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Abstract: Spatial and temporal estimates of burned areas are often used to model greenhouse gas
and air pollutant emissions from fire events that occur in a region of interest and over specified
time frames. However, fire behaviour, fuel consumption, fire severity, and ecological effects vary
over both time and space when a fire grows across varying fuels and topography under different
environmental conditions. We developed a method for estimating the progression of individual
wildfires (i.e., day-of-burn) employing ordinary kriging of a combination of different satellite-based
active fire detection data sources. We compared kriging results obtained using active fire detection
products from the Moderate Resolution Imaging Spectroradiometer (MODIS), the Visible Infrared
Imaging Radiometer Suite (VIIRS), and combined MODIS and VIIRS data to study how inferences
about a wildfire’s evolution vary among data sources. A quasi-validation procedure using combined
MODIS and VIIRS active fire detection products that we applied to an independent data set of
37 wildfires that occurred in the boreal forest region of the province of Ontario, Canada, resulted
in nearly half of each fire’s burned area being accurately estimated to within one day of when it
actually burned. Our results demonstrate the strengths and limitations of this geospatial interpolation
approach to mapping the progression of individual wildfires in the boreal forest region of Canada.
Our study findings highlight the need for future validations to account for the presence of spatial
autocorrelation, a pervasive issue in ecology that is often neglected in day-of-burn analyses.

Keywords: day-of-burn; burn date; fire progression mapping; geospatial

1. Introduction

Estimates of the area burned by wildfires are used to model carbon, gas, and aerosol
emissions and are the basis for assessing the effects of fire regimes on the atmosphere and
biogeochemical cycles [1–3]. The burning of vegetative biomass affects terrestrial environ-
ments by altering their structure, function, and species composition, consequently affecting
ecosystem services, biodiversity, and economic, social, and cultural values [4]. Although
it is not feasible, due to financial and logistical constraints, to conduct comprehensive,
ground-based documentation of every fire’s evolution across large geographic regions,
satellite-based active fire and burn scar imagery can be employed to monitor some burned
area attributes at regional and global scales [5–8]. For example, national and international
fire management organizations have compiled publicly available fire imagery to monitor
fires for decades (Canadian Wildland Fire Information System [9], European Forest Fire
Information System [10], and Global Wildfire Information System [11].

Satellite-based thermal infrared sensors are used for the global detection of actively
burning vegetation fires based on observations of radiant emissions from the middle
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infrared (3–5 µm) and the longwave infrared (8–12 µm) spectral regions [12]. Dozier
(1981) found that subpixel-sized fires could be identified using thermal infrared sensor
observations having a moderate spatial resolution (1 km2) [13]. Active fire detection
algorithms were developed and applied to such spectral radiance data to discriminate
biomass burning and record it as a time series of spatial point data, colloquially known
as “hotspots” [14–17]. The term “actively burning” suggests that there is a minimum
detectable fire size and temperature implicit in the fire detection algorithm, and thus
the temperature of smouldering fires (i.e., “passively” or “inactively” burning fires) may
not meet the threshold criteria [18]. The minimum detectable fire temperature (and fire
radiative power) scales with the sensor’s ground pixel area (ground sampling distance) [19].
Active fire detection data have been acquired using the Advanced Very-High-Resolution
Radiometer (AVHRR [20]), the Advanced Thermal Scanning Radiometer (ATSR [21]),
the Moderate Resolution Imaging Spectroradiometer Suite (MODIS [22]), and the Visible
Infrared Imaging Radiometer Suite (VIIRS [23,24]).

Expanding on classical approaches for studying fire regimes (e.g., fire history maps, tree
cores, and charcoal records [25–27]), researchers are exploring methods that rely on active fire
and burned area products to characterize spatial and temporal variability in fire activity. Early
work with satellite active fire products examined the detection rates (i.e., fire counts) of the
ATSR sensor relative to area burned maps and annual area burned statistics for Canada and
Alaska [28]. Another study estimated fire spread by grouping individual MODIS hotspots into
separate clusters representing wildfire events using a spatial-temporal filter and measuring
the distances between hotspots acquired from consecutive satellite overpasses to produce
estimates of spread rate (in km/h) for fires that occurred in northern Eurasia [29]. Their
chosen clustering algorithm, the density-based spatial clustering of applications with noise, is
a data mining approach that, in their application, identifies individual (often multiday) fire
events, thereby circumventing the need for final burned area maps to assign hotspots to a
single fire event in data processing [30]. Day-of-burn maps that reconstruct the progression of
a spreading wildfire at coarse spatio-temporal scales (i.e., >1 km2 and daily) have been based
primarily on the input of active fire detections and a burn mask [31–35]. Another approach
to burn date mapping, the MODIS MCD64A1 product, is a combination of burned area and
active fire detections used to estimate the burn date for 500 m × 500 m grid cells [36]. As
part of the Artic Boreal Vulnerability Experiment, a historical atlas of interpolated burn dates
within fire scars was generated using MODIS and VIIRS hotspots for large fires that occurred
in Canada and Alaska [37]. MODIS and VIIRS hotspots were also used to predict continuous
fire progression maps at a daily time interval for fires in Northern California [38]. Bayesian
Updating of Land Cover has been used to generate fire progression maps from a composite
burned area mapping time series [39]. Deep learning frameworks have been developed to
monitor a fire’s progression using Synthetic Aperture Radar [40]. Reducing the uncertainty
associated with burn date estimates was the focus of a study in which Synthetic Aperture
Radar imagery was used to reduce error in the pixel-based estimates of the burn date of
the MODIS MCD64A1 product, thereby increasing the quality and confidence of the overall
mapping product [41].

Many research questions pertaining to the analysis of historical wildfire growth hinge
on knowing the day on which different parts of a large fire burned, primarily to explain or
predict specific aspects of fire effects (Table 1). However, a fundamental problem in fire
growth reconstruction is that the progress of most wildfires cannot readily be observed
continuously. Instead, the timing of their arrival at different locations is estimated (with
some accompanying measurement uncertainty). Burn date maps, or alternatively, day-of-
burn maps, have been used to (1) compute spatial estimates of the daily area burned and
the daily perimeter of a spreading wildfire over many days of growth and (2) evaluate
hypothesized relationships between daily fire growth and explanatory variables that may
differ over time and space (e.g., fuels, weather, and topography). More recently, the
spatial and temporal components of a developing wildfire, including its apparent speed
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and duration, have been estimated from remotely sensed fire products with the goal of
comparing fire regime-related attributes among biomes or ecoregions [42–45].

Table 1. Selected fire behaviour and effect research questions that have been explored using satellite-
based fire reconstruction maps.

Research Question Statistical Approach Data Sources Findings

Do weather, topography,
vegetation type, and time
since last fire affect fire
severity? [46]

Regression tree analysis
(n = 2 fires) Landsat

Higher relative humidity,
lower temperatures, and a
shorter time since the last fire
corresponded with low and
moderate fire severity.
Lodgepole pine stands
burning at low wind speeds
often had higher mortality
rates.

Do weather and time since
last fire constrain subsequent
fire spread? [47]

Categorical tree analysis,
logistic regression analysis
(n = 19 fires)

Landsat

Low to moderate fire weather
and time since fire less than 9
years constrained spread;
evidence that fire is
“self-limiting”.

Characterize the relative
importance of weather,
topography, and previous
burns on crown damage. [48]

Regression tree analysis,
random forest
(n = 1 fire)

Digital aerial photography

The air temperature and burn
period (in weeks instead of
days) were associated with
high crown damage.

Is daily area burned correlated
with burn severity? [49]

Correlation
(n = 42 fires)

Landsat, airborne thermal
infrared scans

The proportion of high burn
severity was weakly
correlated with the size of the
daily burned area.

How do Santa Ana wind
events affect daily area
burned? [50]

Kolmogorov–Smirnov test,
t-test, generalized linear
model
(n = 158 fires)

Landsat, MODIS

Increased wind speed and
relative humidity associated
with Santa Ana winds were
significant predictors of
burned area per day. The
length of the previous day’s
burn perimeter was also a
significant predictor.

How do potential and realized
spread vary across
Canada? [51]

Frequency distribution,
transformation function,
correlation
(n = 2246 fires)

MODIS

The ratio of days with
fire-conducive weather (Fire
Weather Index ≥ 19) to days
where actual fire growth was
observed varied by region and
by latitude.

Do previous burns and
weather influence subsequent
fire spread? [52]

Logistic regression
(n = 1038 fires) Landsat

Fire progression is controlled
by previous fires (i.e., lack of
flammable fuels) and
weather—
evidence that fire is
“self-limiting”.

Characterize the relative
importance of top-down
(daily fire weather) and
bottom-up (topography and
vegetation) controls on burn
severity. [53]

Multivariable generalized
linear regression
(n = 6 fires)

Landsat

“Prognostic models indicated
burn severity was explained
by pre-fire stand structure and
composition, topo-edaphic
context, and fire weather at
time of burning”.
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Fire progression maps (acquired visually and sketched by personnel aboard an aircraft
or via an aircraft-mounted infrared scanner) are seldom collected in remote locations of the
boreal forest [54]. In lieu of such agency-recorded maps, satellite-based active fire detections
are often used to infer fire progression. However, there are some well-known limitations of
active fire products with respect to wildfire mapping. For example, sky conditions (e.g.,
the presence of clouds) and satellite overpass timing relative to an individual wildfire’s
growth will determine if a biomass burning event is detected with the sensor [12]. Neither
MODIS nor VIIRS operate over Canadian boreal locations during the time of peak burn at
about 16:00 h local standard time or 17:00 h daylight saving time [55], ultimately limiting
its use for inferences about peak fire activity and fire behaviour. Since the performance of
infrared thermal detection systems varies across the globe [10,22,24], the validation results
of day-of-burn maps from other fire-prone regions may not be directly transferable to
the Canadian boreal forest region. A better understanding is needed of how well such
geospatial interpolation methods perform at Canadian boreal latitudes. To the best of our
knowledge, no thorough validation of day-of-burn mapping has been done using Canadian
fire perimeters to date.

The objectives of this study were as follows:

(1) Develop a method to estimate the day of burn for portions of individual wildfires by
combining different sources of active fire detection data and using ordinary kriging.

(2) Use operational burned area update data recorded by Ontario’s Ministry of Natural
Resources and Forestry fire operations personnel to validate kriging results.

(3) Compare results obtained via kriging of MODIS, VIIRS, and combined data to better
understand how progression inference varies by data source and kriging method.

2. Materials and Methods
2.1. Wildfire Data

We estimated the progression of 37 wildland fires that occurred in the province of
Ontario, Canada. These fires were selected based on available burned area update maps
created by the Ontario Ministry of Natural Resources and Forestry’s Aviation, Forest Fire
and Emergency Services Branch operations personnel (MNRF AFFES). To be included in
the study data set, a fire had to have at least two burned area update maps prepared by
AFFES personnel during its growth. In rare cases, different burned area update maps were
obtained on the same day, and for our analysis, we used the map from the latest time of day
to represent the burned area extent. We confirmed that each final burned area map obtained
by MNRF matched the fire polygon recorded in the National Burned Area Composite [56].
The suppression status label assigned to each fire by AFFES indicated that all but one of
the fires we studied were ‘Monitored’, meaning they received no significant suppression
action; the exception was the fire RED-003-2016, which was categorized as having received
‘Full Suppression’. The 36 monitored fires constitute a novel data set for future study in
that they received no human intervention, so inferences about day-to-day growth are not
confounded by suppression activities that may have generated anthropogenic thermal
signals (e.g., backfiring/burning out operations) or influenced fireline intensity and thus
detectability (e.g., use of airtankers and other suppression resources). However, since this
study is primarily focused on the accuracy of burn date predictions, we chose to include the
validation results for the suppressed fire in our summary statistics. Data were processed,
analyzed, and graphed using R statistical software version 4.3.0 [57].

2.2. Active Fire Detection Data

MODIS instruments have been flown on the polar-orbiting Terra and Aqua satellites
since 2000 and 2002, respectively. MODIS has 36 channels, a 2000 km swath width, and
pixel resolution ranging between 250 m and 1 km (depending on the channel) at nadir.
The VIIRS instrument has been flown on the polar-orbiting Suomi NPP satellite since 2011.
VIIRS has 22 channels, a 3000 km swath width, and pixel resolution ranging between
375 m (I-bands) and 750 m (M-bands) at nadir. The MODIS and VIIRS thermal anomaly/active
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fire products contain ‘hotspot’ or ‘fire-pixel’ data based on contextual active fire detection
algorithms that exploit a fire’s strong emissions in the mid-infrared spectral region [24,36].
MODIS and VIIRS detect actively flaming and smouldering portions of fires that are
1000 m2, although flaming fires of 50 m2 have been detected under rare conditions [58].
Active fire detection data from MODIS (1 km pixels, MOD14/MYD14, Collection 6) and
VIIRS (375 m pixels, Suomi NPP) were obtained from the US Forest Service Fire Information
for Resource Management System [59]. The active fire detection data contain attributes of
detection time, location, confidence, and fire radiative power.

For each of the 37 mapped fires, we extracted the MODIS and VIIRS active fire
detections in a 1 km buffer around the perimeter of the NBAC fire polygons [60,61],
using the “gBuffer” and “gIntersection” functions from the rgeos [62] R package. The
fire detections were extracted for the same temporal extents as each fire event, and the
buffer was used to ensure that an active fire detection whose centre lies outside of the fire
perimeter is included in the extraction. The confidence value (an attribute included in the
downloaded data set) is a percentage value assigned to each active fire detection based
on intermediate algorithm quantities used in the contextual active fire detection process
and is an indication of individual detection quality [63]. For our analysis, an individual
hotspot was omitted if its confidence value was less than 40% to remove observations that
are potential false alarms while retaining detections associated with a saturated pixel that
is free of possible sun glint and contains relative temperature anomaly values >15 degrees
Kelvin higher than the background temperature [36]. Although our analysis omitted
active fire detections with a confidence value <40%, further data screening could be based
specifically on scan angle (view zenith angle) to remove detections near the swath edge.
Following the data extraction and screening, we used the time that a fire detection indicated
a pixel burned as the input to reconstruct individual fire progressions.

Active fire detections from satellite sensors show instantaneous burning in pixels; how-
ever, the data have multiple known limitations and biases with respect to mapping wildfire
progression. For example, pixel saturation and the resultant possibility of pixel bleed
(“smearing” and “blooming”) can create false detections [46]; the point spread functions of
MODIS and VIIRS create partial overlaps between pixels that can cause neighbouring pixels
to produce erroneous detections [47]; and towards the edges of the scanned swath, the
cells capture a larger sampling area and increased geolocational error [48]. The timestamp
associated with a detection is not necessarily the first instant a fire perimeter arrived in that
pixel [35]. Multiple portions of a fire’s perimeter in a pixel may be burning concurrently,
increasing the sub-pixel location uncertainty [64]. Discontinuity in the time series of ac-
tive fire detections results from both cloud cover, either partially or entirely blocking the
location of interest, and smoke being emitted by the fire itself (potentially concentrated at
the head of the fire, especially on wind-driven and plume-dominated fires) or by other fire
complexes nearby. Additionally, the spread rate of the fire relative to the satellite revisit
period (sampling interval) influences the discontinuity in the data’s spatial distribution.
Dense clusters of hotspots may suggest a slow-moving fire front, while a fast-moving fire
front may have relatively fewer and dispersed hotspots [34]; however, those inferences are
confounded by inconsistencies in the observability of the fire that cause omission errors.
All of these are fundamental weaknesses of using only active fire detections acquired via
polar-orbiting satellites for interpolating fire perimeter arrival times.

2.3. Kriging to Estimate Wildfire Progression

Kriging is a geostatistical, spatial interpolation technique that uses data recorded at
a limited number of geographic sample locations (whether chosen arbitrarily, randomly,
or otherwise) to estimate a continuous field of the variable of interest at non-observed
locations [65,66]. A variogram (or semi-variogram) is used to model the spatial correlation
as a function of distance in the observed point data, which in our study are the arrival
times and coordinates from the active fire detection time series. An experimental variogram
model is fitted to the sample data and is described by the parameters of range, sill, and



Fire 2024, 7, 26 6 of 21

nugget. The distance at which the variogram curve levels off is the distance at which a
spatial autocorrelation effect is no longer observed. The range parameter is the distance at
which the variogram model levels off, and the sill parameter is the value of semi-variance
where the model meets the range. The nugget parameter is the value of semi-variance
where the variogram model intersects the y-axis, usually reflecting measurement error and
micro-variability. The value predicted at a location for which the variable of interest was
not measured depends on both its distance from the known observation and the spatial
configuration of all known observations [67].

MODIS and VIIRS pixel centroids (point data) were reprojected to a consistent projected
coordinate reference system, NAD84 (Lambert conformal conic projection, EPSG:3347), and
spatially joined using the “SpatialPointsDataFrame” function from the sp [68] R package.
Timestamps for the MODIS and VIIRS data were converted to a day-of-year variable that
included the time-of-day as a fractional value. No minimum or maximum number of ob-
servations or distance thresholds were specified to restrict inputs to the variogram/kriging
procedure. The experimental variogram was fitted to the sample data using a spherical
model to describe the range, sill, and nugget parameters for each wildfire. The experimental
variogram modelling generated parameter estimates based on inputs from the active fire
detection sources (1) MODIS, (2) VIIRS, and (3) a combination of MODIS and VIIRS. In
previous attempts to map fire progression, input data were screened to obtain a subset of
only the first detection in a locationally fixed network of grid cells. This approach ignores
much of the observed spatial autocorrelation present in the active fire detection data and
thus influences the variogram parameter estimates. The variogram parameter estimates
were used to generate each prediction surface. Predictions were generated for each cell of a
raster object (50 m × 50 m pixels) having the same burned area as the fire polygons from
the National Burned Area Composite [56]. For each kriging prediction surface, the con-
tinuous burn date values of the cells were re-coded to daily time increments by rounding
down predictions of burn date to the nearest integer (i.e., day-of-year). Variogram analysis
and kriging interpolation processing employed the “vgm”, “fit.variogram”, and “krige”
functions from the gstat [69] R package; date and time information was converted using
the lubridate [70] R package.

2.4. Defining the Burn Period

Day-of-burn mapping requires that the prediction surface be converted to discrete
day-of-year values. Midnight is commonly chosen to delineate each 24 h period (daily) of
burning over the fire’s duration; that is, each day’s accumulation of active fire detections
begins at midnight, local time. However, some active fire detections result from satellite
overpasses that occur just after midnight in the early morning hours, primarily MODIS
detections from the Aqua satellite recorded at ~02:00–03:00 h. Under most typical weather
scenarios, hotspots observed overnight and until just before dawn are more likely the result
of the previous calendar day’s weather station observations (consisting of air temperature,
relative humidity, 10 m wind speed, and 24 h accumulated precipitation measured at
12:00 h local standard time). Given that the peak fire danger period in Canadian bo-
real forests occurs in the late afternoon after fuels have experienced substantial drying
(~16:00 h local standard time or 17:00 h daylight saving time), active spread may carry
on into the hours after sunset if the ground-level air temperature decreases and humidity
increases are slow, particularly during periods of low atmospheric moisture and high air
temperature [55,71,72]. Therefore, we used 06:00 h to separate burn periods. For each
kriging prediction surface, the cells having continuous burn date values between midnight
and 06:00 h were re-coded as being associated with the previous calendar day’s growth;
then all remaining cells with burn date values were re-coded to 24 h time periods by
rounding down predictions to the nearest integer hour. To permit comparison of the use of
this timing that better reflects potential diurnal fire behaviour, the more commonly used
midnight delineation was also used to estimate a separate day-of-burn data set that was
compared with the data derived using the 06:00 h delineation.
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2.5. Statistical Analysis

We evaluated prediction bias and assessed associations using correlation testing and
regression modelling. We focused on the spatial and temporal accuracy of predictions
by comparing the pixel-based, map-to-map differences in day-of-burn values between
the kriging prediction surface and the MNRF burned area update maps (an independent
data set not used in variogram analysis or kriging). To match the grid alignment and cell
resolution of the corresponding kriging prediction surface (50 m × 50 m), the agency burned
area maps were re-sampled using nearest neighbour interpolation. Resampling employed
the “ngb” function from the raster [73] R package. We acknowledge that resampling
introduces some degree of pseudo-replication into the validation data.

This analysis is termed a quasi-validation in recognition that interpolations using
hotspot data are fundamentally different from the agency-recorded burn maps, which de-
pict “burned by date” data. The latter map may contain both burned areas with perimeters
that have long been inactive as well as other portions of a fire with actively burning fire
lines, and thus not all cells classified as burned would have burned at the same time or at a
constant spread rate. Furthermore, if a burned area is recorded and then a growth event
occurs later the same day, that newly burned area will be misattributed to the next time the
agency records an observation.

The day-of-burn differences were used to calculate the prediction bias between the
kriging prediction surface and the agency burned area map for all pixels within the final
fire perimeter. A prediction bias of zero indicated a perfect match between the predicted
burn date and the reported agency burn date for that cell (e.g., predicted burn date of
202—agency burn date of 202 = 0 or the same day). A positive prediction bias for a cell
indicated the predicted day of burn was later than the agency day of burn (e.g., predicted
burn date of 205—agency burn date of 202 = +3 days), whereas a negative prediction bias
for a cell indicated the predicted day of burn was earlier than the agency day of burn
(e.g., predicted burn date of 200—agency burn date of 202 = −2 days). The prediction bias
was summarized for each fire using both density and ridgeline plots. The two burn date
raster layers were used to compute the areal proportion of matching pixels in terms of an
exact match (the same day), within 1 day (±1 day), within 2 days (±2 days), within 3 days
(±3 days), and within 4 days (±4 days). The areal proportion of matching pixels for each fire
was graphed as a box-and-whiskers plot and a line plot grouped by the number of agency
burned area update maps. Graphing was conducted via the ggplot2 [74], ggridges [75],
and sm [76] R packages.

The presence of spatial autocorrelation in day-of-burn data sets has yet to be fully
addressed in assessments of accuracy or predictive ability. Firstly, as a requisite to conduct
spatial interpolation, the input data (which in our study are individual active fire detections)
must be positively spatially autocorrelated; therefore, the statistical assumption of indepen-
dence among observations is violated for any subsequent analysis involving the predicted
day-of-burn values. Secondly, spatial dependence among observations “negatively affects
statistical tests by underestimating standard errors and inflating Type I errors (incorrectly
rejecting a true null hypothesis, H0)” [77]. Because the degrees of freedom are inflated
if the data are not independent, the necessary sample size is modified to demonstrate
a significant difference: “[. . .] when positive spatial autocorrelation is present in small
distance classes, classical statistical tests determine too often that correlations, regression
coefficients, or differences among groups are significant, when in fact they are not” [78].
Thirdly, the independent validation data used to assess accuracy are likely to be spatially
autocorrelated. If present, this spatial autocorrelation needs to be accounted for analytically.

To test for the presence of spatial autocorrelation in each of the validation data sets, we
computed a value of Global Moran’s I [79] for each agency burned area update map using
the “Moran” function from the raster [73] R package. After determining that each agency
burned area update map was positively spatially autocorrelated (most exceeded I > 0.90),
we chose to summarize the association between spatially correlated processes (predicted
and observed day of burn) using a modified Pearson correlation coefficient. This test of
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association is based on modifying the variance and degrees of freedom of the standard
t-test to estimate a new effective sample size [80]. For each of the three input data sources
(MODIS, VIIRS, and combined detections), the corresponding burn date values from the
prediction surface and agency maps were used to summarize the association between these
spatial variables. Additionally, we calculated a nonparametric variant of the correlation
coefficient that is computed for two spatial sequences across the same locations on the
plane, known as Tjostheim’s coefficient (A) [81]. Values of r and A were calculated using
the “modified.ttest” and the “cor.spatial” functions, respectively, from the SpatialPack [80]
R package.

Although we recognize the prediction and validation data sets are positively spatially
autocorrelated, to facilitate direct comparison with previous studies, we calculated the
coefficient of determination (R2) and root mean squared error (RMSE) for the linear regres-
sion between the burn date values from the prediction surface (independent variable) and
agency map raster layer (dependent variable). The values of R2 and RMSE were calculated
using the “lm” function from the stats R package.

Cohen’s kappa correlation coefficient (k) is used to measure the extent to which two
observers assign the same categories or scores to the same subject and, alternatively, may be
described as “inter-rater reliability” [82,83]. Cohen’s weighted kappa correlation coefficient
(k) is calculated as follows:

k =
(p0 − pe)

(1 − pe)
(1)

where p0 is the relative observed agreement among raters and pe is the hypothetical prob-
ability of chance agreement; this approach attempts to account for the fact that the two
observers may agree purely by chance. In our analysis, k was calculated to investigate the
agreement between prediction surfaces generated via MODIS and VIIRS separately, with
the two rasters of predicted burn dates as the inputs. Values of k were calculated using the
“cohen.kappa” function from the psych [84] R package.

3. Results
3.1. Ordinary Kriging

The final sizes of the 37 study fires ranged from 110 to 74,334 ha, with durations
ranging from 33 to 96 days (based on the difference between the agency-designated Start
Date and Out Date). These fires were taken from a cross section of Ontario fires that
occurred between 2012 and 2017 and were large, monitored fires (except four fires that were
<200 ha and RED-003-2016, which was suppressed), for which multiple perimeter maps
were available in digital format. After omitting active fire detections with a confidence
value <40%, 26 wildfires were detected at some point over their duration using MODIS,
whereas 37 wildfires were detected with VIIRS (Table 2, Figure 1). Figure 2 shows the
acquisition time and frequency of hotspots used for ordinary kriging. The number of active
fire detections varied considerably between MODIS and VIIRS for each fire (Table 2), as did
the acquisition time over the 24 h diurnal cycle (Figure 2).

The variogram model parameter estimates for each fire, based on using the combined
detection data set as inputs, are presented in Table 2. Sill and range values varied from 0.52
to 1470 days2 and 0 to 187 km, respectively; generally, smaller fires produced the highest
parameter estimates. Spatial outliers can cause erratic behaviour in a variogram model,
which may partially explain some of the exceptionally high parameter estimates that we
observed for some smaller fires (e.g., NIP-046-2017 and NIP-075-2017). While we used the
spherical variogram model, data exploration revealed that five fires had a slightly better fit
with an exponential variogram model (based on the sum of square errors), which indicated
the variance in arrival times did not level off at increasing distance for that fire. Many fires
seem to have a nugget effect, though several fires had nugget values greater than 0 days2,
indicating that as hotspots got closer together, variability in arrival times remained high.
The nugget value may also indicate the input data were sparse for that fire. Had the data
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been pre-screened for first detection, the variability in arrival times would not have been
properly characterized (see Section 2.3).

Table 2. Descriptive statistics, variogram parameters, and correlation for 37 study fires in Northwest-
ern Ontario, Canada.

Fire Number Duration
No. of
Agency
Maps

Fire
Area
(ha)

Moran’s
I

No. of
Hotspots Variogram Parameters MODIS VIIRS Combined

MODIS VIIRS
Nugget
(days2)

Sill
(days2)

Range
(km) r r k r A R2 RMSE

RED-050-2012 196–234 6 6956 0.93 34 670 0 14.5 5.7 0.45 0.77 0.38 0.77 0.58 0.59 2.17
RED-053-2012 196–255 9 18,845 0.94 480 1336 0.12 15.5 4.2 0.66 0.71 0.78 0.72 0.05 0.52 2.28
RED-057-2012 189–234 4 2706 0.92 21 182 1.04 37.3 24.9 −0.01 0.38 0 0.35 0.17 0.13 2.02
RED-058-2012 190–234 6 1884 0.98 22 171 0 20.7 2.9 −0.24 0.32 0 0.31 0.38 0.09 4.50
RED-060-2012 184–234 6 2742 0.97 115 694 1.26 124.3 55.0 0.45 0.46 0.70 0.46 0.15 0.21 2.84
RED-061-2012 196–255 6 956 0.93 20 164 2.12 5.2 1.9 0.03 0.47 0.39 0.43 0.00 0.18 2.41
RED-062-2012 195–255 5 1016 0.95 17 94 0 409.0 39.9 0.53 0.78 0.76 0.77 0.48 0.59 2.41
RED-063-2012 195–255 6 3577 0.93 19 407 1.38 115.8 22.9 0.45 0.79 0.34 0.77 0.40 0.59 1.90
RED-071-2012 184–235 10 6085 0.94 24 414 0 204.4 83.1 0.83 0.91 0.84 0.91 0.55 0.82 1.47
RED-072-2012 189–285 8 13,631 0.94 109 1029 0.97 13.6 4.6 0.74 0.71 0.82 0.71 0.56 0.51 1.95
NIP-017-2015 159–228 5 15,827 0.91 37 278 3.51 23.3 7.0 0.57 0.47 0.60 0.49 0.64 0.24 4.09
NIP-023-2015 168–228 3 4067 0.94 3 122 0.38 116.5 70.8 - 0.65 - - - - -
RED-016-2015 166–226 5 2629 0.96 22 113 1.64 132.1 42.5 0.39 0.83 0.52 0.83 0.69 0.69 2.08
RED-025-2015 175–226 5 2189 0.92 39 109 0 181.3 37.2 0.07 0.83 0.30 0.83 0.00 0.68 2.88
RED-044-2015 177–226 5 1024 0.96 10 102 0 57.0 50.3 0.59 0.89 0.81 0.88 0.73 0.77 2.02
RED-046-2015 177–226 5 333 0.97 3 38 0 22.4 1.31 - 0.83 - - - - -
RED-003-2016 126–222 8 74,334 0.78 609 526 0.87 208.0 707 0.87 0.64 0.91 0.88 0.70 0.78 2.48
NIP-029-2017 208–270 7 6999 0.92 16 1088 1.01 31.6 8.8 0.79 0.83 0.70 0.83 0.60 0.69 1.80
NIP-032-2017 210–262 2 168 0.97 0 18 18.68 0.5 7.1 - −0.05 - - - - -
NIP-037-2017 210–253 4 3915 0.92 8 299 0 21.5 4.2 0.61 0.68 0.60 0.69 0.68 0.47 6.27
NIP-038-2017 210–255 2 205 0.95 0 22 3.29 83.7 5.0 - 0.56 - - - - -
NIP-046-2017 212–253 2 208 0.93 28 119 0.49 1470.8 187.1 −0.33 0.35 0 0.34 0.00 0.11 1.84
NIP-064-2017 220–262 3 530 0.97 0 60 0 124.3 1.6 - 0.73 - - - - -
NIP-065-2017 220–253 3 3486 0.96 7 394 4.08 30.6 2.5 0.70 0.74 0 0.73 0.48 0.54 3.41
NIP-075-2017 220–262 6 674 0.95 35 107 9.07 978.1 56.9 −0.01 0.67 0.44 0.69 0.37 0.47 3.13
NIP-077-2017 210–255 2 574 0.95 0 54 2.40 34.7 7.3 - 0.41 - - - - -
NIP-098-2017 210–255 4 4736 0.93 0 1066 3.51 353.3 80.8 - 0.68 - - - - -
RED-054-2017 215–276 2 4049 0.93 56 418 4.56 23.3 1.4 0.11 0.28 0.34 0.27 0.17 0.07 1.44
SLK-017-2017 205–261 3 3690 0.64 15 253 1.76 71.7 41.4 −0.01 0.10 0.29 0.10 0.67 0.01 1.35
SLK-032-2017 209–248 2 230 0.96 0 26 0 35.4 0.5 - 0.81 - - - - -
SLK-036-2017 210–261 4 2230 0.96 14 149 0 20.6 4.3 0.09 0.53 0 0.54 0.42 0.30 5.63
SLK-038-2017 210–261 2 653 0.88 0 76 1.69 64.7 11.4 - 0.37 - - - - -
SLK-052-2017 215–248 2 1320 0.96 10 88 0 11.9 0.7 0.00 0.46 0.02 0.45 0.29 0.20 2.42
SLK-064-2017 216–248 2 132 0.94 0 15 1.53 5.3 0.7 - 0.72 - - - - -
SLK-068-2017 217–261 2 510 0.52 0 69 0.37 3.8 11.5 - −0.01 - - - - -
SLK-103-2017 226–261 2 110 0.96 0 5 12.25 12.3 0.1 - 0.65 - - - - -
SLK-129-2017 222–261 2 121 0.98 0 13 0 23.9 0.3 - −0.07 - - - - -

When compared to the agency burned area maps, day-of-burn estimates from MODIS
generally had lower r values than VIIRS-based estimates, except for three fires (RED-072-
2012, NIP-017-2015, and RED-003-2016; Table 2). The r values from the combined data
ranged from 0.10 to 0.91, and 14 of the study fires had r > 0.70. Six fires had negative
correlation coefficients for either MODIS or VIIRS, indicating that pixel-based matching
was very poor between the estimated fire growth from the prediction surfaces and the
agency’s progression maps. The R2 values from the combined data ranged from 0.01 to
0.82, and the RMSE ranged from 1.444 to 6.265 days.

Cohen’s kappa correlation coefficient indicated highly variable inter-rater reliabil-
ity between MODIS- and VIIRS-based prediction surfaces, which ranged from 0 to 0.91
(Table 2). Cohen’s kappa values of 0 indicated that progression inferences from the two
active fire detection sources were not consistent (e.g., MODIS suggested an east-to-west fire
progression, whereas VIIRS suggested a west-to-east progression) for five of the study fires.
Agreement between MODIS and VIIRS prediction surfaces was moderate for six wildfires
(0.60 < k < 0.79) and strong for four (k > 0.80). Of the study fires, the suppressed wildfire,
RED-003-2016, had the highest value of inter-rater reliability (k = 0.91).



Fire 2024, 7, 26 10 of 21
Fire 2024, 6, x FOR PEER REVIEW  10 of 23 
 

 
Figure 1. Map depicting the day-of-burn prediction surfaces for 37 study fires located in Northwestern Ontario, Canada. Day-of-burn predictions, 
typically reported using units of day-of-year, have been re-coded to a relativized time format that starts at 0 to represent ignition time. The inset map 
depicts the location and extent of the study region within Eastern Canada.

Figure 1. Map depicting the day-of-burn prediction surfaces for 37 study fires located in Northwestern Ontario, Canada. Day-of-burn predictions, typically reported
using units of day-of-year, have been re-coded to a relativized time format that starts at 0 to represent ignition time. The inset map depicts the location and extent of
the study region within Eastern Canada.
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3.2. Prediction Bias

Figure 3a presents a summary of the positive and negative biases between the predic-
tion surfaces and the agency burned area maps for the 37 study fires (using combined active
fire detections, except when only VIIRS observations were available; Table 2). An overall
trend towards negative prediction bias (i.e., the predicted day of burn was earlier than
the agency mapping date) for most fires was a direct consequence of the quasi-validation
comparing two maps that are functionally different: the prediction was based on instan-
taneous hotspots, while the agency recorded burned area maps were updated sometime
afterwards and thus captured “burned by dates”. A relatively minor positive prediction
bias may be attributable to the known problem that the timestamp associated with an active
fire detection does not necessarily record the fire’s first arrival in that cell (instead may
record some later time), resulting in a predicted burn date that is later than the agency
burn date. Alternatively, the positive prediction bias may be because the agency acquired
maps when hotspots were not detectable due to minimum fire size/temperature threshold
criteria not being met or a temporarily obstructed view of the fire, whether partially or
entirely, from clouds and smoke. Figure 3b shows the areal proportion of matching pixels
from the separate MODIS and VIIRS prediction surfaces with agency burned area maps
for individual fires when both detection types were present (Table 2). Based on qualitative
visual inspection, greater pixel-based matching and accuracy with the agency burned area
maps were often achieved using VIIRS-based predictions than using MODIS, but not for
every study fire.

The prediction bias results are presented in Figure 3c as a box-and-whiskers plot of the
differences between the prediction surface from combined detections and agency burned
area maps. About 28% of the predictions were exact matches with agency maps (i.e., the
difference of 0 days), 42% were within plus or minus one day, and 50% were within plus
or minus two days. Overall, our quasi-validation results of hotspot-based predictions for
37 study fires in Ontario displayed a gradual levelling-off of spatial-temporal accuracy;
about 63% of the area of all fires were accurately predicted to within plus or minus four
days. Figure 3d displays the difference in burn date results for individual fires, grouped by
the number of times the agency recorded a burned area map. Fires with two agency update
maps were generally smaller and shorter in duration, and thus, some of those fires showed
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exceptionally good pixel-based matches and accuracy; fires with three updates showed
relatively worse accuracy, but they improved with additional burned area updates.
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Figure 3. Summaries of prediction bias results for 37 fires studied: (a) ridgeline plot summarizing the
pixel-based differences in burn date between the kriging prediction surface and the agency maps,
(b) comparison of pixel-based differences between the MODIS and VIIRS kriging prediction surfaces,
(c) box-and-whiskers plot, and (d) line plot summarizing the areal proportion of matching pixels.

Figure 3 and Table 3 show that for 11 of the study fires (~30% of fires), the agency’s
first burned area map was acquired one or more days before the first active fire detection.
Moreover, both the MODIS and VIIRS data had instances in which a wildfire was not
detected using the satellite-borne sensor until it was several hundred hectares in size.

Table 3. Summary of Northwestern Ontario study fires mapped by agency before first active fire
detection using MODIS or VIIRS.

Fire Number Start Date Agency Map
Date Fire Size First MODIS First VIIRS Difference

(Days)

RED-057-2012 189 200 125 203 - 3
RED-058-2012 190 200–204 195, 268, 168 *, 529 205 - 5
NIP-017-2015 159 164 263 174 170 10, 6
RED-025-2015 175 176 53 185 - 9
RED-044-2015 177 184 67 192 186 8, 2
NIP-046-2015 212 234 84 238 - 4
SLK-036-2017 210 212 261 - 220 8
SLK-052-2017 215 219 104 223 - 4
NIP-032-2017 210 211 31 - 219 8
SLK-038-2017 210 217 15 - 220 3
SLK-129-2017 222 225 599 - 226 1

* Size decreases due to a more accurate map of fire perimeter.
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3.3. Wildfire Case Study: RED-071-2012

Here, we focus on one monitored wildfire for which the agency recorded burned
area updates over ten days as a case study. RED-071-2012 was a lightning-caused wildfire
estimated to have started on day-of-year 184 (2 July 2012) based on the Daily Fire Operations
Support System fire archive records [85]; however, the first active fire detections were not
observed using MODIS or VIIRS products until day-of-year 196 (14 July 2012). When the
fire was observed by aircraft personnel about two weeks later (day-of-year 199 or 17 July
2012), its estimated size was 400 ha.

Figure 4 presents the kriging predictions and kriging standard errors for the burn date
interpolation of RED-071-2012. Based on inference from the kriging prediction surfaces in
Figure 4, it appears that this wildfire grew outwards in all directions for the first few days,
and its southeastern perimeter extinguished after burning to a lakeshore. A significant
growth event occurred on day-of-year 204, when the burned area more than doubled and
the fire spotted across a different lake. The fire grew towards the northeast at a relatively
slower daily average spread rate and finally extinguished naturally.

Visual inspection of the MODIS-based prediction surface (r = 0.83) for RED-071-2012
shows some evidence of the bull’s eye effect (concentric areas of similar values near known
data points; Figure 4a). The VIIRS-based prediction surface (r = 0.91) may also display this
effect to some degree, but it depicts a very different series of growth events on day-of-year
204 and 205. The combined prediction surface (r = 0.91) did not have an increased r value
compared with VIIRS only; however, the kriging standard error maps indicated that the
error was minimized with the combined data set (Figure 4h). Generally, the standard error
is higher in areas with few active fire detections, and the error increases with increasing
distance between the prediction pixel and the hotspot (Figure 4, variance plots in the second
column). Based on the density plot of prediction bias (Figure 5), the VIIRS-based predictions
seem to better match the agency-mapped data than the MODIS-based predictions.
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Figure 5. Case study fire RED-071-2012: (a) agency burned area update maps and (b) density plot of
prediction bias using MODIS, VIIRS, and combined active fire detection data sets.

Figure 6 displays burn period delineation results for RED-071-2012 to illustrate how
the time changed the final predicted burn date (grey cell = no change in predicted burn
date between 0:00 and 06:00 h; green cell = burn date changed using 06:00 h). The
06:00 h delineation showed the fire perimeter growth extending further to the east on
day-of-year 202 and 203 (shown in yellow and light green) and revealed a spotting event
that occurred overnight on the southeast portion of the fire. Predictably, the distribution
of burn pixels shifted to the left (towards earlier satellite burn date estimates) using the
06:00 h delineation.
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Figure 6. Comparison of daily burn period delineation using (a) 00:00 h and (b) 06:00 h for case study
fire RED-071-2012, (c) map of burn dates (pixels) that differed between the two delineations, and
(d) density plot of burn dates for the two delineations.
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4. Discussion
4.1. Fire Progression Mapping

This study is the first quasi-validation of day-of-burn mapping for wildfires occurring
in the Canadian boreal forest region. We examined intra-fire spread reconstruction in terms
of the daily growth that could be estimated using data recorded using two satellite-based
active fire detection sensors and found that by using the combined data set of MODIS and
VIIRS detections, nearly half of every study fire’s burned area was accurately predicted to
within one day of the actual day it burned (Figure 3). However, the day-of-burn mapping
results varied widely among individual fires, and although VIIRS did detect all studied
fires, relying solely on VIIRS detections did not always result in more accurate estimates of
burn dates than MODIS detections (Table 2).

The variogram parameter estimates were similar to the ranges of values reported by
Veraverbeke et al. [34], who also used a spherical variogram model, although they found
an average areal proportion of matching pixels of 34% using nine validation fires from
the Southwestern United States. The MODIS MCD64A1 burn date product [86] was also
validated in that study and was found to have correctly identified the day of burning for
20% of pixels that were burned, slightly less than the results we found using combined
active fire detections (28% of pixels were exact matches averaged across our 37 study fires).

Comparatively worse day-of-burn mapping performance is expected for fires that
burn less than <~500 ha [35]; increased accuracy has been observed for larger fires that
burn longer [38]. Our study results resolve a knowledge gap with respect to how well
geospatial interpolation techniques perform for wildfires at the low end of the large fire size
distribution (fire size classes E and F: 100–1000 ha and 1000-10,000 ha, respectively) [87].
Three fires that were >10,000 ha (class G) had higher r values using MODIS than VIIRS.

Our study demonstrates the value of recognizing the potential for significant growth
events to occur overnight. A visual comparison of the discrepancy in burn dates between
the 00:00 and 06:00 h delineations in Figure 6c indicated that a significant growth event
occurred overnight on RED-071-2012, which would be attributed to different burn dates
depending on the delineation choice. As for the most appropriate delineation of 24 h
burn periods, the minimum fire spread activity expected on a day with a typical weather
pattern occurs near or just after sunrise, when the air temperature is at a minimum, relative
humidity is at a maximum, and wind speed is relatively low [88]. Since many of the studies
that use day-of-burn information are explorations of the predictive ability of fire weather,
behaviour, and growth models, the selection of 06:00 h (versus 00:00 h) as the end of the
previous burn day should associate growth somewhat more accurately with the correct
daily fire weather observations. Though we chose to explore 24 h delineations of burned
area, it is possible to further divide burn periods into sub-daily periods that are 8 or 12 h
(e.g., morning, evening, or overnight periods of burning) and relate each period to hourly
weather observations.

4.2. Limitations

Our study highlights several limitations of the independent data set used for quasi-
validation and spatial statistical analysis.

Studies that compare burn date interpolation maps to agency-based observations are
inherently limited by the frequency and type of observations collected for quasi-validation,
and indeed, any future meta-analysis would seemingly be confounded by such differences.
Results shown in Figure 3d suggested that greater accuracy was often found when more
agency update maps were available; specifically, four or more burned area updates gener-
ally demonstrated the best pixel-based matching. Since the accuracy results presented in
Figure 3 were sensitive to the quality of the independent data used for quasi-validation,
a consideration for future analysis might be to normalize or scale the number of update
maps by the fire duration to better reflect the influence of observational frequency on the
potential uncertainty of the agency maps. Veraverbeke et al. (2014) and Scaduto et al.
(2020) reported somewhat higher accuracy between their interpolated day-of-burn maps
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and agency perimeters from US Forest Service National Infrared Operations, probably
because their validation data type consisted of nearly complete nighttime thermal infrared
imagery of perimeters acquired nightly between 22:00 h and 02:00 h for the duration of each
fire [23,67]. Additionally, our study results were limited by a lack of information about the
exact time of day that the agency acquired the burned area update map. Uncertainty would
be reduced with consistent records of acquisition time for each agency burned area map
and would presumably improve the accuracy of the results of future quasi-validation work.
This temporal criterion may inform future fire mapping protocols adopted by Canadian
fire agencies; however, it would require considerable effort and coordination to standardize
the protocols for fire perimeter mapping.

The ordinary kriging assumptions of stationarity (mean and variance of values are
constant) and isotropy (uniform in all directions) [65] are likely violated to some degree
when interpolating fire growth. Firstly, for the stationarity assumption to be met, fire spread
(or arrival time) would have to be constant across the entire burned area and for the entire
multiday lifetime of the fire. Secondly, the assumption of isotropy is not met because spread
is not uniform in all directions but instead is highly dependent on wind direction; therefore,
anisotropic approaches to kriging are likely more suitable [89]. Universal kriging might
be used as an alternative because it allows spread value means to differ among locations
within the fire perimeter while assuming a constant variance.

4.3. Future Research

Since the overarching goal is to reduce uncertainty in estimates of burn dates in a
final fire polygon, the challenge is to create a workflow processing framework useful for
combining disparate remotely sensed data types [41]. While active fire detections have long
been recognized as a source of data to improve our understanding of wildfire processes,
neither MODIS nor VIIRS data can be used to produce accurate estimates of the exact arrival
time at or duration of burning in a pixel. Future investigation should explore whether the
kriging prediction surface based on combined MODIS and VIIRS hotspots is improved by
cross-referencing with complementary wildfire remote sensing products, such as burn scar
data [39], synthetic aperture radar data [40], and geostationary satellite active fire detection
data [90].

Future explorations of burn date mapping should focus on comparing accuracy results
across a latitudinal gradient as well as among fire-prone ecoregions. The former is relevant
to the boreal forest because the overlapping tracks of polar-orbiting satellites near the
Earth’s poles produce more frequent active fire detection coverage at higher latitudes.
While consecutive active fire acquisitions near the equator occur twice per day (morning
and nighttime overpasses), acquisitions near the Arctic may occur within only a couple of
hours [61]. The implication for the Canadian boreal forest is that the additional hotspots
observed on wildfires burning at higher latitudes may produce more accurate progression
maps. The latter is relevant because the accuracy of mapping results for an individual fire
is affected by terrain, species composition, rates of spread, etc., and each of these varies
considerably among Canadian ecoregions.

Active fire products are often touted as being a consistent, unbiased means to observe
fire dynamics over regions that are vast, remote, and diverse (ecologically, politically, and
economically) [29,91,92]; however, as evidenced by our quasi-validation results, it is not
guaranteed nor is it realistic to expect that a day-of-burn map is perfectly accurate. Because
an inaccurate day-of-burn map would likely add substantial confounding noise to any
burn date data set, it seems apt to explore the minimum input data needs (e.g., minimum
density of hotspots per fire) to retain a candidate day-of-burn map for subsequent statistical
analyses. Using Cohen’s kappa correlation coefficient to compare the prediction surfaces
produced using MODIS and VIIRS separately provides some estimate of coherence between
the active fire detections from the two sensors, and this or other confidence measures might
be used as a screening criterion for candidate fire selection. Re-examination of the research
questions outlined in Table 1 with day-of-burn maps based on a combination of MODIS and
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VIIRS detections may reveal patterns that were previously statistically undetectable due to
relying on progression inferences from only one instrument or analyzing all reconstruction
maps regardless of their accuracy.

Advancements in mapping the daily area burned by fires should, in turn, improve the
accuracy of estimates from bottom-up inventories of wildfire emissions. Fire progression
maps allow weather, fuel moisture, and burning conditions (e.g., combustion completeness,
and emissions factors) to vary temporally instead of assuming a fixed condition for the
entire fire event [34]. Thus, our burn date interpolation method might be used to investigate
the extent to which emissions estimates vary based on the MODIS, VIIRS, and combined
active fire detection data sets.

5. Conclusions

In summary, we investigated how the prediction accuracy of daily fire progression
maps could be improved by combining two sources of satellite-based active fire detection
data. Our quasi-validation, using an independent data set of 37 wildfires that occurred
in Ontario’s boreal forest region, resulted in accurate estimates of the date of burning for
nearly half of the area burned within one day using the combined data set of MODIS
and VIIRS active fire detections. Separately, MODIS and VIIRS could accurately map the
progression for most of the study fires; however, 11 fires were not detected via MODIS.
While VIIRS tended to be more accurate than MODIS, this was not the case for three of
the largest fires studied. Importantly, the two data sets did not always give the same
progression trend according to our assessment of inter-rater reliability. Of the study fires,
the suppressed wildfire, RED-003-2016, had the highest value of inter-rater reliability
(k = 0.91). Our study results resolve a knowledge gap with respect to how well the
geospatial interpolation technique of ordinary kriging performs for wildfires at the low
end of the large fire size distribution. VIIRS is capable of mapping smaller fires than
MODIS, though evidently, accuracy diminishes as fire size decreases. The presence of
spatial autocorrelation is a relevant statistical consideration for any validation of burn
date mapping techniques, as performance assessments that ignore this issue will likely
overestimate agreement. Our approach may be used to generate a geodatabase of historical
fire progression reconstruction maps, to study environmental controls on fire behaviour
and fire effects, or to independently validate predictions from a fire growth model.
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