure 10. The pareto-frontier achieved by ASA and COP models: (a) pareto-frontier of R1 on
deformation and displacement rate; (b) pareto-frontier of R2 on deformation and displacement
rate; (c) pareto-frontier of R13 on deformation and displacement rate; (d) pareto-frontier of R4 on
deformation and displacement rate.

The red dot in Figure 10 represents the optimal combination of structural parameters
in the Pareto front. Red sphere is optimal value. The specific parameters and numerical
simulation results are shown in Table 7. The numerical result for deformation is 3.43 mm,
and the numerical result for displacement rate is 3.41%.
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Table 7. Optimal structure parameter combination with weight factor and verification results.

R1 (mm) R2 (mm) R3 (mm) R4 (mm)
Deformation (mm) Displacement Rate (%)

Optimal Verification Optimal Verification

5.02 9.70 9.90 49.51 2.43 2.48 3.41 3.41

To validate the accuracy of the optimization results, numerical simulation verification
is conducted using displacement rate and statics at the optimal parameters. The model
volume of NSSs is 730.73 mm3, with 84 NSSs filled. According to Equation (11), the
displacement rate is calculated to be 3.41%. Strength simulation analysis results, as shown
in Figure 11, indicate a deformation of 2.48 mm, confirming the correctness of the proposed
optimization method. Furthermore, compared with the initial design model of NSSs with
a deformation of 2.85 mm and a displacement rate of 3.63%, the deformation had been
optimized by 12.98% and the displacement rate had been optimized by 6.1%. Compared
with the optimized-design model of NSSs without weight factor with a deformation of
2.75 mm and a displacement rate of 3.48%, the deformation has been optimized by 9.82%
and the displacement rate has been optimized by 2.0%. The optimized performance
objectives show significant improvement compared with the optimization results without
considering weights.
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Figure 11. The simulation deformation of ASA with weight factor.

5. Experimental Verification of NSS Explosion Suppression Performance

Experimental apparatus and procedures are discussed in our work [14]. The equiv-
alence ratio is 1.1. The initial pressure is 0.5 MPa. Weak detonation occurs under these
conditions [16]. In our work [14], the filling density of NSSs is 21.9 kg/m3, and its energy
attenuation effect is relatively weak. In this work, the same experimental apparatus and
procedures are employed to verify the explosion suppression effect of the optimized NSSs.
Figure 12a shows the pressure time history of the optimized design NSSs without weight
factor and with weight factor conditions. The explosion suppression performance of NSSs
was quantitatively analyzed by overpressure contrast. Filtered pressure contrast is analyzed
in Figure 12b, which characterizes pressure oscillation contrast and combustion intensity.

As shown in Figure 12, the maximum overpressure of filling the optimized design
NSSs without weight factor is 4.07 MPa, and that of filling the optimized design NSSs
without weight factor is 3.68 MPa. The maximum overpressure was reduced by 9.58%.
Filtered pressure was reduced, and combustion intensity was reduced. As shown in
Figure 13, the contrast of flame velocity when it passed through the optimized design NSSs
without weight factor and that with weight factor was exhibited. The flame velocity was
also significantly reduced. As shown in Figure 14, the contrast of flame propagation when
it passed through the optimized design NSSs without weight factor and that with weight
factor. The intensity of combustion is reduced. Resulting shock wave is also weakened.
Therefore, the suppression effect of NSSs can be enhanced by changing the shape of the
NSS spacer reasonably. It was also proved that the energy absorption effect of the spacer
on the flame plays an important role in the explosion suppression of NSSs. Weight analysis
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was important for the structure of spacers. The multi-objective optimization method with
weight analysis was proven.

NSSs are thin-walled skeleton structures. The high surface area ratio of spacers
provides a large heat dissipation area to ensure an energy attenuation effect. The mutually
connected tiny skeleton structure of NSSs will increase the probability of free radicals
hitting spacers and destroying the free radicals, and therefore delay the spreading of flame.
The unique skeleton structure can absorb energy to attenuate wavefront pressure through
vibration and interfere mechanically. The ability to deform and absorb flame energy is
affected by the structure of space. The R1, R2, R3, and R4 are the structures that play a
major role in bearing the flame impact and reducing the displacement rate. The optimum
condition is reached at 5.02 mm, 9.70 mm, 9.90 mm, and 49.51 mm, respectively.
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Figure 12. Pressure contrast between the optimized-design NSSs without weight factor and those
with weight factor. (a) overpressure; (b) pressure oscillation.
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Figure 13. Contrast of flame velocity when it passed through the optimized design NSSs without
weight factor and that with weight factor.
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Figure 14. Contrast of flame propagation when it passed through the optimized design NSSs
without weight factor and that with weight factor. (a) without weight factor group; (b) with weight
factor group.

6. Conclusions

(1) The multi-objective optimization method with weight analysis was proposed to
optimize the structure of NSSs. The displacement rate and explosion suppression
performance were optimized simultaneously. Compared with the original NSS model
with a deformation of 2.85 mm and a displacement rate of 3.63%, the deformation
is improved by 12.98%, and the displacement rate is improved by 6.1%. Compared
with the optimized design model of NSSs without weight factor with a deformation
of 2.75 mm and a displacement rate of 3.48%, the deformation has been optimized
by 9.82% and the displacement rate has been optimized by 2.0%. The optimized per-
formance objectives show significant improvement compared with the optimization
results without considering weights.

(2) One of the multiple objectives was considered a factor; the fuzzy judgment matrix
was reconfigured to better reflect actual working conditions, then transformed by
membership function conversion. A fuzzy consistency matrix was obtained. Weight
allocation was then reassigned, and a multi-objective weight distribution matrix was
calculated. The novel FAHP method is proposed to address the weight allocation
problem in multi-objective optimization and achieve optimal solutions.

(3) The conflicting multi-objective weight allocation is resolved by MANOVA and the
novel FAHP method. Integrating Opt LHD, COP, and ASA, the multi-objective
optimization method of structural parameters was developed and applied to the
problem of multi-objective optimization of NSSs. The low displacement rate and high
explosion suppression performance of NSSs were achieved simultaneously.

(4) This method was developed and applied to the multi-objective optimization of NSSs.
At the same time, it was also applied to other structures. But it is not certain whether
it can be applied to multi-objective optimization in other areas.
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