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Abstract: Wildfires burn millions of hectares of forest worldwide every year, and this trend is expected
to continue growing under current and future climate scenarios. As a result, accurate knowledge
of fuel conditions and fuel type mapping are important for assessing fire hazards and predicting
fire behavior. In this study, 499 plots in six different areas in Portugal were surveyed by ALS and
multisource RS, and the data thus obtained were used to evaluate a nationwide fuel classification.
Random Forest (RF) and CART models were used to evaluate fuel models based on ALS (5 and
10 pulse/m2), Sentinel Imagery (Multispectral Sentinel 2 (S2) and SAR (Synthetic Aperture RaDaR)
data (C-band (Sentinel 1 (S1)) and Phased Array L-band data (PALSAR-2/ALOS-2 Satellite) metrics.
The specific goals of the study were as follows: (1) to develop simple CART and RF models to
classify the four main fuel types in Portugal in terms of horizontal and vertical structure based on
field-acquired ALS data; (2) to analyze the effect of canopy cover on fuel type classification; (3) to
investigate the use of different ALS pulse densities to classify the fuel types; (4) to map a more
complex classification of fuel using a multi-sensor approach and the RF method. The results indicate
that use of ALS metrics (only) was a powerful way of accurately classifying the main four fuel types,
with OA = 0.68. In terms of canopy cover, the best results were estimated in sparse forest, with an
OA = 0.84. The effect of ALS pulse density on fuel classification indicates that 10 points m−2 data
yielded better results than 5 points m−2 data, with OA = 0.78 and 0.71, respectively. Finally, the
multi-sensor approach with RF successfully classified 13 fuel models in Portugal, with moderate
OA = 0.44. Fuel mapping studies could be improved by generating more homogenous fuel models
(in terms of structure and composition), increasing the number of sample plots and also by increasing
the representativeness of each fuel model.

Keywords: fuel mapping; LiDAR; ALOS-2 satellite; C-band SAR; sentinel; wildfires

1. Introduction

On average, vegetation fires burn around 760 Mha of land each year [1]. Although
fires may start naturally, they are often caused by anthropogenic factors, with catastrophic
consequences [2]. Indeed, wildfires are an important environmental problem in a wide
range of global ecosystems [3]. Scientific projections for the future of climate change predict
more intense and prolonged droughts in certain regions, followed by heavy rainfall and
flooding events [4]. Such events are also becoming typical in the Mediterranean Basin,
historically affected by intense wildfires that often result in large burned areas, having a
significant impact on human lives [5,6].
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Decision makers must carry out fire risk assessments to mitigate wildfires, including
the identification of changes in fuel distribution, which requires time and skill and is
costly [7]. Fuel types play a crucial role in the propagation of fires in ecosystems. Within
the Mediterranean basin, fuel is derived from plant communities varying from shrubland
to pine forests [8,9]. A previous analysis of fire selectivity in Portugal found that coniferous
forests and shrublands are more prone to fire than agricultural areas [10,11]. In Portugal,
fuel types are dominated by evergreen sclerophyll shrubs, which cover an area of about
1.6 million ha or 18% of the total area of Portugal [2]. In terms of wildfire mitigation, fuels
can be treated to reduce fire hazards, which makes spatially explicit information and fuel
mapping very important [12,13].

Following the development of fire behavior models, various fuel type classification
systems have been created, e.g., Northern Forest Fire Laboratory–NFFL fuel models [14]
or Canadian fuel types [15,16]. Due to the difficulties of assessing and mapping different
fuel types, specific classification schemes are required for use in similar environmental
conditions [17]. Considering similar spatial resolution and methodological approaches, fuel
model assignment error is more likely to occur when a site-specific fuel classification system
is used [18], compared to a standard classification system, e.g., NFFL. For Mediterranean
areas, fuel models (UC040) are adapted fuel models revised by the US Forest Service [15]
in the Andalucía (Spain) region [19]. For the purpose of fuel classification, a national
classification system was developed in Portugal [13,20]. The system considers a matrix of
percentage of litter and vegetation cover, resulting in four main fuel model groups. (L–litter,
M–mixed, D–discontinuous and V–vegetation) associated with 18 fuel models [13].

Mapping fuel types is traditionally based on field surveys, which is challenging
and expensive. However, remote sensing (RS) technology has made the entire process
of mapping easier [15]. The ability to extract information from vertical and horizontal
structural components makes LiDAR RS a very important tool for forest fuel mapping
across large areas [18]. Various studies have addressed fuel type mapping on local, regional
and global scales by using active and passive sensors [21–23]. Passive sensors cover a wide
range of wavelengths within the spectrum, which makes the images acquired very useful
for species identification and fuel classification [23]. However, passive sensors lack the
ability to penetrate the canopy cover, and the data are therefore not suitable for describing
forest fuel structure or understory vegetation composition [24]. Active sensors are therefore
very important for monitoring forests on a global scale [25].

Two kinds of active sensors are used to map fuel types: LiDAR (Light Detection and
Ranging), which uses light (in form of pulses) emitted from a laser, and RaDaR (Radio
Detection and Ranging), which uses radio waves. As a result, LiDAR is used to estimate a
variety of forest fuel variables, including canopy bulk density, canopy base height, canopy
fuel load, and surface fuel metrics [26–32]. In terms of forest fuel mapping and the esti-
mation of biomass, several RaDaR detection systems such as Airborne SAR (AIRSAR),
GeoSAR, and Intermap Technology Corporation are available for spatial monitoring [33,34].
A recent study has shown that combining both passive and active sensors improves the
results of fuel mapping in contrast to using only a single data source [35]. While multi-
spectral passive sensors can be used to estimate species composition based on spectral
response, LiDAR active sensors can extract the vertical forest structure, and therefore, the
combined use of both types of sensors provides a novel and unique approach to mapping
fuel types [7,36–38]. For instance, in a study undertaken in three different Mediterranean
forests dominated by pines [17], satisfactory results were obtained when fuel types were
mapped using ALS and Sentinel 2 data. Another study assessed the understory forest
structure in combination with ALS and LANDSAT time series [39]. Most studies in the
Mediterranean basin are based on the Prometheus Fuel Classification Scheme [17,40,41],
but other classification schemes have also been used [37,42]. However, it is important to
highlight that Prometheus Fuel Classification has the disadvantage of not being calibrated
for local conditions [43].
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Although fuel mapping in Mediterranean ecosystems has been previously
addressed [17,44–49], there is a lack of research on the combined use of medium res-
olution multispectral and ALS data. To the best of our knowledge, no previous studies
have developed simple, robust, and parsimonious models to provide forest managers
with an alternative classification method for mapping Portuguese fuel models based on
ALS data. On the other hand, very few studies have evaluated the impact of canopy
cover and pulse density on the performance of fuel model classification in Mediterranean
areas. Finally, this work aimed to develop the first fuel model classification in Portugal
using C-band and L-band (SAR) backscatters, with multi-temporal Sentinel 2 and ALS
data associated with a detailed field survey. In this regard, the goal of this study was to
combine all sensor data, evaluate the performance of the models, and classify the fuel
models according to the national fuel scheme within six study areas in Portugal.

The main objective of this research was to evaluate the potential of discrete return
LiDAR data to classify fuels in six study areas in Portugal. The specific research objectives
were as follows:

(1) Classify the four main fuel type groups in Portugal using Simple CART and RF models;
(2) Analyze the effect of canopy cover (CC) in Portugal on fuel classification accuracy;
(3) Investigate the performance of the models to classify the fuel types using different

pulse densities (5 and 10 points m2);
(4) Map fuel models by combining ALS data, Multispectral Satellite Imagery (S2) and

C-L band SAR data (S1 and ALOS-2/PALSAR2 Satellite).

2. Data and Methods
2.1. Study Areas

ALS, satellite, and field data were acquired for the six target areas in Portugal, covering
approximately 34,109 ha of land that was mostly occupied by vegetation but also included
infrastructure and buildings. The most recent versions of the COS18 (Carta de Ocupação
do Solo) used to extract the land use data corresponds to main fuel models of forest and
agricultural areas https://www.dgterritorio.gov.pt/Carta-de-Uso-e-Ocupacao-do-Solo-
para-2018 (accessed on 4 February 2022 (Figure 1)). The study areas include different
environmental conditions and forest species distributions (Table 1). The elevation range
within the study areas varies from 0 m.a.s.l. to 1203 m.a.s.l. (see Appendix A, Table A1).

2.2. Field Data

Field data were obtained within the framework of a pilot LiDAR project (áGiL
TerFoRus-“Piloto sobre produtos de análise, com recurso a LiDAR, para a gestão do
território, da floresta e dos fogos rurais”) between April 2020 and June 2021 [50]. The
set of áGiL TerFoRus training plots used to model fuel types consisted of 499 accurately
georeferenced circular plots with a radius of 12.62 m (500 m2). The plot locations were
selected using a random sampling technique. Within each sample plot, four diagonal tran-
sects were defined at 45 degrees with a total of 33 points (8 points per diagonal) to describe
fuel structure, allowing the classification of the fuel groups as per the fuel classification
system used in Portugal. Therefore, for each plot, the mean height (h) and mean percent
cover (C) of the litter, shrub, and herbaceous layers along the transects were calculated, and
a fuel model from the Portuguese fuel model classification system was assigned (Table 2).
The system comprises 18 fuel models (for more details and description see Appendix A,
Table A2).

Field data resulted in 70 plots for fuel group D, 46 plots for F; 134 plots for M and
249 plots for fuel group V, further used as an input to run the classification. Due to the
small number of observations and spectral similarity between the species of some fuel
models, 13 fuel models were tested with the multi-sensor approach and a total of 475 field
data plots (Table 3). The four fuel models for Mediterranean and Atlantic shrubland were
merged into low shrubs (<1 m) and high shrubs (>1 m) models.

https://www.dgterritorio.gov.pt/Carta-de-Uso-e-Ocupacao-do-Solo-para-2018
https://www.dgterritorio.gov.pt/Carta-de-Uso-e-Ocupacao-do-Solo-para-2018
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Figure 1. Locations of the six study areas in Portugal (a). Legend with the different colors represents
the land use and land cover classification of agriculturas and forest classes for (b) Mafra, (c) Vila
Pouca de Aguilar, (d) Monsanto, (e) Sintra Cascais, (f) Pombal, (g) Serras da Lousã. Red points
represent the reference field plots.

Table 1. Species distribution for each study area (ha).

Study Areas Eucalyptus globulus Quercus suber Pinus pinaster Pinus pinea Quercus spp.

Mafra 442 488 130 80 ---
Pombal 2251 --- 1073 --- 66

Monsanto 80 --- 159 498 ---
Sintra Cascais 655 --- 2111 192 31

Serras da Lousã 2428 --- 5212 --- 43
Vila Pouca de

Aguiar 41 --- 3685 --- 259

Total 5897 488 12,370 770 399
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Table 2. Portugal Fuel Classification Scheme [51] with the main four fuel type groups:
D–Discontinuous fuel, F–Litter, M–Litter and Vegetation and V–Vegetation. C represents the cover of
each fuel layer. Cover (C) and mean height (h) for each fuel layer.

VEGETATION; UNDERSTOREY; SHRUB OR GRASLAND

LITTER C < 1/3 1/3 > C < 2/3 C > 2/3, h < 1 m C > 2/3, h > 1 m
C < 3

4 D D V V
C < 3

4 , h < 2 cm F M M V
C < 3

4 , h > 2 cm F M M M

Table 3. Portuguese fuel models in the study areas.

Fuel Type Group Fuel Model Name Number of Plots No. per Fuel Models

F
F–EUC 12
F–FOL 19 60
F–PIN 29

M

M–CAD 22
M–ESC 20
M–EUC 29

M–EUCd 15 173
M–PIN 32

M–F 55

V

V–Ha 42
V–Hb 35 242
V–Ma 105
V–Mb 60

Total 475

2.3. ALS Data

Publicly available ALS data for Portugal from the áGiL TerFoRus were provided by
ICNF “https://geocatalogo.icnf.pt/geovisualizador/agil.html (accessed on 3 February
2022)”. The data were acquired using Teledyne Galaxy PRIME Airborne LiDAR Terrain
Mapper with SwathTRAK Technology. Average altitude in the first flight was 1250 m.a.s.l.,
and in the second one it was 1400 m.a.s.l. Sensors in the first flight used an average pulse
rate of 900 kHz with a nominal outgoing pulse density of 10.02–13.88 points per m2. The
second flight used a pulse rate of 550 kHz with a pulse density of 5.13–6.56 points per m2.
Point clouds were provided from a total of 3210 tiles (1 km × 1 km coverage) in EPSG:
3763–ETRS89/Portugal TM06 Projection.

Standard ALS data processing was performed using LAStools software [52] and
Notepad++ code editor. For each tile and sample plot, ALS-derived metrics (return per-
centiles, elevation statistics, canopy cover, coverage, density, and Canopy Relief Ratio) were
extracted using a fixed height break threshold of 0.02 m for height metrics. The height break
threshold, which is the limit for separating the point cloud data into two sets to separate
canopy returns from the understory returns, was established at 4m (on the basis of field
observations) for estimating canopy cover metrics (Table 4). V group represents the fuel
model. For generation of the final DEM surface, the ALS ground points were converted
to a TIN surface raster using 2 m raster DEM for all 6 study areas. A memory-efficient
streaming technology was computed under three parallel processes using the las2dem
command available in LAStools. As topographic predictor variables, Elevation, Slope and
Aspect metrics were derived from the DEM data at 2 m spatial resolution, using QGIS
3.16.3 Hanover version [53].

A representation of main fuel groups modelled (F–Litter, M–Litter and Vegetation and
V–Vegetation) was generated simulating the waveform from ALS point clouds (Figure 2).
Using density histograms, the image illustrates the vertical distribution of point cloud
height from the main fuel model groups. Litter (L) represents litter surface fuel layer

https://geocatalogo.icnf.pt/geovisualizador/agil.html


Fire 2023, 6, 327 6 of 27

with slight density ALS returns from low interval height. Mixed (M) group is associated
with a mix of litter with herbs, fens, or shrubs in the understory and the presence of
trees. Mixed (M) group usually displays a concentration of ALS returns in more than one
stratum. V (Vegetation) represents shrublands and grassland fuel models with a more even
distribution of ALS returns and higher density of ALS returns concentrated in the lowest
strata from the vertical distribution of vegetation. This condition could promote the vertical
connectivity with the canopy fuels and how it is appreciated in the figure (i.e., an example
of Mediterranean high shrubs with the presence of some trees).

Table 4. ALS metrics extracted from the data.

ALS Metrics Description

1. HEIGHT METRICS

1.1. Central tendency of the ALS height distribution

avg Mean
1.2. Dispersion of ALS height distribution

std Standard deviation
var Variance

max, min Maximum and minimum
1.3. Shape of ALS height distribution

ske Skewness
kur Kurtosis

1.4. Percentiles of the ALS height distribution

p01. p1. . ., p99 5th, 10th, 20th, 25th, 30th, 40th, 50th, . . ., 90th,
95th, 99th percentiles

2. CANOPY COVER METRICS

2.1. Canopy cover metrics

Fixed Height Break Threshold) 4 m

Cov Percentage of first returns above HBT/total all
first returns

Dns Percentage of all returns above HBT/total all
first returns

Crr =(hmean − hmin)/(hmax − hmin)
2.2. Relative Density and Vci metrics in bins height

d00, d01, d02, d03, d04, d05, d06, d07,
d08, d09 d10

Relative density (number of returns divided by
the total number of returns and scaled to

percentage in this interval).

vc1, vc2, vc3, vc4, vc5, vc6, vc7

Vertical complexity index (VCI) based on the
diversity measurement indices that quantify

vertical heterogeneity of the
vegetation structure.

Two structural diversity indices were calculated: Vertical Complexity Index (vci) and
Relative Density metrics (d). Vci is an additional adaptation of the Shannon (H’) index (see
Equation (1)), which is sensitive to species diversity and species evenness. Values close to
1 indicate an equal number of LiDAR returns for most of the height bins. The VCI value
decreases as the number of points per height bin increases (more uneven).

vci = (−∑HB
i=1[(pi∗In (pi)]))/ln (HB) (1)

where HB is the total number of height bins, and pi is the proportional abundance of
lidar returns in height bin i. Vci was computed for different vertical bin sizes of 0.20 m
(vc1), 0.5 m (vc2), 1 m (vc3), 1.5 m (vc4), 2 m (vc6) and 10 m (vc7). In the case of relative
height density metrics, the number of returns is divided by the total number of points and
scaled to a percentage in the interval of each height bin; d00 (0–0.02 m), d01 (0.02–0.20 m),
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d02 (0.2–0.5 m), d03 (0.5–1 m), d04 (1–1.5 m), d05 (1.5–2 m), d06 (2–4 m), d07 (4–10 m),
d08 (10–20 m), d09 (20–30 m), d10 (30–40 m) were also computed.
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2.4. Multi-Spectral and SAR Data

Sentinel-2 images with less than 10% cloud cover over the six study areas were pro-
cessed for summer, winter, and spring using Google Earth Engine (GEE) platform [55].
Pixel reflectance values were extracted from 10 bands of the Sentinel 2 (S2) using shapefile
(.shp) with the location coordinates from each plot and each study area at a final reso-
lution of 25 × 25 m (see Table A3, Appendix A). Four indices were then calculated: the
normalized difference vegetation index (NDVI) [56], optimized soil adjustment vegetation
index (OSAVI), green normalized difference vegetation index (GNDVI), and the normalized
difference water index (NDVI) (Equations (2)–(5)).

NDVI =
NIR (B8)− RED (B4)
NIR (B8) + RED (B4)

(2)

OSAVI =
NIR (B8)− RED (B4)

NIR (B8) + RED (B4) + L
∗ (L + 0.5)L–Soil adjustment coefficient (0.15) (3)

GNDVI =
NIR (B8)− RED(B3)
NIR (B8) + RED (B3)

(4)

NDVI =
NIR (B3)− RED (B11)
NIR (B3) + RED (B11)

(5)

We obtained Sentinel-1 C band Synthetic Aperture RaDaR (SAR) images with hori-
zontal (H) and vertical (V) polarization filtered for the period 1 June 2020 to 30 July 2020
at a spatial resolution of 10 m, later re-scaled to 25 m. The final S1 dataset was processed
with the Gray Level Co-occurrence Matrix (GLCM) texture metrics [57]. Matrices were
calculated for each image using the glcm library in R software to compute mean, variance
and homogeneity metrics [58] (Table A3, Appendix A). To enable estimation of understory
vegetation, the Phased Array L–band Synthetic Aperture RaDaR (PALSAR) satellite aboard
the Advanced Land Observing Satellite (ALOS–2) was also used to calculate backscatter
values in dual H and V polarization using yearly mosaic (Table A3, Appendix A). Two im-
ages in both polarizations were extracted at an original resolution of 25 m in WGS84/UTM
zone 29 coordinate system. A total of 36 variables from S1 and S2, three topographical
predictor variables from DEM (Elevation, Slope and Aspect), and 44 metric variables from
the ALS sensor were used to classify fuel models using a multisensor approach.

2.5. Methods

A detailed flowchart is shown in Figure 3. Using already-produced metrics from
ALS, S1, S2 and ALOS-2, fuel model classification was carried out using two different
approaches. (i) A supervised learning approach, in which the Classification and Regression
(CART) algorithm was used to fit a simple, robust model for the main four groups of
fuel determined from ALS variables with the package “rpart” [59]. The number of folds
of the cross-validation was set to 10 (xval parameter in rpart algorithm). CART models
were obtained by pruning the tree using a complexity parameter (CP) implemented in
the rpart library. The complexity parameter minimizes the number of splits at which the
cross-validated classification error (xerror value- predicted residual error sum of squares
(PRESS)) decreases and stabilizes. Then, a simple CART was obtained by selecting the
number of terminal nodes in each tree in the cost-complexity pruning sequence (size value)
(ii) Random Forest (RF) classifier implemented in package “caret” [60]. The RF classifier
was optimized by tuning the hyperparameters mtry (the number of predicted variables
randomly selected at each split) and ntree (number of trees) using the expand.grid function
from the caret package.
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Accuracy assessment for fuel type classification within the six study areas in Portugal
was performed with the Confusion Matrix (CM), Producer (PA), User (UA) and Overall
(OA) Accuracy metrics, and with the Kappa coefficient of agreement. Additionally, the
importance variables indicator in R-studio was calculated from the RF model. Variable
importance was tested by means of Mean Decrease Accuracy and Mean Decrease in Gini.
Mean Decrease Accuracy works by measuring the decrease in the accuracy of the model
when a particular feature is excluded from the dataset. It calculates the average reduction
in accuracy across all decision trees in the forest for a given feature. Mean Decrease in Gini
metrics, which measures how each variable contributes to the homogeneity of the nodes
and leaves in the resulting RF [61]. In general, the mean decrease in the Gini coefficient
increases with the importance of the variable in the model.

Finally, this study was guided by the following specific objectives: (i) classify the four
main fuel type groups in Portugal using Simple CART and RF models; (ii) analyze the
effect of canopy cover (CC) in Portugal on fuel classification accuracy. For this purpose,
the Portugal National Forest Inventory (PNFI) was used for canopy cover classification to
distinguish Sparse, Open and Dense Forest (Table 5); (iii) investigate the performance of
the models to classify the fuel types using different pulse densities (5 and 10 points m2).

Table 5. Canopy cover (CC) classes based on the NFI and ALS point dataset using different pulse
densities (5 and 10 points m2) with the number of observations per group and class.

CC (%) Description Observations
per Group

Observations
per Class

10–30 Sparse Forest 147 D:19 F:7 M:6 V:115
30–60 Open Forest 135 D:22 F:0 M:40 V:71
>60 Dense Forest 217 D:29 F:40 M:87 V:63

ALS Density
(point/m2) Areas Observations

per Group
Observations

per Class

5 Lousã, VPA, Pombal 183 D:32 F:4 M:60 V:87
10 Mafra, Sintra-Cascais, Monsanto 316 D:38 F:42 M:74 V:162
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3. Results
3.1. Fuel Classification Using ALS Data

The best three classification methods for the ALS approach are shown in Table 6. The
CART produced better results than the RF model. The CART with cross validation (pruned
at the minimum error) yielded an OA of 0.67 and a kappa of 0.45. Simple CART (pruned at
5-size tree) produced a fuel classification model with an OA of 0.61 and a kappa value of
0.39. The Random Forest classification yielded an OA of 0.60 and a kappa value of 0.34.

Table 6. Comparison of three classification methods using OA and Kappa values using only ALS variables.

Four Main Fuel Classes (D, F, M, V)

Classification Method OA Kappa Number of Plots

CART with cross validation 0.67 0.45
499Simple CART 0.61 0.39

Random Forest (RF) 0.60 0.34

The CART with cross validation selected canopy cover (cov) at the first split, followed
by relative density metrics—d02 at the second split (Figure 4). The possibility of classifying
the D—discontinuous fuel model group is a crucial result. The Users Accuracy (UA) from
the D and F fuel model groups achieved a UA 0.50 and 0.81, respectively.
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However, in terms of Producers Accuracy (PA), CART classified fuel model group D
with a PA of 0.11. The best results in terms of UA were obtained by fuel model groups V
and M, with values of 0.70 and 0.63, respectively (Table 7, Figure 4).

3.1.1. Simple CART Model

The simple CART generates the simplest classification model and is easy to interpret
(Figure 5). Pruned at the 5-tree size, the model has a very simple structure and has the
possibility to classify a D fuel model group.

The canopy cover metric (cov) was the best variable to split the data between V and the
rest of the fuel model groups. The relative density of points within the 0.2–0.5 m interval
was used to separate the M and F group. Then, the skewness split between the F and D–M
fuel model groups. Finally, the variable d00, which represents the percentage of coverage
in the first 20 cm, was found to be the best predictor variable to split the data into M and
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D fuel model groups. The confusion matrix (Table 8) correctly classified eight plots as D,
twenty-seven as class F, ninety-seven plots as class M, and one-hundred and seventy as
class V.

Table 7. CART with cross validation classification accuracy for the different fuel groups, where
D = discontinuous fuel, F = Litter, M = Mixed, V = Vegetation, PA = Producer’s accuracy, UA = user’s
accuracy, value shown in bold OA = overall accuracy and kappa value. Classification and reference
(field check) frequencies are arranged in columns and rows, respectively.

Observed

Pr
ed

ic
te

d

Fuel group D F M V Σ PA

D 8 1 15 46 70 0.11
F 2 26 9 9 46 0.57
M 3 3 88 40 134 0.66
V 3 2 27 217 249 0.87
Σ 16 32 139 312 499

UA 0.50 0.81 0.63 0.70 OA 0.68
Kappa = 0.47
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Figure 5. Simple CART fuel classification model using ALS data (pruned at the 5-tree size). Variables
are described in Table 4.

Table 8. Simple CART classification accuracy for the different fuel groups, where D = discontinuous
fuel, F = Litter, M = Mixed group, V = Vegetation, PA = Producer’s accuracy, UA = user’s accuracy,
and value shown in bold OA = overall accuracy and kappa value. Classification and reference (field
check) frequencies are arranged in columns and rows, respectively.

Observed

Pr
ed

ic
te

d

Fuel group D F M V Σ PA
D 8 6 23 33 70 0.11
F 2 27 11 6 46 0.59
M 3 10 97 24 134 0.72
V 3 8 68 170 249 0.68
Σ 16 51 199 233 499

UA 0.11 0.59 0.72 0.68 OA 0.61
Kappa = 0.39
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3.1.2. Random Forest Model

The RF model yielded an OA of 0.60 and a kappa value of 0.34. The RF model
classified group D with a PA value of only 0.06. As an essential feature (similar to the
previous method, pruned at the minimum error), the RF has the potential to estimate class
D, although with low accuracy. The confusion matrix (Table 9) correctly classified four
plots as D, nineteen as class F, seventy plots as class M, and one-hundred and ninety-two
as class V.

Table 9. Accuracy of Random Forest classification of the different fuel groups, where D = discontin-
uous fuel, F = Litter, M = Mixed, V = Vegetation, PA = Producer’s accuracy, UA = user’s accuracy,
and value shown in bold OA = overall accuracy and kappa value. Classification and reference (field
check) frequencies are arranged in columns and rows, respectively.

Observed

Pr
ed

ic
te

d

Fuel group D F M V Σ PA

D 4 4 17 45 70 0.06
F 3 19 13 11 46 0.41
M 5 4 70 55 134 0.52
V 10 4 43 192 249 0.77
Σ 22 31 143 303 499

UA 0.18 0.61 0.49 0.63 OA 0.60
Kappa = 0.34

The contribution of variables such as cov (percentage of canopy cover), max (maximum
dispersion of ALS height distribution), vc6 (vertical complexity index from bin size of 2 m),
p95, and d02 (relative density of points between 0.2–0.5 m interval) were the most important
variables in terms of Mean Decrease Accuracy (Figure 6). The most important variables
for Mean Decrease Gini were cov (canopy cover), avg (mean central tendency of the ALS
height distribution), d02, p70 and max (Figure 6).
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3.2. Effect of Canopy Cover on Fuel Model Classification

The results of the effect of canopy cover on fuel model classification are shown in
Table 10. In the case of Sparse Forest, it was not possible to fit a model using the cross-
validation method due to the low number of observations per fuel model. Thus, CART
without cross validation was used to generate a model, yielding an OA of 0.84 and a kappa
value of 0.51. A simple CART model was used to prune the tree. In terms of accuracy, the
simple CART yielded an OA of 0.82 and a kappa value of 0.35. The RF performed worse
than the other models, with an OA of 0.76 a kappa value of 0.05.

Table 10. Results of Sparse, Open and Dense Forest Analysis.

Method used Sparse Open Dense

OA Kappa OA Kappa OA Kappa

CART with-cross validation No model No model No model No model 0.66 0.50
CART without cross validation 0.84 0.51 0.75 0.57 0.64 0.48

Simple CART 0.82 0.35 0.65 0.39 0.58 0.36
Random Forest 0.76 0.05 0.52 0.12 0.52 0.29

It was also not possible to fit a CART model with cross validation due to the small
number of observations in Sparse and Open Forests. In the case of Open Forest, the CART
model without cross validation generated the best results, with an OA of 0.75 and a kappa
value of 0.57. The simple CART model (pruned at the 4-tree size) yielded an OA of 0.65 and
a kappa value of 0.39. The RF model produced poor results, with an OA of 0.52 and a kappa
value of 0.12. The final product shows the confusion matrix (see Appendix B; Table A5) of
the best classified CART without the cross-validation model for the Open Forest analysis.

In the case of Dense Forest, the first model using CART with cross validation produced
the best result, with an OA of 0.66 and a kappa value of 0.50. When the same model was
used without cross validation, moderately good results were obtained, with an OA of 0.64
and a kappa value of 0.48. The simple CART model yielded an OA of 0.58 and a kappa
value of 0.36. The RF model in the analysis again showed poor results, with an OA of 0.52
and a kappa value of 0.29. The confusion matrixes and CART models for the three types of
forest are presented in Appendix B, Tables A4–A6 and Figures A1–A3.

3.3. Effect of ALS Pulse Density on Fuel Group Classification

Two ALS point densities were used in the analysis: 5 points and 10 points per m−2.
The performances of the models in terms of OA and kappa value are presented in Table 11.

Table 11. Results of the effect of using different ALS pulse densities.

Method 5 Points/m2 10 Points/m2

OA Kappa OA Kappa

CART with cross validation 0.61 0.33 0.71 0.51
CART without cross validation 0.71 0.53 0.78 0.65

Simple CART 0.67 0.42 0.69 0.49
Random Forest 0.51 0.19 0.68 0.48

For 5 points per m−2, the CART model without cross validation produced the best
result, with an OA of 0.71 and a kappa value of 0.53. The simple CART model yielded
an OA of 0.67 and a kappa of 0.42. The RF model generated poor values, with an OA of
0.51 and a kappa value of 0.19. Table 12 shows the CM of the best estimated model CART
without cross validation for 5 points per m−2.
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Table 12. CART without cross validation for 5 points per m−2. Classification accuracy for the different
fuel groups, where D = discontinuous fuel, F = Litter, M = Mixed, V = Vegetation, PA = Producer’s
accuracy, UA = user’s accuracy, and value shown in bold OA = overall accuracy and kappa value.
Classification and reference (field check) frequencies are arranged in columns and rows, respectively.

Observed

Pr
ed

ic
te

d

Fuel group D F M V Σ PA
D 21 0 3 8 32 0.66
F 1 0 1 2 4 0.00
M 4 0 36 20 60 0.60
V 9 0 5 73 87 0.84
Σ 35 0 45 103 183

UA 0.60 0.00 0.80 0.81 OA 0.71
Kappa = 0.53

Class F, which was most problematic for estimation, was excluded from further
analysis due to the low number of observations. Of these, 21 out of 32 were classified
correctly as D class, 0 were classified as class F, 36 of 60 observations were classified as class
M, and 73 of 87 observations were correctly classified as class V, with a higher PA of 0.84 in
the analysis.

For the data’s 10 points per m2 density and the four main classes, the model provided
accurate estimates. Detection of class D was problematic, with 11 out of 38 observations
classified correctly; 30 of 42 observations were correctly classified as class F; 65 of 74 ob-
servations were classified as class M, with a PA of 0.88; and 140 of 162 observations were
classified as class V, with a PA of 0.86 (Table 13).

Table 13. CART without cross validation for 10 points per m−2 data. Classification accuracy for
the different fuel groups, where D = discontinuous fuel, F = Litter, M = Mixed, V = Vegetation,
PA = Producer’s accuracy, UA = user’s accuracy, value shown in bold OA = overall accuracy and
kappa value. Classification and reference (field check) frequencies are arranged in columns and
rows, respectively.

Observed

Pr
ed

ic
te

d

Fuel Model D F M V Σ PA
D 11 3 9 15 38 0.29
F 0 30 6 6 42 0.71
M 0 2 65 7 74 0.88
V 6 8 8 140 162 0.86
Σ 17 43 88 168 316

UA 0.65 0.70 0.74 0.83 OA 0.78
Kappa = 0.65

3.4. Multi-Sensor Approach with Random Forest Classification

The performance of the RF model using combination of sets of variables from different
sensors (ALS, S1, S2, PALSAR and DEM) is summarized in Table 14. The RF model,
including all variables for 13 fuel model sub-groups in Portugal, produced an OA of 0.44
and a kappa value of 0.31.

Table 14. Overall accuracy and kappa value of RF model using multi-sensor approach.

Data Matrix OA Kappa

ALS + S2 + DEM 0.49 0.37
ALS + S1 + S2 + PALSAR + DEM 0.44 0.31
ALS + DEM 0.42 0.30
ALS + S1 + PALSAR + DEM 0.41 0.32
S1 + S2 + PALSAR 0.30 0.17
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As shown in Table 14, the combination of optical satellite data from S2 and RaDaR
data from S1 and PALSAR yielded the lowest values for both OA and kappa statistics. In
all other combinations using ALS data, the results were similar and even close to those
obtained with the best model. LiDAR matrix variables in combination with the optical
variables derived from the S2 satellite produced the best results. Interesting findings were
noted when the improvement in kappa value after the texture variables derived from the
PALSAR and S1 SAR sensors were excluded.

The confusion matrix for the RF classification algorithm is shown in Table 15. Starting
from the main fuel model groups, F was correctly classified in 17 of the 60 plots. Meanwhile,
this group yielded one of the lowest mean PA values of 0.29. Group M achieved moderate
results. Sixty-one of one-hundred and seventy-three plots were correctly classified, with a
mean PA of 0.31. Group V produced the best results with this model, with 138 of 242 plots
classified correctly. Furthermore, three fuel models were represented within the main fuel
model group of litter (F). The model with the highest PA = 0.42 was F-EUC–Eucalypt litter.
The Litter and Vegetation (M) fuel model group comprised six fuel models, two of which
produced good results. M-ESC (evergreen hardwood litter and shrub understory) followed
by M-F (litter with fern understory) produced the best results. Finally, group V (Vegetation)
produced the best results in the model classification. The model estimates for four fuel
models show great potential for classifying shrubs taller than 1 m (V-MAa) and shrubs
lower than 1 m (V-MAb). Fuel model V-MAa with a PA of 0.69 was the better classified
model in group V. The results also show that fuel model V-Ha (tall grass, >0.5 m) was
more easily detected than V-Hb (low grass, <0.5 m), with a UA value of 0.57 and 0.37,
respectively. Focusing on fuel model error in terms of structure revealed some similarities
between classes. For instance, the model predicts M-F as V-MAa in 13 observations, whereas
these two fuel models have similar structures, and only the type of understory vegetation
varies. Another example is where the model predicts V-Hb as V-MAb in 11 observations,
whereas those fuel models are similar and based on the <1 m height threshold. For instance,
the fuel models with higher numbers of observations, such as V-MAa, with 105, produced
the best results. Further, V-MAb has 60 observations, and again, the model easily detected
those fuel structures. Furthermore, M-F had 55 observations, and V-Ha and V-Hb had 42
and 35, respectively.

Table 15. Multi-sensor approach ALS+S1+S2+PALSAR+DEM matrices using RF model; fuel model
classification accuracy by group in the 13 fuel models considered, where PA = producer’s accuracy,
UA = user’s accuracy, and value shown in bold OA = overall accuracy and kappa value. Classification
and reference (field check) frequencies are arranged in columns and rows, respectively.

Observed

Pr
ed

ic
te

d

Fuel
model F-EUC F-FOL F-PIN M-

CAD M-ESC M-
EUC

M-
EUCd M-F M-PIN V-Ha V-Hb V-

MAa
V-

MAb Σ PA
Mean
PA per
group

Fuel
model
error

F-EUC 5 0 2 0 0 4 0 0 0 0 0 1 0 12 0.42
0.29

0.59
F-FOL 0 3 1 2 3 0 0 6 0 0 0 4 0 19 0.16 0.84
F-PIN 0 1 9 0 0 0 0 2 7 2 1 2 5 29 0.31 0.69

M-CAD 0 1 1 7 2 1 0 3 0 0 1 6 0 22 0.32

0.31

0.68
M-ESC 0 0 0 1 9 0 0 4 3 0 2 1 0 20 0.45 0.55
M-EUC 2 0 0 2 0 6 0 3 1 0 0 6 9 29 0.21 0.79

M-EUCd 0 0 1 0 0 2 1 0 1 0 1 3 6 15 0.07 0.93
M-F 0 2 0 1 0 1 0 30 3 1 2 13 2 55 0.55 0.45

M-PIN 0 0 8 1 0 1 0 3 8 0 2 8 1 32 0.25 0.75
V-Ha 0 0 1 1 1 0 0 0 2 25 3 8 1 42 0.60

0.52

0.40
V-Hb 0 1 0 1 1 0 0 2 0 5 10 4 11 35 0.29 0.71

V-MAa 0 2 0 0 2 4 0 12 2 6 2 72 3 105 0.69 0.31
V-MAb 1 0 2 0 0 1 1 4 1 5 3 11 31 60 0.52 0.48

Σ 8 10 25 16 18 20 2 69 28 44 27 139 69
UA 0.63 0.30 0.36 0.44 0.50 0.30 0.50 0.43 0.29 0.57 0.37 0.52 0.45 OA: 0.44

Mean UA
per group 0.43 0.41 0.48

Kappa 0.31

Figure 7 shows the most important independent variables for the model. Most of
the variables were derived from ALS data, starting from the first and the most important
d05 variable (1.5–2 m interval). The results indicate that the most important variables are
those in the height interval from 0.20 to 1.5 m (d02, d03, d04) and cov, while the optical-
derived variable is B9_Spring. Mean Slope and Altitude were two of the most important



Fire 2023, 6, 327 16 of 27

topographic variables derived from the DEM. In general, the most important variables
were (1) derived from the ALS sensors, (2) delivered from optical sensors (S2), and (3) the
S1/PALSAR satellite sensor (Figure A4 in Appendix B).
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at 25 m of resolution were created using routines with the terra package in R software for
the study areas (Figure 8).

Fire 2023, 6, x FOR PEER REVIEW 17 of 29 
 

 

 
Figure 7. The ten most important variables from RF model in terms of Mean Decrease Accuracy 
(left) and Mean Decrease in Gini (right). 

Finally, maps of 13 fuel sub-fuel models for the Serra da Lousã and Mafra study areas 
at 25m of resolution were created using routines with the terra package in R software for 
the study areas (Figure 8). 

 
(a) 

Figure 8. Cont.



Fire 2023, 6, 327 17 of 27Fire 2023, 6, x FOR PEER REVIEW 18 of 29 
 

 

 
(b) 

Figure 8. Maps of fuel models in Portugal for the Serra da Lousã (a) and Mafra (b) study areas. 

Table 15. Multi-sensor approach ALS+S1+S2+PALSAR+DEM matrices using RF model; fuel model 
classification accuracy by group in the 13 fuel models considered, where PA = producer�s accuracy, 
UA = user�s accuracy, and value shown in bold OA = overall accuracy and kappa value. Classifica-
tion and reference (field check) frequencies are arranged in columns and rows, respectively. 

 Observed  

Pr
ed

ic
te

d 

Fuel 
model 

F-
EUC 

F-
FOL 

F-
PIN 

M-
CAD 

M-
ESC 

M-
EUC 

M-
EUCd M-F 

M-
PIN V-Ha V-Hb 

V-
MAa 

V-
MAb 

Ʃ PA 
Mean PA 

per 
group 

Fuel 
model 
error 

F-EUC 5 0 2 0 0 4 0 0 0 0 0 1 0 12 0.42 
0.29 

0.59 
F-FOL 0 3 1 2 3 0 0 6 0 0 0 4 0 19 0.16 0.84 
F-PIN 0 1 9 0 0 0 0 2 7 2 1 2 5 29 0.31 0.69 

M-
CAD 0 1 1 7 2 1 0 3 0 0 1 6 0 22 0.32 

0.31 

0.68 

M-ESC 0 0 0 1 9 0 0 4 3 0 2 1 0 20 0.45 0.55 
M-

EUC 
2 0 0 2 0 6 0 3 1 0 0 6 9 29 0.21 0.79 

M-
EUCd 0 0 1 0 0 2 1 0 1 0 1 3 6 15 0.07 0.93 

M-F 0 2 0 1 0 1 0 30 3 1 2 13 2 55 0.55 0.45 
M-PIN 0 0 8 1 0 1 0 3 8 0 2 8 1 32 0.25 0.75 
V-Ha 0 0 1 1 1 0 0 0 2 25 3 8 1 42 0.60 

0.52 

0.40 
V-Hb 0 1 0 1 1 0 0 2 0 5 10 4 11 35 0.29 0.71 

V-MAa 0 2 0 0 2 4 0 12 2 6 2 72 3 105 0.69 0.31 
V-MAb 1 0 2 0 0 1 1 4 1 5 3 11 31 60 0.52 0.48 Ʃ 8 10 25 16 18 20 2 69 28 44 27 139 69     

UA 0.63 0.30 0.36 0.44 0.50 0.30 0.50 0.43 0.29 0.57 0.37 0.52 0.45 OA: 0.44   
Mean 

UA per 
group 

0.43 0.41 0.48     

 Kappa 0.31                 

Figure 8. Maps of fuel models in Portugal for the Serra da Lousã (a) and Mafra (b) study areas.

4. Discussion

This study investigated the usefulness of medium point density ALS data, S1, S2
and PALSAR data to classify and map fuel types in six topographically varied areas, with
complex land cover, in Portugal. The models used quantified the relationship between ALS
and field-based measurements, assessing the effects of canopy cover and of pulse density.
We also assessed the performance of multi-source sensors for classifying a large number of
fuel types, combining ALS, S1, S2, and PALSAR data.

Regarding the first objective of the study, fuel model classification using CART with
ALS variables only, the results indicate that understory vegetation in Portugal can be
classified with moderate accuracy (Table 7) into the D, F, M and V fuel groups, with UA
values of 0.50, 0.81, 0.63 and 0.70, respectively. The most problematic fuel model group was
Discontinuous fuel (D), with an estimated UA of 0.50 and a PA of 0.11. A possible reason for
this is classification of the fuel based on the system used in Portugal leads to some confusion
between similar fuel models, resulting in the inaccurate classification of class D. To improve
accuracy, fuel model D would have to be eliminated and its fuel models distributed by the
other three fuel model groups. ALS variables, particularly relative density and vertical
complexity index, were found to be the most important for classifying understory fuel
models. The use of CART, simple CART and RF methods in this analysis has demonstrated
the importance of each method for specific applications. The RF method yielded the poorest
results, with an OA of 0.60 and a kappa value of 0.34, whereas CART produced the best
results in this specific application. Among the three classification approaches examined, the
RF model had poor accuracy, which is consistent with the findings of previous studies with
similar objectives [62,63]. The results confirmed the poor performance of RF, probably due
to the small sample sizes for some fuel model groups. The study findings also indicated that
the moderate results may be due to the limitation of the discrete ALS sensor used, which
may provide more biased and less consistent measurements of forest understory structure
than the full waveform ALS [64–66]. It is possible that our results may be improved at finer
scales by using drone-LiDAR or terrestrial LiDAR scanning (TLS) [67,68], although each
method has its own limitations and cover smaller areas than ALS.

Our study used the three main canopy cover (CC) groups considered in the Portuguese
NFI to analyze the effect of the number of plots per classification group of the model. A
study in semi-arid conifer-dominated forests in the southwestern USA [69] concluded
that canopy cover can be used as a proxy for stand density when developing a combined
individual tree distribution with area-based approaches for estimating understory. In our
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study, better results were obtained for Open Forest than for Dense Forest CC, with an OA of
0.75 and a kappa value of 0.57 (Table 10). The correlation between field measurements and
the ALS-derived structural characteristics of ground and understory vegetation depends
on the forest type and the ALS data configuration. Such values may be different in forests
with more closed canopies or sparser ALS point density [70]. These findings highlight the
importance of tree canopy cover for fuel model classification accuracy.

Even though ALS pulse density is considered an important factor in relation to un-
derstory estimation and fuel type classification, the results reveal that the models yielded
better results with higher point density (10 points m−2) than with lower point density
(5 points m−2). The best results were obtained using CART without cross validation, with
0.71 OA for 5 points m−2 data and 0.78 for 10 points m−2 data. Better results were obtained
with a higher point density given that those values are based on almost twice the number
of plots (316 plots) than with the lower point density (183 plots). We suspect that an imbal-
anced number of plots within the point density groups may also have hurt classification
results. Previous studies produced good estimates using an even lower point density. For
instance, a study that compared two sets of data with densities of 0.5 and 2 points m−2 [46]
produced non-significant improvements with an increasing pulse density for vegetation
structure estimates based on the Prometheus classification scheme. In a study using six
different datasets with point densities ranging from 0.5 to 10 points m−2 [71], the authors
found that accurate estimates of vertical canopy structure can be obtained even with a
pulse density of 0.5 points m−2 across all forest types. However, the results are not directly
comparable since we are classifying understory fuel model with variables related with
vertical canopy structure.

Regarding the multisensor approach, the results obtained with the RF model yielded a
moderate OA of 0.44 and a kappa coefficient of 0.31 (Table 14). The results of the present
study cannot be compared directly with those of other fuel mapping studies as different
methodologies were used, as was a different classification scheme specifically adapted for
fuel types in Portugal. In a study combining ALS data with Landsat 9 imagery, researchers
obtained an OA of 0.82 and a kappa value of 0.77 by using two different fuel classification
schemes—Northern Forest Fire Laboratory (NFFL) and the specific Canary Island fuel
model (CIFM) [48]. Regarding the derived variables, our findings can be compared with
those of most other studies using ALS data for fuel mapping. However, we used spectral
index variables from different seasons (spring, summer, and autumn). While the four
main fuel groups in Portugal were classified with reasonable accuracy, RF yielded poor
results for 13 specific fuel models. The RF models performed similarly to other studies [17],
which obtained slightly better results, with an OA of 0.59 for seven fuel models based
on the Prometheus classification. Therefore, better performances are expected for fewer
fuel models [17,40], increased point density [36], and higher-resolution Multispectral or
even Hyperspectral and UAV (Unmanned Aerial Vehicle)-LiDAR imagery [72]. Even
considering the good accuracy observed in other studies using C-SAR bands [33,39,73] to
classify land-cover vegetation fuel models, the present findings suggest that the use of SAR
variables did not improve the accuracy of the classification of fuel model types, with an OA
of 0.30 and a kappa of 0.17. One of the possible reasons is the low capacity of the signal
to penetrate through vegetation of L-band SAR and C-band SAR from S1 and PALSAR2.
Topography and variables derived from S2 data were found to be the most important for
classification, rather than L and C SAR bands. Future improvements may be obtained
in order to classify fuel model types with the upcoming NASA-ISRO Synthetic Aperture
RaDaR (NISAR) satellite mission in 2024 that will deliver denser L-band time series data at
a higher spatial resolution of 12 m [74].

The results of the present study could be also explained by the imbalanced fuel model
observations in our study; in such cases, the model may struggle to learn patterns from
the minority fuel model due to limited data, and it might end up biased towards the
majority fuel models. Several authors have faced similar problems with different numbers
of observations [75,76]. However, it is worth mentioning that most studies in the literature
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used fewer fuel models and plots [17,46,77]. For all of the metrics together (ALS + S1 + S2
+ PALSAR + DEM), the results showed that the first 20 most important variables include
non-texture variables from PALSAR and S1, and PALSAR variables were more important
than the variables from S1 (Figure A4, Appendix B). Findings of similar studies suggest
that the S1 satellite RaDaR images have a shorter wavelength than the ALOS/PALSAR and
consequently low canopy penetration [78]. One interesting finding is the great improvement
in including ALS data with the RaDaR variables, and that this increases the OA to 0.41
and the kappa value to 0.32. In contrast to ALS variables, optical metrics and spectral
indices derived from S2 do not provide information on vegetation structure, but rather,
they describe the photosynthetic activity of plants [79]. One of the possible reasons for the
results obtained is that fuel models may involve different species in the same group (for
example, M-CAD and M-PIN) with different spectral signals. This may be attributed to the
high number of mixed forest training plots with high species heterogeneity. Regardless of
these limitations, data derived from the S2 optical sensor proved to be more useful than
those from ALOS/PALSAR and S1.

An important issue in terms of analysis is also the different number of variables
from different seasons obtained with S2. As the results showed, summer and spring
variables include spectral indices that were ranked highly in terms of importance (Figure A4,
Appendix B). In addition to the seasonality, the confusion matrix indicated difficulties in
distinguishing between litter with fern understory (M-F) and tall shrubs (V-MAa). As
the M-F fuel model has a very similar plant structure to the shrubs (V-MAa), the RF
model had some difficulty in identifying and distinguishing these two fuel models. Litter
of intermediate to long needle pines (F-PIN) and Litter of intermediate to long needle
pines and shrub under-story (M-PIN) were also similar. The model classified nine correct
observations of F-PIN and predicted seven observations as M-PIN (Table 15), although
these two fuel models are similar in terms of structure in the overstory but with different
understory vegetation. The most promising results were obtained to classify tall- and
low-shrub fuel models (V-Ma and V-Mb). In terms of producer accuracy, V-Ma and V-Mb
yielded PAs of 0.69 and 0.52, respectively. Fuel models M-F and V-Ha also yielded good
PAs of 0.55 and 0.60, respectively.

Improvements in future fuel mapping studies could be made by focusing on some
key points. One way would be to develop fuel models less variable in structure and
composition. Improvement could also be achieved by increasing the number of plots
sampled and their representativeness for each fuel model. Finally, focusing on creating a
more balanced sampling design would prevent large variations in the number sample plots
by fuel model under analysis.

5. Conclusions

This study focused on using RS data to classify fuel model groups and map fuel models
in six environmentally diverse areas in Portugal. The aim was to provide a representative
and accurate classification of fuel model groups at the regional scale to help in forest
management and fire behavior simulation. This study used medium point density ALS
data and S1, S2, and PALSAR2 data to classify and map fuel models. The results of the study
showed that data from ALS sensors can yield a moderately accurate classification of fuel
model groups at a regional scale within the study areas. The CART method produced very
good results in Sparse forests and correctly classified the four main fuel groups in Portugal.
The study also showed that the LiDAR point density effect on the final classification of
the fuel model using the CART method with 10 points m−2 data produced better results
than with the 5 points m−2 density data. The multi-sensor approach showed that the use of
SAR variables derived from S1 and PALSAR satellites did not improve the model, and ALS
alone associated with DEM variables achieved the same performance.

Further research is warranted to improve the understanding of understory forest
structure, focusing on ALS sensors and their spatial and temporal resolution. Future
research should ideally include a ALS coverage for the entire country of Portugal, increase
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the number of observations per fuel model, and rethink fuel model development in terms
of structure and composition. The effects of using High-Resolution Multispectral Imagery
(HRMSI) and Hyperspectral Imagery (HSI) associated with spectral indices should be
compared with the aim of creating a more balanced sample design to avoid the high
variations in the number of sample plots under analysis. The study findings may be
important for fuel treatment planning and for fire behavior simulation.
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Appendix A

Table A1. Area calculated by Google Earth Engine (GEE) in ha associated with elevation range from
Digital Elevation Model (DEM) for each study area.

Study Area Area Calculated (ha) by GEE Elevation Derived from DEM (m.a.s.l)

Mafra 2278 0–357
Pombal 5103 0–347

Monsanto 1210 −10.98–208
Sintra Cascais 8156 −20.67–520

Serras da Lousã 11,784 0–1.203
Vila Pouca de Aguiar 5578 207.51–1196

Total: 34,109

Table A2. Portuguese fuel models and description.

Fuel Group Fuel Model Description

LITTER
F F–RAC Compact conifer litter of short-needled pines
F F–EUC Eucalypt litter
F F–FOL Compact litter of deciduous or evergreen hardwood
F F–PIN Litter of medium to long needle pines
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Table A2. Cont.

Fuel Group Fuel Model Description

LITTER AND VEGETATION
M M–CAD Deciduous hardwood litter and shrub understory
M M–ESC Evergreen hardwood litter and shrub understory
M M–EUC Eucalypt litter and shrub understory
M M–EUCd Discontinuous surface fuels in eucalyptus plantations
M M–PIN Litter of medium to long-needled pines and shrub understory
M M–H Litter with herbaceous understory
M M–F Litter with fern understory

VEGETATION
V V–Ha Tall grass (>0.5 m)
V V–Hb Low grass (<0.5 m)
V V–MAa Tall Shrubs (>1 m) with substantial fine and or dead fuel
V V–MAb Low Shrubs (<1 m) with substantial fine and or dead fuel
V V–MMb Low Shrubs (<1 m) poor in fine dead fuel
V V–MMa Tall Shrubs (>1 m) poor in fine dead fuel

V V–MH Low Shrubs (<1 m), poor in dead fuel and discontinuous, often
mixed with grass

Table A3. Sentinel 2 predictor variables associated with vegetation indices computed for summer,
winter, and spring seasons. Sentinel 1 Backscatter H and V polarization variables associated with
GLCM metrics computed for the period 1 June 2020 to 30 July 2020. ALOS2/PALSAR2 Backscatter H
and V polarization variables with GLCM metrics predicted variables extracted for yearly mosaic.

Sensor Predictor Variables Description

SENTINEL-2
AND

VEGETATION
INDICES

B2 Blue
B3 Green
B4 Red
B5 Vegetation Red Edge
B6 Vegetation Red Edge
B7 Vegetation Red Edge
B8 Near Infrared (NIR)

B8a (B9) Vegetation Red Edge
B11 Short Wave Infrared (SWIR)
B12 Short Wave Infrared (SWIR)

NDVI Normalized Difference
Vegetation Index

OSAVI Optimized Soil Adjustment
Vegetation index

GNDVI Green Normalized Difference
Vegetation Index

NDWI Normalized Difference
Water Index

SENTINEL-1 Backscatter VV and VH
GLCM metrics VV_Mean

VV_Variance
VV_Homogeneity

VH_Mean
VH_Variance

VH_Homogeneity
ALOS2/PALSAR Backscatter HV and HH

GLCM metrics HV_Mean
HV_Variance

HV_Homogeneity
HH_Mean

HH_Variance
HH_Homogeneity
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Table A4. CART without cross validation for Sparse Forest Classification accuracy for different fuel
groups, where D = discontinuous fuel, F = Litter, M = Mixed, V = Vegetation, PA = Producer’s
accuracy, UA = user’s accuracy, and value shown in bold OA = overall accuracy and kappa value.
Classification and reference (field check) frequencies are arranged in columns and rows, respectively.

Observed

Pr
ed

ic
te

d

Fuel group D F M V Σ PA
D 14 2 0 3 19 0.74
F 2 0 0 4 6 0.00
M 2 0 0 5 7 0.00
V 6 0 0 109 115 0.95
Σ 24 2 0 121 147

UA 0.58 0.00 0.00 0.90 OA 0.84
Kappa = 0.51
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Table A5. CART without cross validation for Open Forest Classification accuracy for different
fuel groups, where D = discontinuous fuel, M = Mixed, V = Vegetation, PA = Producer’s accuracy,
UA = user’s accuracy, and value shown in bold OA = overall accuracy and kappa value. Classification
and reference (field check) frequencies are arranged in columns and rows, respectively.

Observed

Pr
ed

ic
te

d

Fuel group D M V Σ PA
D 13 2 7 22 0.60
M 2 27 11 40 0.68
V 5 6 60 71 0.85
Σ 20 35 78 133

UA 0.65 0.77 0.77 OA 0.75
Kappa = 0.57

Table A6. CART with cross validation for Dense Forest Classification accuracy for different fuel
groups, where D = discontinuous fuel, F = Litter, M = Mixed, V = Vegetation, PA = Producer’s
accuracy, UA = user’s accuracy, and value shown in bold OA = overall accuracy and kappa value.
Classification and reference (field check) frequencies are arranged in columns and rows, respectively.

Observed

Pr
ed

ic
te

d

Fuel group D F M V Σ PA
D 4 3 17 5 29 0.18
F 0 22 14 4 40 0.55
M 2 2 73 10 87 0.84
V 2 3 13 45 63 0.71
Σ 8 30 117 64 219

UA 0.50 0.73 0.62 0.70 OA 0.66
Kappa = 0.50
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73. DeCastro, A.L.; Juliano, T.W.; Kosović, B.; Ebrahimian, H.; Balch, J.K. A Computationally Efficient Method for Updating Fuel
Inputs for Wildfire Behavior Models Using Sentinel Imagery and Random Forest Classification. Remote Sens. 2022, 14, 1447.
[CrossRef]

74. Khati, U.; Lavalle, M.; Singh, G. The Role of Time-Series L-Band SAR and GEDI in Mapping Sub-Tropical Above-Ground Biomass.
Front. Earth Sci. 2021, 9, 752254. [CrossRef]

75. Arellano-Pérez, S.; Castedo-Dorado, F.; López-Sánchez, C.; González-Ferreiro, E.; Yang, Z.; Díaz-Varela, R.; Álvarez-González, J.;
Vega, J.; Ruiz-González, A. Potential of Sentinel-2A Data to Model Surface and Canopy Fuel Characteristics in Relation to Crown
Fire Hazard. Remote Sens. 2018, 10, 1645. [CrossRef]

76. Hu, Y.; Xu, X.; Wu, F.; Sun, Z.; Xia, H.; Meng, Q.; Huang, W.; Zhou, H.; Gao, J.; Li, W.; et al. Estimating Forest Stock Volume
in Hunan Province, China, by Integrating In Situ Plot Data, Sentinel-2 Images, and Linear and Machine Learning Regression
Models. Remote Sens. 2020, 12, 186. [CrossRef]

77. Alonso-Benito, A.; Arroyo, L.; Arbelo, M.; Hernández-Leal, P. Fusion of WorldView-2 and LiDAR Data to Map Fuel Types in the
Canary Islands. Remote Sens. 2016, 8, 669. [CrossRef]

78. Patel, P.; Srivastava, H.S.; Panigrahy, S.; Parihar, J.S. Comparative evaluation of the sensitivity of multi-polarized multi-frequency
SAR backscatter to plant density. Int. J. Remote Sens. 2006, 27, 293–305. [CrossRef]

79. Urbazaev, M.; Thiel, C.; Cremer, F.; Dubayah, R.; Migliavacca, M.; Reichstein, M.; Schmullius, C. Estimation of forest aboveground
biomass and uncertainties by integration of field measurements, airborne LiDAR, and SAR and optical satellite data in Mexico.
Carbon Balance Manag. 2018, 13, 5. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.foreco.2020.118268
https://doi.org/10.3390/f10020145
https://doi.org/10.4995/raet.2018.11106
https://doi.org/10.1016/j.foreco.2014.07.011
https://doi.org/10.1016/j.rse.2012.01.020
https://doi.org/10.14358/PERS.81.8.625
https://doi.org/10.5424/fs/2016252-08895
https://doi.org/10.3390/rs14061447
https://doi.org/10.3389/feart.2021.752254
https://doi.org/10.3390/rs10101645
https://doi.org/10.3390/rs12010186
https://doi.org/10.3390/rs8080669
https://doi.org/10.1080/01431160500214050
https://doi.org/10.1186/s13021-018-0093-5

	Introduction 
	Data and Methods 
	Study Areas 
	Field Data 
	ALS Data 
	Multi-Spectral and SAR Data 
	Methods 

	Results 
	Fuel Classification Using ALS Data 
	Simple CART Model 
	Random Forest Model 

	Effect of Canopy Cover on Fuel Model Classification 
	Effect of ALS Pulse Density on Fuel Group Classification 
	Multi-Sensor Approach with Random Forest Classification 

	Discussion 
	Conclusions 
	Appendix A
	Appendix B
	References

