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Abstract: The quantitative assessment of forest fire severity is significant for understanding the
changes in ecological processes caused by fire disturbances. As a novel spectral index derived from
the multi-objective optimization algorithm, the Analytic Burned Area Index (ABAI) was originally
designed for mapping burned areas. However, the performance of the ABAI in detecting forest
fire severity has not been addressed. To fill this gap, this study utilizes a ground-based dataset of
fire severity (the composite burn index, CBI) to validate the effectiveness of the ABAI in detecting
fire severity. First, the effectiveness of the ABAI regarding forest fire severity was validated using
uni-temporal images from Sentinel-2 and Landsat 8 OLI. Second, fire severity accuracy derived from
the ABAI with bi-temporal images from both sensors was evaluated. Finally, the performance of
the ABAI was tested with different sensors and compared with representative spectral indices. The
results show that (1) the ABAI demonstrates significant advantages in terms of accuracy and stability
in assessing fire severity, particularly in areas with large numbers of terrain shadows and severe
burn regions; (2) the ABAI also shows great advantages in assessing regional forest fire severity
when using only uni-temporal remotely sensed data, and it performed almost as well as the dNBR
in bi-temporal images. (3) The ABAI outperforms commonly used indices with both Sentinel-2 and
Landsat 8 data, indicating that the ABAI is normally more generalizable and powerful and provides
an optional spectral index for fire severity evaluation.

Keywords: forest fires; spectral indices; ABAI; fire severity; Sentinel-2; Landsat 8 OLI

1. Introduction

Forest fires have a significant impact on forest ecosystems, altering their biodiversity
and ecological sustainability, leading to an ecological imbalance [1–3]. The term “fire
severity” is generally defined as the extent to which a location is altered or damaged by
a fire in the “Glossary of Wildland Fire Terminology” [4]. The quantitative assessment
of fire severity is an important aspect of studying the response mechanisms of terrestrial
ecosystems to fire and is important for understanding the ecological processes caused
by forest fires [5,6]. However, the severity of fire events often varies significantly from
region to region, and a lack of consensus on methods for assessing fire severity limits our
understanding of the role of forest fires in various terrestrial ecosystems. Therefore, it is
urgently necessary to improve existing methods or construct new spectral indices for the
assessment of fire severity [7].

Satellite images provide spatially explicit information for the investigation of fire
severity, and they have long been regarded as a valuable data source for monitoring biomass
burning from the local to global scales, along with its dynamic characteristics [8,9]. Over the
past half-century, wildfire researchers have developed various qualitative and quantitative
methods for fire severity based on field surveys and the remote sensing monitoring of
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burn areas [10]. Currently, one of the most commonly used methods of assessing fire
severity is the comprehensive use of satellite remote sensing spectral indices in combination
with the Composite Burn Index (CBI), which was designed as an operational field-based
methodology for burn severity assessment that can rate the average burn severity within
sample areas [11,12]. The CBI has been frequently employed in many studies to validate
different remote sensing products, as well as for the comprehensive assessment of fire
severity in various forest ecosystems [13–15].

Over the past two decades, numerous spectral indices have been developed to quantify
fire severity, and each index presents its characteristics in local studies. These indices differ
in the combination of spectral bands used, resulting in performance differences for assessing
fire severity. For instance, the Normalized Burn Ratio (NBR), which utilizes NIR (near
infrared) and SWIR (shortwave infrared) wavelengths to delineate burned areas, is one of
the most commonly used indices for the measurement of fire severity [16]. Among the most
commonly used optical features, vegetation indices play a major role in studies of the remote
sensing of forest burn areas and burn severity. The Normalized Difference Vegetation Index
(NDVI), calculated by combining the red and NIR bands, correlates well with fire severity.
It is the most widely used vegetation index for assessing fire severity [17,18]. The Soil-
Adjusted Vegetation Index (SAVI) uses NIR and red wavelengths to mitigate spectral
interference from soil and has also been widely used for assessing fire severity [19,20].
Similarly, the burned area index (BAI) employs the NIR and red wavelengths to separate
burned areas by identifying the charcoal signal in post-fire images, which integrates the
minimum reflectance of burnt vegetation in the NIR and the maximum in the red bands [21].
The Char Soil Index (CSI) is calculated using the ratio of the NIR and LSWIR spectral bands
and is designed to detect black carbon signals to assess fire severity [22]. In addition, The
Mid-Infrared Bi-Spectral Index (MIRBI) has high potential in separating burned areas from
unburned areas, particularly at water–land boundaries, and is, therefore, also used in fire
severity assessment research [23]. However, despite the availability of a variety of indices
for assessing fire severity, there is currently no universally applicable spectral index to
quantify the severity of fire based on satellite images. Moreover, the suitability of various
spectral indices for assessing fire severity in different regions and whether the evaluation
results meet accuracy requirements remain unclear. It is, therefore, essential to further
investigate the effectiveness of different spectral indices for a comprehensive assessment of
fire severity.

The Analytic Burned Area Index (ABAI) is a novel burned area index recently devel-
oped by our research team through a multi-objective optimization method. The construction
of this index begins with an analysis of the spectral characteristics of existing burned area
indices and the spectral differences between burned areas and other land cover types. For
each land cover type, we formulate an objective function through linear combinations of
band-to-band ratios. Subsequently, all objective functions and possible constraint equations
are transformed into a multi-objective optimization problem, which is then solved using
linear programming techniques. Finally, the optimized coefficients derived from the multi-
objective problem yield the ABAI. Current research indicates that the ABAI has shown
significant advantages in mapping burned areas based on Sentinel-2 imagery, particularly
regarding confusing areas with water bodies and shadow cover [24]. However, its potential
for assessing fire severity and its performance with other satellite sensors has yet to be
studied by researchers.

In this context, we extend the role of the ABAI from mapping burned areas to detecting
fire severity and aim to evaluate and compare the performance of the ABAI with other
commonly used spectral indices for assessing forest fire severity using multiple satellite
sensors. The obtained assessment results provide a scientific foundation for future studies
on fire severity through remotely sensed technology. Moreover, this paper can contribute
to the conservation of forest resources and the promotion of post-fire vegetation recovery.
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2. Materials and Methods
2.1. Study Area

To comprehensively assess the applicability of the ABAI across different satellite
sensors and regions, this study utilized remote sensing data from two types of satellite
sensors in two different fire-prone study areas located at high and low latitudes. The first
study area is situated in Ganzhou City, Jiangxi Province, China, with coordinates ranging
from approximately 24◦29′ to 27◦09′ N latitude and 113◦54′ to 116◦38′ E longitude. This
region falls within the low-latitude zone and a typical subtropical monsoon climate. It
boasts a forest cover of 76%, with dominant tree species being Masson pine and Chinese
fir. The topography is characterized by mountains, hills, and fault basins that traverse
the city, making it predominantly mountainous and hilly [25,26]. The study area has
a complex surface environment with frequent forest fires. Moreover, the presence of
mountain shadows adds to the complexity of burned area detection. Therefore, this area
was selected for our study. Within this study area, there were three specific fire events,
including the Yinkeng Farm fire, which occurred in Yudu County, Ganzhou City, on 4
January 2021; the Changmianling fire, which started on 14 January 2021 in Ganxian County,
Ganzhou City; and the Gooseback fire, which broke out on 15 January 2021 in Nankang
District, Ganzhou City.

The second study area is located in Okanogan County, Washington, USA. Its coor-
dinates range from approximately 51◦00′ to 52◦00′ N latitude and 120◦16′ to 123◦00′ W
longitude. This region experiences a temperate oceanic climate and features gently rolling
terrain, primarily consisting of broad mountain ranges and valleys. The state of Washington
has a forest coverage rate of 53%, with dominant tree species including spruce, pine, and
fir, along with a rich diversity of vascular plants [27,28]. To validate the applicability of
the ABAI in high-latitude areas, this region was selected as the study area. The wildfire
event within this study area occurred on 14 July 2014 in central Washington State, covering
an area of over 2800 hectares. Figure 1 illustrates the geographic locations where the two
study areas are located.
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2.2. CBI-Based ABAI Computation and Assessment

To test the effectiveness of the ABAI in assessing fire severity, evaluations were con-
ducted for both study areas using uni-temporal imagery data. Additionally, to assess the
sensitivity of the ABAI in evaluating fire severity, assessments were performed for both
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study areas using bi-temporal imagery data. Furthermore, to examine the universality
of the ABAI in assessing fire severity across different satellite sensors, experiments were
conducted using imagery data from two satellite sources: Sentinel-2 and Landsat 8.

The pre-processing of pre-fire and post-fire imagery data from Sentinel-2 and Landsat
8 OLI satellites was carried out using the SNAP software version 9.0.0 and the “SEN2COR”
plugin tools to facilitate the computation of spectral indices. In this study, 70% of the ground-
based composite burn index (CBI) data were randomly sampled for training samples.
Threshold regression models, including linear, quadratic, and cubic polynomial models,
were established to determine the relationship between the CBI and various spectral indices.
The accuracy of these models was assessed based on the coefficient of determination (R2)
and the root mean square error (RMSE). The best-performing model was selected for the
construction of fire severity thresholds. Subsequently, the remaining 30% of ground-based
CBI sampling data were used to generate a confusion matrix, including overall accuracy
and a kappa coefficient. To assess the accuracy and stability of the ABAI in fire severity
classification, experiments were repeated five times by randomly shuffling the data between
the training and validation sets. Figure 2 shows the technical framework of this paper.
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2.3. Data Collection and Processing
2.3.1. Remote Sensing Data

The remote sensing data used in this study originated from two types of sensors:
Sentinel-2 and Landsat 8 OLI. Each sensor type provided pre- and post-fire remote sensing
images of the study area. The Sentinel-2 satellite, provided by the European Space Agency
(ESA), was launched on 23 June 2015. It carries a Multispectral Imager (MSI) capable of
covering 13 spectral bands with spatial resolutions ranging from 10 to 60 m. These bands
include the visible, near-infrared (VNIR), and short-wave infrared (SWIR) spectral ranges.
For all the pre-and post-fire images, pre-processing was conducted using the “SEN2COR”
plugin tool that ESA provided, including radiometric calibration and atmospheric correc-
tion. Subsequently, the spatial resolution of all bands was resampled to 10 m using bilinear
interpolation in the SNAP software to facilitate further research.

The Landsat 8 satellite, operated by the United States Geological Survey (USGS),
was launched on 11 February 2013. It carries the Operational Land Imager (OLI) and the
Thermal Infrared Sensor (TIRS) and covers 9 spectral bands with a spatial resolution of 30 m.
These bands include those in the VNIR and SWIR spectral ranges. The Landsat 8 OLI data
used in this study were processed to the L1T (Level 1T) processing level, which includes
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geometric and terrain correction. As a result, the image data only required radiometric
calibration and atmospheric correction processing before further analysis.

The post-fire images for of the two study areas were selected as the closest images
after the CBI sampling time, while the pre-fire images for the city of Ganzhou, China, were
selected as the closest images to the time of the fire. The CBI data for Okanogan County,
USA, was sampled one year after the fire; so, to ensure that the study was for the same
season, imagery from one year before the sampling time was selected as pre-fire imagery.
The extent of the study area for all selected images was not covered by cloud cover. Table 1
shows all the remote sensing image information used in the study.

Table 1. Data parameters and sources.

Study Area Sensor Path/Row Cloud Cover Acquisition Date

Ganzhou

Sentinel-2A N0209, R132 0% 1 January 2021
Sentinel-2A N0209, R132 62.6% 21 January 2021
Sentinel-2B N0209, R032 0% 9 January 2021
Sentinel-2B N0209, R032 0.1% 19 January 2021

Landsat 8 OLI 121, 042 40.7% 27 December 2020
Landsat 8 OLI 122, 042 0.3% 18 February 2020
Landsat 8 OLI 121, 042 0% 12 January 2021
Landsat 8 OLI 122, 042 0% 19 January 2021

Okanogan

Landsat 8 OLI 045, 026 2.7% 15 July 2014
Landsat 8 OLI 045, 027 1.6% 15 July 2014
Landsat 8 OLI 045, 026 1.8% 2 July 2015
Landsat 8 OLI 045, 027 0.4% 2 July 2015

2.3.2. CBI Data

The three fire events in Ganzhou City, Jiangxi Province, China, all occurred in January
2021. Field surveys of the burned areas were carried out within one month after the fire
event by using the CBI field sampling method. During the field survey, sample plots
measuring 30 m × 30 m were used. These plots were distributed in areas that exhibited
varying topographic conditions and burn severity. Each plot was separated into four layers
based on their vertical heights: layer A symbolizes surface combustible material and soil
layers; layer B includes herbs, dwarf shrubs, and small trees (<1 m tall); layer C involves
tall shrubs and trees (>1.5 m tall); and layer D comprises the forest canopy (>5 m) [29–31].
Each layer had 4–5 variables, with visual estimates ranging from 0 to 3 and fire severity
ranging from low to high, classified as no burn, low burn severity, moderate burn severity,
or high burn severity. The CBI values for the entire plot were calculated by combining the
estimates of each layer.

The CBI formula for each layer is as follows:

CBIi = ∑n
j=1 Xij/n (1)

where CBIi is the composite burn index in stratum i; Xij is the severity-rating score of factor
j in stratum i; and n is the total number of factors in stratum i.

The CBI for each sample plot was calculated as follows:

CBI = ∑K
i=1CBIi/k (2)

where CBI is the composite burn index of the investigated plots, and k is the total number
of burned layers in the measured plots.

In January 2021, a total of 240 CBI data samples were collected in Ganzhou City, Jiangxi
Province, China. These samples were randomly divided into two groups: 70% of the CBI
data samples were used to construct the threshold regression model, while the remaining
30% were used to validate the accuracy of the classification results for various spectral
indices (Table 2). Fire severity was classified into four levels: unburned (CBI ≤ 0.25), low
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burn severity (0.25 < CBI ≤ 1.25), moderate burn severity (1.25 < CBI ≤ 2.25), and high
burn severity (CBI > 2.25) [32,33].

Table 2. Statistics of the composite burn index (CBI) of Ganzhou City, Jiangxi Province, China.

Severity Grade Class Boundary,
CBI

Number
(Train/Test) Minimum Maximum Mean Standard

Deviation

Unburned [0, 0.25] 40 (28/12) 0 0.24 0.01 0.04
Low [0.25, 1.25] 20 (14/6) 0.3 1.25 1.03 0.17

Moderate [1.25, 2.25] 90 (63/27) 1.26 2.25 1.82 0.29
High [2.25, 3] 90 (63/27) 2.27 3 2.59 0.20

The wildfire in Okanogan County, Washington, occurred in July 2014. CBI sampling
data and burned area data for this region were sourced from the United States Geological
Survey (USGS), and CBI sampling occurred from May through June 2015. A total of 257 CBI
sampling data points were provided, and similar to the previous study area, these were
divided into two groups: 70% of the CBI data samples were used to build the threshold
regression model, and the remaining 30% were used for validating the accuracy of the
classification results for various spectral indices (Table 3). More detailed information on
the CBI data can be found on the website https://www.sciencebase.gov/catalog/item/
5d963705e4b0c4f70d110ee6, accessed on 10 June 2023. Figure 3 illustrates the location of
CBI sampling sites in each study area.

Table 3. Statistics of the composite burn index (CBI) of Okanogan County, Washington, USA.

Severity Grade Class Boundary,
CBI

Number
(Train/Test) Minimum Maximum Mean Standard

Deviation

Unburned [0, 0.25] 45 (32/13) 0 0.24 0.02 0.06
Low [0.25, 1.25] 99 (69/30) 0.27 1.23 0.79 0.25

Moderate [1.25, 2.25] 54 (38/16) 1.3 2.21 1.72 0.30
High [2.25, 3] 59 (41/18) 2.3 2.9 2.60 0.20
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Figure 3. Location of CBI sampling sites in each study area. (a) Yinkeng Farm fire in Yudu County,
Ganzhou City. (b) Qipanqiu Changmianling fire in Ganxian County, Ganzhou City. (c) Gooseback
fire in Nankang District, Ganzhou City. (d) Okanogan County, Washington, USA.

2.4. Spectral Indices and Accuracy Assessment

In the SPSS software (version 27.0), linear, quadratic, and cubic polynomial models
(Equations (3)–(5)) were employed to analyze the relationship between the CBI (inde-
pendent variable) and various spectral indices (dependent variables). The coefficient of
determination (R2) and the root mean square error (RMSE) were used to evaluate the fitting

https://www.sciencebase.gov/catalog/item/5d963705e4b0c4f70d110ee6
https://www.sciencebase.gov/catalog/item/5d963705e4b0c4f70d110ee6
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capacity of the models on both the training and validation datasets. Table 4 lists the ten
spectral indices used for assessing fire severity.

Linear model: y = a(x) + b (3)

Quadratic polynomial model: y = a(x)2 + b(x) + c (4)

Cubic polynomial model: y = a(x)3 + b(x)2 + c(x) + d (5)

Table 4. Spectral indices are used to evaluate burn severity.

Spectral Index Computational Formula Reference

Analytical Burned Area Index (ABAI) 3*SWIR2 − 2*SWIR1 − 3*GREEN
3*SWIR2 + 2*SWIR1 + 3*GREEN [24]

Differenced Analytical Burned Area Index (dABAI) ABAIpre − ABAIpost [24]

Normalized Burn Ratio (NBR) NIR − SWIR2
NIR + SWIR2 [23]

Differenced Normalized Burn Ratio (dNBR) NBRpre − NBRpost [29]

Normalized Difference Vegetation Index (NDVI) NIR − RED
NIR + RED [34]

Differenced Normalized Difference Vegetation Index (dNDVI) NDVIpre − NDVIpost [34]

Soil-Adjusted Vegetation Index (SAVI) (1 + L)* NIR − RED
NIR + RED + L , where L = 0.5 [35]

Differenced Soil-Adjusted Vegetation Index (dSAVI) SAVIpre − SAVIpost [35]

Mid-Infrared Bi-Spectral Index (MIRBI) 10*SWIR2 − 9.8*SWIR1 + 2 [36]

Differenced Mid-Infrared Bi-Spectral Index (dMIRBI) MIRBIpre − MIRBIpost [36]

Burned Area Index (BAI) 1
(0.1 − RED )2 + (0.06 − NIR )2 [21]

Differenced Burned Area Index (dBAI) BAIpre − BAIpost [21]

Char Soil Index (CSI) NIR
SWIR2 [22]

Differenced Char Soil Index (dCSI) CSIpre − CSIpost [22]

In the formulas, the independent variable (x) represents the CBI value, and the
dependent variable (y) corresponds to the spectral index values of the respective CBI
sampling points.

This study employed a confusion matrix and the metrics derived from it to evaluate
the accuracy of various spectral indices in recognizing fire severity. The confusion matrix
depicts the correspondence between the classification results of the spectral indices and
the actual ground conditions. The assessment accuracy of each spectral index classification
image is measured using the following metrics: Producer Accuracy (PA): PA represents
the proportion of actual burned areas that are correctly classified as such by the spectral
index. It measures the ability of the spectral index to accurately identify the true extent of
burned areas. User Accuracy (UA): UA represents the proportion of burned areas correctly
classified by the spectral index out of all the areas classified as burned. It measures the
effectiveness of the spectral index in correctly identifying burned areas without many false
positives. Overall accuracy (OA): OA is a metric that indicates the overall correctness of
the spectral index in classifying fire severity. It provides a general measure of the spectral
index’s accuracy in classifying different fire severity levels. Kappa coefficient (kappa):
The kappa coefficient is a statistical measure that takes into account the possibility of
correct classification occurring by chance. It quantifies the level of agreement between the
classification results of the spectral index and the actual conditions, providing a more robust
assessment of classification performance. These metrics are commonly used for assessing
the accuracy of classification results and are crucial for evaluating the performance of
spectral indices in identifying different fire severity levels [37,38].
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3. Results
3.1. Validation of the ABAI for Fire Severity Detection

To validate the effectiveness of the ABAI in assessing fire severity, the study area
was assessed using Sentinel-2 remote sensing imagery data from Ganzhou City, Jiangxi
Province, China. In the SPSS software, CBI sampling points for the two study areas were
fitted to various spectral indices (as shown in Figure 4). The best-fitting model was selected
to construct fire severity thresholds based on the R2 and RMSE of each model’s fitting
results. Table 5 presents the fitting results for the three regression models.
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Table 5. Results of independent validation using the observed CBI and different burn severity indices
in Ganzhou City, Jiangxi Province, China.

Model Spectral
Indices Linear R2 RMSE Quadratic

Polynomial R2 RMSE Cubic
Polynomial R2 RMSE

NBR 0.664 0.842 0.665 0.839 0.667 0.837
NDVI 0.642 0.921 0.645 0.916 0.645 0.914
SAVI 0.453 1.581 0.455 1.578 0.463 1.572

MIRBI 0.441 12.874 0.443 12.865 0.447 12.852
BAI 0.230 15.283 0.232 15.280 0.233 15.272
CSI 0.625 0.913 0.628 0.910 0.629 0.905

ABAI 0.658 0.782 0.662 0.779 0.664 0.778

dNBR 0.735 0.586 0.736 0.574 0.737 0.568
dNDVI 0.713 0.663 0.715 0.659 0.721 0.653
dSAVI 0.474 1.468 0.477 1.464 0.478 1.462

dMIRBI 0.290 12.765 0.293 12.748 0.299 12.741
dBAI 0.233 14.090 0.237 13.876 0.240 13.854
dCSI 0.407 2.037 0.409 1.987 0.410 1.985

dABAI 0.728 0.448 0.731 0.433 0.733 0.432
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By comparing the R-squared (R2) and root mean square error (RMSE) of the regression
models, we found that the three models had similar fitting results for the regression
relationship between spectral indices and fire severity in Ganzhou City, Jiangxi Province,
China. Ultimately, the linear model was selected to establish the threshold for fire severity.
Table 6 presents the fire severity thresholds for various spectral indices, and Figures 5 and 6
illustrate fire severity maps for various spectral indices in the study area using Sentinel-2
uni-temporal and bi-temporal imagery data.

Table 6. Fire severity thresholds for each spectral index in Ganzhou City, Jiangxi Province, China.

Spectral Indices
Severity Grade

Unburned Low Moderate High

NBR >0.425 0.263~0.425 0.102~0.263 <0.102
NDVI >0.593 0.451~0.593 0.310~0.451 <0.310
SAVI >0.888 0.681~0.888 0.475~0.681 <0.475

MIRBI <−5.573 −5.573~−3.747 −3.747~−1.921 >−1.921
BAI <0.360 0.360~0.825 0.825~1.289 >1.289
CSI >2.654 1.951~2.654 1.249~1.951 <1.249

ABAI <−0.294 −0.294~−0.230 −0.230~−0.167 >−0.167

dNBR <0.134 0.134~0.287 0.287~0.439 >0.439
dNDVI <0.120 0.120~0.249 0.249~0.378 >0.378
dSAVI <0.183 0.183~0.381 0.381~0.579 >0.579

dMIRBI >−1.073 −2.624~−1.073 −4.175~−2.624 <−4.175
dBAI >−0.167 −0.614~−0.167 −1.061~−0.614 <−1.061
dCSI <0.908 0.908~1.546 1.546~2.183 >2.183

dABAI >−0.049 −0.111~−0.049 −0.174~−0.111 <−0.174
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Figure 6. Sentinel-2 vi-temporal image for mapping the severity of burns in Ganzhou City, Jiangxi
Province, China.

Table 7 provides confusion matrices for the fire severity classification results from the
seven spectral indices based on Sentinel-2 imagery data. The values in the confusion matrix
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represent the evaluation metrics’ mean and variance over five repetitions of the experiment.
From the results in the confusion matrix, the ABAI shows high overall accuracy and kappa
coefficient values, ranking first among all spectral indices. Compared with the NBR, the
ABAI exhibits a significant advantage in classifying unburned and highly burned severity
levels. According to the PA and UA of the ABAI for low and medium fire severity, it can be
seen that the main factor affecting the overall accuracy of the ABAI is confusion between
low and medium fire severity, which is the same as that of the NBR. The dABAI also has the
same problem, although the overall accuracy is improved compared with that of the ABAI;
the main factor affecting the overall accuracy is still confusion between low and medium
fire severity. Additionally, when comparing the classification accuracy of fire severity for
various spectral indices, it is evident that the ABAI maintains good stability throughout the
repeated experiments, with most accuracy evaluation metrics showing minimal variance.
This indicates that the ABAI can effectively assess fire severity using Sentinel-2 imagery
and offers better classification accuracy and stability compared with other spectral indices.

3.2. Assessment of the Impacts of Different Sensors

To further investigate the impacts of sensors on the classification accuracy of fire
severity using the ABAI, assessments were carried out using Landsat 8 OLI data for
Ganzhou City, Jiangxi Province, China. Similar to the previous approach, CBI sampling
points were fitted to various spectral indices, as shown in Figure 7. The best-fitting model
was selected based on the R2 and RMSE of each model’s fitting results, and Table 8 provides
fitting results for the three regression models.
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Table 7. Confusion matrix and accuracy assessment of burn severity derived from Ganzhou City, Jiangxi Province, China (Note that values with the highest accuracy
are highlighted in bold).

Severity Grade
Burn Index

NBR NDVI SAVI MIRBI BAI CSI ABAI

Producer
Accuracy (%)

Unburned 88.34 ± 12.64 70.00 ± 9.50 83.33 ± 10.21 80.00 ± 12.64 86.37 ± 6.43 86.37 ± 6.43 90.00 ± 6.97
Low 53.33 ± 7.46 20.00 ± 13.94 46.67 ± 21.73 6.67 ± 9.13 50.00 ± 23.57 50.00 ± 23.58 46.67 ± 13.95

Moderate 37.04 ± 13.61 30.37 ± 4.83 34.07 ± 11.54 48.15 ± 6.93 19.23 ± 5.44 42.31 ± 16.32 39.26 ± 10.00
High 55.35 ± 14.92 60.60 ± 6.98 51.11 ± 6.09 54.07 ± 8.53 38.00 ± 2.83 46.00 ± 8.49 56.13 ± 4.95

User
Accuracy (%)

Unburned 80.34 ± 13.42 62.82 ± 14.27 82.44 ± 6.45 80.24 ± 10.36 57.57 ± 6.98 76.19 ± 33.67 81.57 ± 11.20
Low 32.89 ± 8.54 12.80 ± 9.51 17.81 ± 8.43 4.40 ± 6.46 14.36 ± 5.41 24.29 ± 6.06 29.14 ± 19.05

Moderate 46.76 ± 7.70 46.08 ± 5.71 41.91 ± 8.99 49.71 ± 6.80 41.26 ± 6.92 54.91 ± 9.38 49.90 ± 3.80
High 56.63 ± 6.26 55.87 ± 5.74 63.65 ± 11.93 59.13 ± 6.59 53.13 ± 4.42 63.98 ± 10.54 62.62 ± 13.67

Overall Accuracy (%) 53.78 ± 2.64 47.33 ± 3.56 49.72 ± 3.86 52.22 ± 4.87 40.45 ± 1.04 52.21 ± 5.20 54.62 ± 2.13

Kappa Coefficient 0.35 ± 0.02 0.26 ± 0.04 0.31 ± 0.06 0.31 ± 0.07 0.23 ± 0.01 0.35 ± 0.01 0.37 ± 0.02

dNBR dNDVI dSAVI dMIRBI dBAI dCSI dABAI

Producer
Accuracy (%)

Unburned 91.67 ± 11.79 80.00 ± 12.64 100.00 ± 0.00 85.00 ± 6.97 95.46 ± 6.43 90.91 ± 0.00 90.00 ± 10.87
Low 66.67 ± 27.39 50.00 ± 11.79 33.33 ± 16.67 36.67 ± 18.26 58.34 ± 11.79 25.00 ± 35.36 63.33 ± 16.67

Moderate 40.74 ± 10.14 40.74 ± 11.71 38.52 ± 8.53 24.44 ± 6.20 36.49 ± 13.67 21.15 ± 8.16 45.19 ± 7.59
High 55.30 ± 8.31 53.02 ± 12.94 50.37 ± 10.67 48.89 ± 12.67 54.00 ± 8.49 56.00 ± 5.66 59.03 ± 7.70

User
Accuracy (%)

Unburned 82.25 ± 9.37 83.32 ± 6.54 68.33 ± 8.98 48.36 ± 4.28 74.02 ± 13.17 48.06 ± 6.47 84.84 ± 6.07
Low 30.91 ± 11.31 25.35 ± 15.05 20.91 ± 14.09 15.40 ± 6.85 32.90 ± 24.19 25.00 ± 35.36 35.21 ± 12.12

Moderate 53.19 ± 3.16 49.29 ± 3.89 49.61 ± 3.98 43.92 ± 8.89 54.17 ± 5.89 49.15 ± 6.65 56.20 ± 6.39
High 61.12 ± 5.26 62.32 ± 9.80 62.77 ± 4.21 60.16 ± 9.45 61.25 ± 1.77 49.08 ± 1.31 64.50 ± 5.75

Overall Accuracy (%) 56.58 ± 1.62 52.65 ± 3.82 52.78 ± 4.05 44.72 ± 4.10 54.41 ± 8.32 45.59 ± 2.08 59.66 ± 2.07

Kappa Coefficient 0.40 ± 0.02 0.34 ± 0.05 0.35 ± 0.05 0.26 ± 0.05 0.38 ± 0.08 0.25 ± 0.03 0.43 ± 0.03
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Table 8. Results of independent validation using the observed CBI and different burn severity indices
in Ganzhou City, Jiangxi Province, China.

Model Spectral
Indices Linear R2 RMSE Quadratic

Polynomial R2 RMSE Cubic
Polynomial R2 RMSE

NBR 0.489 0.856 0.490 0.854 0.492 0.854
NDVI 0.485 1.070 0.486 1.069 0.489 1.068
SAVI 0.435 1.755 0.438 1.754 0.439 1.754

MIRBI 0.405 12.369 0.408 12.363 0.410 12.359
BAI 0.120 10.658 0.120 10.651 0.122 10.586
CSI 0.524 1.267 0.526 1.263 0.526 1.261

ABAI 0.487 0.733 0.489 0.730 0.490 0.729

dNBR 0.497 0.737 0.498 0.735 0.499 0.732
dNDVI 0.492 0.953 0.493 0.951 0.494 0.950
dSAVI 0.442 1.773 0.444 1.772 0.445 1.768

dMIRBI 0.326 12.703 0.328 12.701 0.329 12.665
dBAI 0.150 15.763 0.150 15.747 0.156 15.744
dCSI 0.365 9.879 0.367 9.872 0.369 9.865

dABAI 0.493 0.716 0.495 0.714 0.496 0.713

Consistent with the results from the Sentinel-2 imagery experiment, the linear model
was selected to construct fire severity thresholds based on the model’s outcomes. Table 9
provides the fire severity thresholds for various spectral indices, and Figures 8 and 9
depict fire severity maps for various spectral indices in the study area using Landsat 8 OLI
uni-temporal and bi-temporal imagery data.
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Figure 8. Landsat 8 OLI uni-temporal image for mapping the severity of burns in Ganzhou City,
Jiangxi Province, China.
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Table 9. Fire severity thresholds for each spectral index in Ganzhou City, Jiangxi Province, China.

Spectral Indices
Severity Grade

Unburned Low Moderate High

NBR >0.474 0.318~0.474 0.161~0.318 <0.161
NDVI >0.618 0.483~0.618 0.348~0.483 <0.348
SAVI >0.927 0.724~0.927 0.522~0.724 <0.522

MIRBI <−5.171 −5.171~−3.630 −3.630~−2.089 >−2.089
BAI <0.436 0.436~0.806 0.806~1.176 >1.176
CSI >3.041 2.279~3.041 1.484~2.279 <1.484

ABAI <−0.307 −0.307~−0.247 −0.247~−0.187 >−0.187

dNBR <0.114 0.114~0.260 0.260~0.405 >0.405
dNDVI <0.067 0.067~0.182 0.182~0.297 >0.297
dSAVI <0.100 0.100~0.273 0.273~0.445 >0.445

dMIRBI >−1.364 −2.882~−1.364 −4.399~−2.882 <−4.399
dBAI >−0.193 −0.592~−0.193 −0.991~−0.592 <−0.991
dCSI <0.978 0.978~1.644 1.644~2.310 >2.310

dABAI >−0.078 −0.139~−0.078 −0.200~−0.139 <−0.200

Table 10 presents a confusion matrix for the fire severity classification results using
Landsat 8 OLI data from Ganzhou City, Jiangxi Province, China. Comparing the results
from the confusion matrix with the Sentinel-2 experiment, although the ABAI exhibits
a slight decrease in overall accuracy and kappa coefficient for uni-temporal fire severity
classification, it still maintains the highest accuracy among the spectral indices and remains
stable. Furthermore, most accuracy metrics are higher than those for other spectral indices.
Regarding the fire severity classification results using bi-temporal data, the dABAI’s overall
accuracy and kappa coefficient rank second, slightly lower than the dNBR. However, it
still demonstrates significant advantages and stability in classifying unburned and highly
burned areas. This suggests that the ABAI also performs well in assessing fire severity
using Landsat 8 satellite data, with good classification accuracy and stability. It exhibits a
significant advantage in assessing fire severity in areas with complex terrain and mountain
shadow zones. In addition, a comparison of the PA and UA for each fire severity level
of the ABAI shows that, unlike the use of Sentinel-2 data, the main reason for the overall
accuracy of the ABAI being affected by the use of Landsat 8 data is the misclassification of
unburned fire severity versus low fire severity. In the case of the dABAI, as with the use of
Sentinel-2 data, the main reason for the overall accuracy is still the misclassification of low
and moderate fire severity.

3.3. Assessment of Impacts on Different Regions

To assess the potential of the ABAI to evaluate fire severity in different regions, the
study area in Okanogan, Washington, USA, was evaluated using Landsat 8 OLI data,
similar to the experiments described above. In the SPSS software, the CBI sampling points
for the two study areas were fitted to various spectral indices (as shown in Figure 10). The
best-fitting model was selected for constructing the fire severity thresholds based on the R2

and RMSE of each model’s fitting results. Table 11 presents the fitting results for the three
regression models.
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Table 10. Confusion matrix and accuracy assessment of burn severity derived from using Landsat 8 images of Ganzhou City, Jiangxi Province, China. (Note that
values with the highest accuracy are highlighted in bold.)

Severity Grade
Burn Index

NBR NDVI SAVI MIRBI BAI CSI ABAI

Producer
Accuracy (%)

Unburned 90.91 ± 9.09 87.27 ± 13.79 83.64 ± 14.94 76.37 ± 13.79 96.97 ± 5.25 78.79 ± 10.50 85.46 ± 8.13
Low 20.00 ± 7.45 43.33 ± 9.13 36.67 ± 13.94 33.33 ± 11.78 22.22 ± 9.62 27.78 ± 9.62 16.67 ± 11.78

Moderate 31.75 ± 6.14 15.51 ± 4.72 20.92 ± 8.83 27.97 ± 10.91 7.85 ± 4.08 34.05 ± 19.01 35.63 ± 6.12
High 57.60 ± 6.07 57.60 ± 6.69 57.60 ± 8.29 57.60 ± 6.07 40.56 ± 10.43 61.66 ± 13.71 59.20 ± 5.22

User
Accuracy (%)

Unburned 67.69 ± 15.86 54.65 ± 2.65 51.54 ± 6.95 59.03 ± 18.53 46.71 ± 7.89 59.15 ± 20.94 61.14 ± 11.51
Low 13.54 ± 5.87 22.69 ± 9.20 22.55 ± 10.61 18.58 ± 0.37 6.01 ± 1.08 30.00 ± 8.66 10.79 ± 7.23

Moderate 53.79 ± 6.81 51.00 ± 16.75 54.09 ± 16.63 51.61 ± 8.86 31.39 ± 12.81 60.54 ± 10.62 58.70 ± 6.92
High 52.93 ± 3.73 48.04 ± ±5.18 49.17 ± 6.29 50.46 ± 6.12 50.42 ± 12.54 51.67 ± 2.89 53.72 ± 3.81

Overall Accuracy (%) 49.86 ± 2.88 45.75 ± 2.10 46.64 ± 3.20 47.22 ± 5.02 35.53 ± 2.86 47.47 ± 1.75 50.75 ± 2.86

Kappa coefficient 0.30 ± 0.03 0.25 ± 0.04 0.26 ± 0.05 0.26 ± 0.06 0.17 ± 0.04 0.30 ± 0.02 0.31 ± 0.05

dNBR dNDVI dSAVI dMIRBI dBAI dCSI dABAI

Producer
Accuracy (%)

Unburned 87.27 ± 8.13 94.55 ± 4.98 89.09 ± 7.61 69.09 ± 15.21 96.97 ± 5.25 84.85 ± 10.50 90.91 ± 6.43
Low 50.00 ± 16.67 40.00 ± 9.13 40.00 ± 14.91 30.00 ± 21.73 33.33 ± 9.62 38.89 ± 9.62 40.00 ± 14.91

Moderate 38.00 ± 8.83 33.39 ± 6.78 36.68 ± 18.63 23.38 ± 11.75 15.59 ± 3.86 33.80 ± 9.80 31.84 ± 5.57
High 60.00 ± 5.66 55.20 ± 9.55 55.20 ± 6.57 52.80 ± 4.38 42.02 ± 16.75 59.97 ± 8.90 62.40 ± 3.58

User
Accuracy (%)

Unburned 82.73 ± 5.95 81.59 ± 7.73 79.22 ± 14.66 52.39 ± 15.31 60.27 ± 4.91 51.75 ± 4.32 82.05 ± 6.55
Low 25.32 ± 8.78 22.61 ± 6.09 22.14 ± 7.23 17.58 ± 7.97 9.68 ± 0.28 27.86 ± 2.58 19.92 ± 9.30

Moderate 56.56 ± 4.06 49.35 ± 12.49 51.14 ± 9.60 38.83 ± 13.02 44.29 ± 5.15 68.22 ± 1.36 54.94 ± 9.17
High 56.03 ± 4.61 52.73 ± 4.22 54.50 ± 5.94 47.77 ± 5.26 52.62 ± 12.94 52.17 ± 3.76 55.80 ± 4.28

Overall Accuracy (%) 55.18 ± 4.73 51.93 ± 3.62 52.24 ± 5.11 42.21 ± 6.86 40.53 ± 4.46 51.97 ± 3.10 53.42 ± 5.62

Kappa Coefficient 0.37 ± 0.06 0.33 ± 0.05 0.33 ± 0.06 0.21 ± 0.10 0.24 ± 0.06 0.33 ± 0.04 0.35 ± 0.08
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Table 11. Results of independent validation using the observed CBI and different burn severity
indices in Okanogan County, Washington, USA.

Model Spectral
Indices Linear R2 RMSE Quadratic

Polynomial R2 RMSE Cubic
Polynomial R2 RMSE

NBR 0.522 2.043 0.548 1.480 0.552 1.213
NDVI 0.466 1.409 0.491 1.023 0.491 0.835
SAVI 0.564 2.134 0.565 1.512 0.568 1.237

MIRBI 0.488 14.181 0.533 10.475 0.569 8.839
BAI 0.118 3.869 0.155 3.594 0.181 3.421
CSI 0.335 6.450 0.335 4.561 0.335 3.725

ABAI 0.519 0.796 0.539 0.574 0.556 0.476

dNBR 0.537 2.120 0.605 1.591 0.605 1.299
dNDVI 0.485 1.463 0.552 1.104 0.559 0.907
dSAVI 0.520 2.067 0.550 1.503 0.550 1.227

dMIRBI 0.244 12.621 0.247 8.987 0.271 7.675
dBAI 0.126 3.732 0.168 3.511 0.187 3.190
dCSI 0.328 6.948 0.360 5.387 0.370 4.520

dABAI 0.494 0.835 0.554 0.625 0.559 0.513

Based on the R2 and RMSE of the fitting results for each regression model, the cubic
polynomial model was selected for Okanogan County, Washington. Table 12 provides the
fire severity thresholds for various spectral indices, and Figures 11 and 12 depict fire severity
maps for various spectral indices in the study area using Landsat 8 OLI uni-temporal and
bi-temporal imagery data.
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Table 12. Fire severity thresholds for each spectral index in Okanogan County, Washington, USA.

Spectral Indices
Severity Grade

Unburned Low Moderate High

NBR >0.316 0.207~0.316 0.026~0.207 <0.026
NDVI >0.590 0.514~0.590 0.378~0.514 <0.378
SAVI >0.914 0.780~0.914 0.622~0.780 <0.622

MIRBI <−5.573 −5.573~−3.747 −3.747~−1.921 >−1.921
BAI >1.196 0.701~1.196 0.496~0.701 <0.496
CSI >2.070 1.594~2.070 1.183~1.594 <1.183

ABAI <−0.294 −0.294~−0.230 −0.230~−0.167 >−0.167

dNBR <0.176 0.176~0.257 0.257~0.487 >0.487
dNDVI <0.057 0.057~0.116 0.116~0.296 >0.296
dSAVI <0.071 0.071~0.173 0.173~0.410 >0.410

dMIRBI >−2.696 −3.217~−2.696 −4.095~−3.217 <−4.095
dBAI <−1.047 −1.047~−0.561 −0.561~−0.356 >−0.356
dCSI <1.234 1.234~1.444 1.444~2.333 >2.333

dABAI >−0.110 −0.141~−0.110 −0.220~−0.141 <−0.220
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Table 13 presents a confusion matrix for the classification results for fire severity using
Landsat 8 OLI data for seven spectral indices. Based on the results from the confusion
matrix, the ABAI spectral index continues to exhibit high overall accuracy and kappa
coefficients, ranking among the top two indices. Compared with the NBR, it maintains a
significant advantage in the classification of unburned and highly burned areas. Addition-
ally, when comparing the classification accuracy of fire severity for different spectral indices,
it is obvious that the ABAI exhibits good stability across repeated experiments, with most
accuracy evaluation metrics displaying minimal variance. This suggests that, compared
with other spectral indices, the ABAI remains effective in assessing fire severity at high
latitudes and maintains good sensitivity in evaluating fire severity. In addition to this, by
comparing the PA and UA for each fire severity class of the ABAI in the high-latitude study
area, it can be seen that, similar to the results for the low-latitude study area, the main factor
affecting the overall accuracy of the ABAI is still the misclassification of unburned fire
severity versus low fire severity. In contrast, the main factor affecting the overall accuracy
of the dABAI is the misclassification of unburned fire severity versus low fire severity and
low and moderate fire severity.

Table 13. Confusion matrix and accuracy assessment of burn severity derived using Landsat 8 images
of Okanogan County, Washington, USA. (Note that values with the highest accuracy are highlighted
in bold.)

Severity Grade
Burn Index

NBR NDVI SAVI MIRBI BAI CSI ABAI

Producer
Accuracy (%)

Unburned 83.08 ± 10.03 83.08 ± 10.03 44.62 ± 23.33 44.62 ± 19.15 10.25 ± 4.44 38.46 ± 7.69 83.08 ± 10.03
Low 33.33 ± 15.63 30.67 ± 13.62 40.67 ± 8.94 14.67 ± 9.60 3.45 ± 3.45 24.14 ± 9.12 34.00 ± 9.54

Moderate 42.50 ± 5.23 28.75 ± 9.48 33.75 ± 13.69 37.50 ± 8.84 0.00 ± 0.00 43.75 ± 3.61 28.75 ± 9.48
High 84.44 ± 4.65 80.00 ± 3.04 97.65 ± 5.26 89.41 ± 10.52 90.74 ± 8.49 81.48 ± 6.41 87.78 ± 4.65

User
Accuracy (%)

Unburned 52.82 ± 11.22 42.65 ± 2.00 42.86 ± 7.45 31.25 ± 5.04 35.32 ± 27.67 42.85 ± 17.16 56.99 ± 4.96
Low 60.59 ± 17.98 60.13 ± 11.35 71.17 ± 3.11 54.58 ± 35.66 17.67 ± 16.62 58.25 ± 5.56 54.08 ± 1.38

Moderate 43.86 ± 10.08 30.73 ± 8.97 42.62 ± 5.17 22.62 ± 3.37 0.00 ± 0.00 27.64 ± 0.62 28.65 ± 6.42
High 65.50 ± 10.69 66.15 ± 2.40 53.84 ± 12.76 62.48 ± 6.26 24.47 ± 0.79 56.71 ± 5.87 69.42 ± 4.32

Overall Accuracy (%) 55.59 ± 3.94 50.65 ± 5.35 52.63 ± 3.84 41.32 ± 2.73 24.56 ± 2.01 44.30 ± 1.52 53.77 ± 1.48

Kappa coefficient 0.41 ± 0.04 0.35 ± 0.06 0.37 ± 0.06 0.24 ± 0.03 0.02 ± 0.02 0.27 ± 0.02 0.39 ± 0.01

dNBR dNDVI dSAVI dMIRBI dBAI dCSI dABAI

Producer
Accuracy (%)

Unburned 87.69 ± 6.88 70.77 ± 11.41 52.11 ± 10.19 63.08 ± 12.64 10.25 ± 4.44 61.54 ± 0.00 86.16 ± 10.03
Low 39.33 ± 10.90 31.33 ± 8.03 34.67 ± 6.91 14.00 ± 4.94 2.30 ± 1.99 9.22 ± 5.22 30.67 ± 14.61

Moderate 53.75 ± 11.35 50.00 ± 13.26 33.75 ± 10.46 6.25 ± 4.42 4.17 ± 3.61 16.67 ± 7.22 43.75 ± 11.69
High 62.22 ± 9.94 64.45 ± 12.79 72.94 ± 7.89 94.12 ± 5.88 85.18 ± 13.98 51.85 ± 21.03 72.22 ± 7.86

User
Accuracy (%)

Unburned 48.92 ± 7.30 36.26 ± 3.09 33.18 ± 2.45 30.59 ± 3.34 33.06 ± 29.35 22.26 ± 1.05 47.54 ± 4.25
Low 78.46 ± 5.62 59.33 ± 9.25 71.81 ± 6.09 67.26 ± 19.33 50.00 ± 30.83 44.44 ± 9.62 70.63 ± 2.56

Moderate 39.19 ± 4.58 42.80 ± 6.91 38.02 ± 11.73 10.58 ± 6.59 13.33 ± 11.55 21.35 ± 3.20 32.40 ± 4.54
High 69.32 ± 5.73 69.87 ± 8.36 51.35 ± 9.45 51.13 ± 9.75 23.61 ± 1.67 43.47 ± 3.95 69.15 ± 5.34

Overall Accuracy (%) 55.84 ± 3.79 49.61 ± 1.09 46.05 ± 6.03 38.68 ± 2.73 23.68 ± 3.95 29.82 ± 2.01 52.47 ± 3.39

Kappa Coefficient 0.42 ± 0.05 0.34 ± 0.02 0.29 ± 0.08 0.22 ± 0.04 0.04 ± 0.02 0.11 ± 0.03 0.38 ± 0.04

4. Discussion

In this study, based on Sentinel-2 and Landsat 8 OLI satellite data, combined with the
CBI dataset, the ability of the ABAI and the six other spectral indices to assess fire severity
in different regions was evaluated. According to the results of the fire severity assessment of
Ganzhou City, Jiangxi Province, China, it was found that the ABAI consistently achieved the
highest classification accuracy and stability in most cases when assessing fire severity using
both uni-temporal and bi-temporal imagery from the Sentinel-2 satellite. This indicates
that the ABAI is an effective method for assessing fire severity. In the fire experiment
conducted in Washington State, USA, using Landsat 8 OLI satellite data, the ABAI’s overall
accuracy was very close to that of the Normalized Burn Ratio (NBR) in both uni-temporal
and bi-temporal data and ranked second among all the spectral indices. This difference
may be attributed to the varying central wavelengths of the bands for different satellite
sensors [39,40]. For example, the SWIR2 band of Landsat 8 covers a wavelength window
of 2107–2294 nm, whereas Sentinel-2 has a wavelength of 2202.4 nm; the SWIR1 band
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of Landsat 8 covers a wavelength window of 1560–1660 nm, whereas Sentinel-2 has a
wavelength of 1613.7 nm; and the green band of Landsat 8 covers a wavelength window of
525–600 nm, whereas Sentinel-2 has a wavelength of 559.8 nm. The ABAI was specifically
designed using Sentinel-2 satellite data [24], which allows it to perform better in assessing
fire severity when applied to Sentinel-2 imagery, as observed in this study.

Comparing the experimental results based on Landsat 8 OLI satellite data in Ganzhou
City, Jiangxi Province, China, it was observed that the ABAI still achieved the highest
classification accuracy in the uni-temporal classification results and had slightly lower
accuracy than the dNBR in the bi-temporal classification results. This indicates that the
ABAI also performs well in assessing fire severity using Landsat 8 OLI data. Apart from
the influence of satellite sensors, fire scar areas are often subject to confusion with cloud
cover, water bodies, terrain shadows, and other background noise, especially in complex
environments [41–43]. Current research suggests that the ABAI demonstrates good resis-
tance to interference when identifying fire scar areas in the presence of terrain shadows,
cloud cover, water bodies, and other land cover types. Therefore, in fire-prone areas with
complex terrain and shadow interference, the ABAI has a significant advantage in assessing
fire severity.

Furthermore, based on the accuracy assessment confusion matrices for each experi-
ment, it was found that, in most cases, the ABAI achieves the highest accuracy in classifying
unburned and highly burned severity levels, but its accuracy is lower for low and moderate
burn severity levels compared with other spectral indices. This is because, during the
development of ABAI, a multi-objective optimization approach was used to enhance the
discrimination between burned areas and other land cover types [44]. However, at that
time, the classification of low and moderate burn severity levels was not considered, and
this aspect will be improved in future research.

Certainly, our current work is preliminary, and there is much work to be done in the
future. First, we have only validated the effectiveness of the ABAI in assessing fire severity
using Sentinel-2 and Landsat 8 OLI satellite data; the application of other satellite sensors
like MODIS, ETM+, and GF-1 has not been tested yet. Second, the ABAI has only conducted
fire severity assessments in a relatively small area, discussing only cases in China and the
United States. New issues may arise in other vegetation conditions, e.g., Australia and
Africa. Its potential to assess fire severity in different climates and terrains needs further
research. Additionally, since the ABAI is similar to other fire indices, it would be interesting
to study its sensitivity in monitoring post-fire vegetation recovery trends, and this will be
the subject of future research.

5. Conclusions

The results of the experiments conducted in different scenarios and study areas suggest
the following: (1) The ABAI has a significant advantage in terms of accuracy and stability in
assessing fire severity compared with other remote sensing indices like the NBR, the NDVI,
and the MIRBI, especially in areas with significant topographic shadows. (2) When using
uni-temporal remote sensing data, the ABAI index shows certain advantages in assessing
forest fire severity, particularly in heavily burned areas, and it performed almost as well as
the dNBR in bi-temporal remotely sensed data. (3) The ABAI performs superiorly with
both Sentinel-2 and Landsat 8 OLI data, indicating that the ABAI we constructed is versatile
and can be applied to different sensor image data.

Given the results of fire severity assessments across different scenarios and sensors,
we conclude that the ABAI is a relatively effective remote sensing index for fire burn
severity assessment with the potential to replace or complement existing remote sensing
burn indices. However, despite the extensive validation this model has received, as a newly
developed remote sensing index, its application effectiveness and scope require further
rigorous and large-scale validation.



Fire 2024, 7, 19 19 of 21

Author Contributions: Conceptualization, B.W.; methodology, B.W.; investigation, R.G. and B.W.;
software, R.G.; resources, B.W.; writing—original draft preparation, R.G.; writing—review and
editing, R.G., J.Y. and H.Z.; visualization, R.G.; supervision, B.W.; funding acquisition, B.W. All
authors have read and agreed to the published version of the manuscript.

Funding: This work was funded by the Natural Science Foundation of China, grant number 42371419
and 41961055. This research was funded by the National Key R&D Program “Research on for-
est and grassland fire early warning and prevention technology and key equipment” (Project No.
2018YFE0207800).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The Sentinel-2 remote sensing image datasets that support the findings
of this study are available at https://sentinel.esa.int/web/sentinel/missions/sentinel-2, accessed
on 9 March 2023. Landsat 8 OLI remote sensing images can be downloaded from the website
https://glovis.usgs.gov/app, accessed on 9 March 2023.

Acknowledgments: The authors would like to thank the anonymous reviewers and editors for their
valuable comments. We thank the ESA (European Space Agency) and the USGS (United States
Geological Survey) for providing Sentinel-2 and Landsat 8 OLI data with free access.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Lorente, M.; Parsons, W.F.J.; McIntire, E.J.B.; Munson, A.D. Wildfire and forest harvest disturbances in the boreal forest leave

different long-lasting spatial signatures. Plant Soil 2013, 364, 39–54. [CrossRef]
2. Bowd, E.J.; Banks, S.C.; Strong, C.L.; Lindenmayer, D.B. Long-term impacts of wildfire and logging on forest soils. Nat. Geosci.

2019, 12, 113–118. [CrossRef]
3. Brewer, C.K.; Winne, J.C.; Redmond, R.L.; Opitz, D.W.; Mangrich, M.V. Classifying and Mapping Wildfire Severity: A Comparison

of Methods. Photogramm. Eng. Remote Sens. 2005, 71, 1311–1320. [CrossRef]
4. Morgan, P.; Keane, R.E.; Dillon, G.K.; Jain, T.B.; Hudak, A.T.; Karau, E.C.; Sikkink, P.G.; Holden, Z.A.; Strand, E.K. Challenges of

assessing fire and burn severity using field measures, remote sensing and modelling. Int. J. Wildland Fire 2014, 23, 1045–1060.
[CrossRef]

5. McLauchlan, K.K.; Higuera, P.E.; Miesel, J.; Rogers, B.M.; Schweitzer, J.; Shuman, J.K.; Tepley, A.J.; Varner, J.M.; Veblen, T.T.;
Adalsteinsson, S.A.; et al. Fire as a fundamental ecological process: Research advances and frontiers. J. Ecol. 2020, 108, 2047–2069.
[CrossRef]

6. dos Santos, S.M.B.; Bento-Gonçalves, A.; Vieira, A. Research on Wildfires and Remote Sensing in the Last Three Decades: A
Bibliometric Analysis. Forests 2021, 12, 604. [CrossRef]

7. Han, D.; Di, X.; Yang, G.; Sun, L.; Weng, Y. Quantifying fire severity: A brief review and recommendations for improvement.
Ecosyst. Health Sustain. 2021, 7, 1973346. [CrossRef]

8. Hao, B.; Xu, X.; Wu, F.; Tan, L. Long-Term Effects of Fire Severity and Climatic Factors on Post-Forest-Fire Vegetation Recovery.
Forests 2022, 13, 883. [CrossRef]

9. Tariq, A.; Shu, H.; Gagnon, A.S.; Li, Q.; Mumtaz, F.; Hysa, A.; Siddique, M.A.; Munir, I. Assessing Burned Areas in
Wildfires and Prescribed Fires with Spectral Indices and SAR Images in the Margalla Hills of Pakistan. Forests 2021, 12,
1371. [CrossRef]

10. Lhermitte, S.; Verbesselt, J.; Verstraeten, W.W.; Veraverbeke, S.; Coppin, P. Assessing intra-annual vegetation regrowth after fire
using the pixel based regeneration index. ISPRS J. Photogramm. Remote Sens. 2011, 66, 17–27. [CrossRef]

11. Kasischke, E.S.; Turetsky, M.R.; Ottmar, R.D.; French, N.H.F.; Hoy, E.E.; Kane, E.S. Evaluation of the composite burn index for
assessing fire severity in Alaskan black spruce forests. Int. J. Wildland Fire 2008, 17, 515–526. [CrossRef]

12. Johnstone, J.F.; Hollingsworth, T.N.; Chapin, F.S., III; Mack, M.C. Changes in fire regime break the legacy lock on successional
trajectories in Alaskan boreal forest. Glob. Chang. Biol. 2010, 16, 1281–1295. [CrossRef]

13. Fernández-Manso, A.; Quintano, C. Evaluating Landsat ETM+ emissivity-enhanced spectral indices for burn severity discrimina-
tion in Mediterranean forest ecosystems. Remote Sens. Lett. 2015, 6, 302–310. [CrossRef]

14. Liberati, A.; Altman, D.G.; Tetzlaff, J.; Mulrow, C.; Gotzsche, P.C.; Ioannidis, J.P.A.; Clarke, M.; Devereaux, P.J.; Kleijnen, J.; Moher,
D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions:
Explanation and elaboration. BMJ 2009, 339, b2700. [CrossRef] [PubMed]

15. Chuvieco, E.; Mouillot, F.; Van Der Werf, G.R.; San Miguel, J.; Tanase, M.; Koutsias, N.; García, M.; Yebra, M.; Padilla, M.; Gitas, I.;
et al. Historical background and current developments for mapping burned area from satellite Earth observation. Remote Sens.
Environ. 2019, 225, 45–64. [CrossRef]

https://sentinel.esa.int/web/sentinel/missions/sentinel-2
https://glovis.usgs.gov/app
https://doi.org/10.1007/s11104-012-1331-3
https://doi.org/10.1038/s41561-018-0294-2
https://doi.org/10.14358/PERS.71.11.1311
https://doi.org/10.1071/WF13058
https://doi.org/10.1111/1365-2745.13403
https://doi.org/10.3390/f12050604
https://doi.org/10.1080/20964129.2021.1973346
https://doi.org/10.3390/f13060883
https://doi.org/10.3390/f12101371
https://doi.org/10.1016/j.isprsjprs.2010.08.004
https://doi.org/10.1071/WF08002
https://doi.org/10.1111/j.1365-2486.2009.02051.x
https://doi.org/10.1080/2150704X.2015.1029093
https://doi.org/10.1136/bmj.b2700
https://www.ncbi.nlm.nih.gov/pubmed/19622552
https://doi.org/10.1016/j.rse.2019.02.013


Fire 2024, 7, 19 20 of 21

16. Chen, Y.; Lara, M.J.; Hu, F.S. A robust visible near-infrared index for fire severity mapping in Arctic tundra ecosystems. ISPRS J.
Photogramm. Remote Sens. 2020, 159, 101–113. [CrossRef]

17. Kurbanov, E.; Vorobev, O.; Lezhnin, S.; Sha, J.; Wang, J.; Li, X.; Cole, J.; Dergunov, D.; Wang, Y. Remote Sensing of Forest Burnt
Area, Burn Severity, and Post-Fire Recovery: A Review. Remote Sens. 2022, 14, 4714. [CrossRef]

18. Escuin, S.; Navarro, R.; Fernández, P. Fire severity assessment by using NBR (Normalized Burn Ratio) and NDVI (Nor-
malized Difference Vegetation Index) derived from LANDSAT TM/ETM images. Int. J. Remote Sens. 2008, 29, 1053–1073.
[CrossRef]

19. Chafer, C.J.; Noonan, M.; Macnaught, E. The post-fire measurement of fire severity and intensity in the Christmas 2001 Sydney
wildfires. Int. J. Wildland Fire 2004, 13, 227–240. [CrossRef]

20. Veraverbeke, S.; Gitas, I.; Katagis, T.; Polychronaki, A.; Somers, B.; Goossens, R. Assessing post-fire vegetation recovery using
red–near infrared vegetation indices: Accounting for background and vegetation variability. ISPRS J. Photogramm. Remote Sens.
2012, 68, 28–39. [CrossRef]

21. Chuvieco, E.; Martín, M.P.; Palacios, A. Assessment of different spectral indices in the red-near-infrared spectral domain for
burned land discrimination. Int. J. Remote Sens. 2002, 23, 5103–5110. [CrossRef]

22. Hassan, M.M.; Hasan, I.; Southworth, J.; Loboda, T. Mapping fire-impacted refugee camps using the integration of field data and
remote sensing approaches. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103120. [CrossRef]

23. García, M.J.L.; Caselles, V. Mapping burns and natural reforestation using thematic Mapper data. Geocarto Int. 1991, 6, 31–37.
[CrossRef]

24. Wu, B.; Zheng, H.; Xu, Z.; Wu, Z.; Zhao, Y. Forest Burned Area Detection Using a Novel Spectral Index Based on Multi-Objective
Optimization. Forests 2022, 13, 1787. [CrossRef]

25. Su, Z.; Tigabu, M.; Cao, Q.; Wang, G.; Hu, H.; Guo, F. Comparative analysis of spatial variation in forest fire drivers between
boreal and subtropical ecosystems in China. For. Ecol. Manag. 2019, 454, 117669. [CrossRef]

26. Cai, L.; Wang, M. Is the RdNBR a better estimator of wildfire burn severity than the dNBR? A discussion and case study in
southeast China. Geocarto Int. 2022, 37, 758–772. [CrossRef]

27. Narayanaraj, G.; Wimberly, M.C. Influences of forest roads and their edge effects on the spatial pattern of burn severity. Int. J.
Appl. Earth Obs. Geoinf. 2013, 23, 62–70. [CrossRef]

28. Heinlen, E.R.; Vitt, D.H. Patterns of Rarity in Mosses of the Okanogan Highlands of Washington State: An Emerging Coarse Filter
Approach to Rare Moss Conservation. Bryologist 2003, 106, 34–52. [CrossRef]

29. Key, C.H.; Benson, N.C. Landscape assessment: Ground measure of severity, the Composite Burn Index; and remote sensing of
severity, the Normalized Burn Ratio. In FIREMON: Fire Effects Monitoring and Inventory System; USDA, Forest Service, Rocky
Mountain Research Station General Technical Report RMRS-GTR-164-CD. LA1-LA51; USDA Forest Service, Rocky Mountain
Research Station: Ogden, UT, USA, 2006.

30. García-Llamas, P.; Suárez-Seoane, S.; Fernández-Manso, A.; Quintano, C.; Calvo, L. Evaluation of fire severity in fire
prone-ecosystems of Spain under two different environmental conditions. J. Environ. Manag. 2020, 271, 110706. [CrossRef]

31. Hayes, J.J.; Robeson, S.M. Relationships between fire severity and post-fire landscape pattern following a large mixed-severity
fire in the Valle Vidal, New Mexico, USA. For. Ecol. Manag. 2011, 261, 1392–1400. [CrossRef]

32. Guo, L.; Li, S.; Wu, Z.; Parsons, R.A.; Lin, S.; Wu, B.; Sun, L. Assessing spatial patterns and drivers of burn severity in subtropical
forests in Southern China based on Landsat 8. For. Ecol. Manag. 2022, 524, 120515. [CrossRef]

33. Kurbanov, E.; Vorobyev, O.; Leznin, S.; Polevshikova, Y.; Demisheva, E. Assessment of burn severity in Middle Povozhje with
Landsat multitemporal data. Int. J. Wildland Fire 2017, 26, 772–782. [CrossRef]

34. Mallinis, G.; Mitsopoulos, I.; Chrysafi, I. Evaluating and comparing Sentinel 2A and Landsat-8 Operational Land Imager (OLI)
spectral indices for estimating fire severity in a Mediterranean pine ecosystem of Greece. GIScience Remote Sens. 2018, 55, 1–18.
[CrossRef]

35. Huete, A.R. A soil-adjusted vegetation index (SAVI). Remote Sens. Environ. 1988, 25, 295–309. [CrossRef]
36. Trigg, S.; Flasse, S. An evaluation of different bi-spectral spaces for discriminating burned shrub-savannah. Int. J. Remote Sens.

2001, 22, 2641–2647. [CrossRef]
37. Qarallah, B.; Othman, Y.A.; Al-Ajlouni, M.; Alheyari, H.A.; Qoqazeh, B.A. Assessment of Small-Extent Forest Fires in Semi-Arid

Environment in Jordan Using Sentinel-2 and Landsat Sensors Data. Forests 2022, 14, 41. [CrossRef]
38. Sawalhah, M.N.; Al-Kofahi, S.D.; Othman, Y.A.; Cibils, A.F. Assessing rangeland cover conversion in Jordan after the Arab spring

using a remote sensing approach. J. Arid Environ. 2018, 157, 97–102. [CrossRef]
39. Alcaras, E.; Costantino, D.; Guastaferro, F.; Parente, C.; Pepe, M. Normalized Burn Ratio Plus (NBR+): A New Index for Sentinel-2

Imagery. Remote Sens. 2022, 14, 1727. [CrossRef]
40. Hislop, S.; Jones, S.; Soto-Berelov, M.; Skidmore, A.; Haywood, A.; Nguyen, T. Using Landsat Spectral Indices in Time-Series to

Assess Wildfire Disturbance and Recovery. Remote Sens. 2018, 10, 460. [CrossRef]
41. Petropoulos, G.P.; Kontoes, C.; Keramitsoglou, I. Burnt area delineation from a uni-temporal perspective based on Landsat TM

imagery classification using Support Vector Machines. Int. J. Appl. Earth Obs. Geoinf. 2011, 13, 70–80. [CrossRef]
42. Schepers, L.; Haest, B.; Veraverbeke, S.; Spanhove, T.; Vanden Borre, J.; Goossens, R. Burned Area Detection and Burn Severity

Assessment of a Heathland Fire in Belgium Using Airborne Imaging Spectroscopy (APEX). Remote Sens. 2014, 6, 1803–1826.
[CrossRef]

https://doi.org/10.1016/j.isprsjprs.2019.11.012
https://doi.org/10.3390/rs14194714
https://doi.org/10.1080/01431160701281072
https://doi.org/10.1071/WF03041
https://doi.org/10.1016/j.isprsjprs.2011.12.007
https://doi.org/10.1080/01431160210153129
https://doi.org/10.1016/j.jag.2022.103120
https://doi.org/10.1080/10106049109354290
https://doi.org/10.3390/f13111787
https://doi.org/10.1016/j.foreco.2019.117669
https://doi.org/10.1080/10106049.2020.1737973
https://doi.org/10.1016/j.jag.2012.12.006
https://doi.org/10.1639/0007-2745(2003)106[0034:PORIMO]2.0.CO;2
https://doi.org/10.1016/j.jenvman.2020.110706
https://doi.org/10.1016/j.foreco.2011.01.023
https://doi.org/10.1016/j.foreco.2022.120515
https://doi.org/10.1071/WF16141
https://doi.org/10.1080/15481603.2017.1354803
https://doi.org/10.1016/0034-4257(88)90106-X
https://doi.org/10.1080/01431160110053185
https://doi.org/10.3390/f14010041
https://doi.org/10.1016/j.jaridenv.2018.07.003
https://doi.org/10.3390/rs14071727
https://doi.org/10.3390/rs10030460
https://doi.org/10.1016/j.jag.2010.06.008
https://doi.org/10.3390/rs6031803


Fire 2024, 7, 19 21 of 21

43. Fernández-Manso, A.; Fernández-Manso, O.; Quintano, C. SENTINEL-2A red-edge spectral indices suitability for discriminating
burn severity. Int. J. Appl. Earth Obs. Geoinf. 2016, 50, 170–175. [CrossRef]

44. Smiraglia, D.; Filipponi, F.; Mandrone, S.; Tornato, A.; Taramelli, A. Agreement Index for Burned Area Mapping: Integration of
Multiple Spectral Indices Using Sentinel-2 Satellite Images. Remote Sens. 2020, 12, 1862. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.jag.2016.03.005
https://doi.org/10.3390/rs12111862

	Introduction 
	Materials and Methods 
	Study Area 
	CBI-Based ABAI Computation and Assessment 
	Data Collection and Processing 
	Remote Sensing Data 
	CBI Data 

	Spectral Indices and Accuracy Assessment 

	Results 
	Validation of the ABAI for Fire Severity Detection 
	Assessment of the Impacts of Different Sensors 
	Assessment of Impacts on Different Regions 

	Discussion 
	Conclusions 
	References

