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Abstract: Fire spread prediction is a crucial technology for fighting forest fires. Most existing fire
spread models focus on making predictions after a specific time, and their predicted performance
decreases rapidly in continuous prediction due to error accumulation when using the recursive
method. Given that fire spread is a dynamic spatiotemporal process, this study proposes an expanded
neural network of long short-term memory based on self-attention (SA-EX-LSTM) to address this
issue. The proposed model predicted the combustion image sequence based on wind characteristics.
It had two detailed feature transfer paths, temporal memory flow and spatiotemporal memory flow,
which assisted the model in learning complete historical fire features as well as possible. Furthermore,
self-attention mechanisms were integrated into the model’s forgetting gates, enabling the model to
select the important features associated with the increase in fire spread from massive historical fire
features. Datasets for model training and testing were derived from nine experimental ground fires.
Compared with the state-of-the-art spatiotemporal prediction models, SA-EX-LSTM consistently
exhibited the highest predicted performance and stability throughout the continuous prediction
process. The experimental results in this paper have the potential to positively impact the application
of spatiotemporal prediction models and UAV-based methods in the field of fire spread prediction.

Keywords: fire spread prediction; spatiotemporal prediction; prediction model; self-attention
mechanism; LSTM

1. Introduction

Fire spread prediction is crucial for preventing and fighting forest fires [1,2]. However,
due to the complex interactions between various fire variables, accurately predicting fire
spread remains a significant challenge [3,4]. In order to address this issue, many tradi-
tional fire models have been proposed [5–11], which can be classified into three categories:
physical, empirical, and semi-empirical. While these models are useful in predicting fire
spread, their own limitations may hinder their further application. For example, physical
models involve many fire mechanisms that are suitable for fire research. However, they
require too many input parameters and have a low prediction accuracy, making them less
practical [12]. Empirical models can quickly perform calculations based on the fuel and
weather data of the fire scenarios, but their predictive accuracy decreases when the actual
conditions do not match the historical fire data [13]. Similarly, semi-empirical models
such as the Rothermel model need a larger number of input parameters and a spatially
distributed continuous combustion bed for application [14,15], while the Wang Zhengfei
model requires an environmental slope of fewer than 60 degrees for use [16].
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Recently, intelligent algorithms have demonstrated their ability to account for com-
plex reactions in fire spread [17–19]. The spread of the wildfire front was regarded as a
time-resolved spatial evolution problem to estimate [20]. These theories provide a broad
application space for deep learning methods in fire prediction, leading to the development
of numerous related models. In order to address the challenge of wildfires spreading in
both simple homogeneous and complex heterogeneous landscapes, researchers used a
deep convolutional inverse graphics network (DCIGN) to estimate the burn maps. The
DCIGN-based method predicted burn maps that were consistent with FARSITE’s simulated
results while requiring much lower computational costs [20]. Similarly, an artificial neural
network model (ANN) was constructed to facilitate a better understanding of fire cover
propagation behaviors and quickly generate fire peak profiles. When compared to a fire
propagation model that incorporates the Wang Zhengfei model and cellular automata,
the ANN exhibited higher accuracy in predicting forest fires in Heilongjiang Province,
China [21]. Moreover, researchers proposed a multi-kernel convolution neural network
(CNN) deep learning model to predict wildfire spread across the USA based on multiple fire
variables. This model achieved more accurate predicted results than CNNs without a multi-
kernel mechanism and fixed kernel size [22]. Deep learning models have also been utilized
for other fire behaviors, such as fire speed, burned area, and fire susceptibility [23–25].
A deep neural network with a hybrid architecture (DNN) was proposed to process the
spatial fields of landscape inputs and scalar weather inputs to predict the burned areas [26].
Furthermore, a model based on CNN was designed to predict the propagation speed of
forest fires in any direction, which had a higher prediction accuracy than the improved
Wang Zhengfei model [27]. Based on the good performance of deep learning modes in
addressing fire-related issues, deep learning technologies can be considered an effective
method for predicting fire spread.

Fire spread is a dynamic spatiotemporal process [28,29]. A series of accurately pre-
dicted combustion images (combustion image sequence) can better reflect the overall trend
of the fire so as to better guide forest fire management. However, the above models only
have high accuracy in predicting combustion images after a specific time. Their predicted
ability is unsustainable when using the recursive method for continuous prediction [20].
In order to solve this issue, a convolutional long short-term memory (ConvLSTM) recurrent
neural network (RNN) was introduced to model the spatiotemporal dynamics of the fire
front over an extended duration [30,31]. This study [31] was the first attempt at RNN in
fire spread prediction, and it showed that ConvLSTM could better capture the fire spread
dynamics over consecutive time steps than non-temporal convolutional neural networks
(CNNs). Besides current wind characteristics (short-term dependency), historical fire fea-
tures, such as the previous burning state and the energy released by burning, also influence
the current burning state and the future evolution (long-term dependency), making fire
spread a complex long-term phenomenon [32]. The inadequacy of ConvLSTM in long-
term dependency modeling leads to a decrease in model prediction accuracy, and a more
powerful model is needed [31]. In the field of image frames prediction for spatiotemporal
data, the Convolutional Tensor-Train LSTM (Conv-TT-LSTM) with the addition of a novel
tensor-order module was developed to help the model learn the long-term spatiotempo-
ral dependency in sequence data [33]. However, both Conv-TT-LSTM and ConvLSTM
only have one memory unit, and that memory unit is forced to cope with long-term and
short-term dynamics simultaneously, which greatly limits the overall performance of the
model. Based on this, the predictive recurrent neural network (PreRNN) was proposed [34].
It contains a new spatiotemporal memory unit that can handle short-term and long-term
dynamics, together with the original memory unit.

Although both Conv-TT-LSTM and PredRNN have different advantages compared
to ConvLSTM, drawbacks still exist when using them directly for fire prediction. The
prediction process of combustion image sequences involves massive amounts of informa-
tion on temporal and spatial attributes. Once the two models do not mine the important
information from the historical information, this will lead to an increase in redundant infor-
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mation and ultimately affect the accuracy of the subsequent model predictions. Currently,
attention mechanisms are often used to address this issue. They can adaptively weight
features according to the importance of the input, thus realizing a dynamic selection of
features [35]. Improved models based on the attention mechanism have been applied to fire
problems [36–38]. However, they are limited to fire detection or predicting a single burn
area value, which cannot intuitively indicate the burned position and overall trend of fire
spread. To this end, we want to select an appropriate attention mechanism to improve
the model’s ability to predict combustion image sequences, thereby accurately expressing
the above two fire phenomena. Self-attention [39] can help the model capture complex
temporal relationships efficiently and flexibly. In addition, it can directly connect current
information with historical information through parallel calculation and integrate impor-
tant information according to the relevance between the two. Its advantages have been
repeatedly verified in sequence prediction [40–42].

Based on the above considerations, the purpose of this research is to develop a neural
network model that can accurately predict the combustion image sequence. We combined
the advantages of PredRNN [34] and made further improvements to its feature transfer
rules. We designed a more detailed two-stream mechanism, comprising temporal memory
flow and spatiotemporal memory flow, to help the model learn more complete historical
fire features. Moreover, we introduced self-attention mechanisms [39] at the location of the
spatiotemporal and temporal forgetting gates to help the model select important features
from massive historical fire features. Finally, we proposed an expanded neural network of
long short-term memory based on self-attention mechanisms (SA-EX-LSTM).

The remainder of the paper is organized as follows: Section 2.1 describes the small-
scale ground fire experiments. Section 2.2 describes the data preprocessing. Section 2.3
describes the task definition of predicting combustion image sequences. Section 2.4 de-
scribes the state-of-the-art spatiotemporal prediction models. Section 2.5 describes the
self-attention mechanism. Section 2.6 describes the structure of SA-EX-LSTM. Section 2.7
describes the performance metrics. Section 3 presents the influence of different input
sequence lengths on model prediction and the comparative and predicted results of the
SA-EX-LSTM. Section 4 discusses these results. Section 5 concludes regarding the principal
works and the ability to predict the future.

2. Materials and Methods
2.1. Small-Scale Ground Fire Experiments

The experimental site for conducting small-scale ground fire experiments was selected
in Acheng District, Harbin, China, as shown in Figure 1a. The experimental fire data were
collected using a complete set of equipment, some of which are presented in Figure 1b. The
DJI M600 UAV equipped with an infrared and visible binocular camera was used to capture
the fire spread in real time. Additionally, to ensure the integrity and accuracy of the collected
fire spread data, the DJI T16 UAV was deployed to supplement the images captured by
the M600 UAV using the same binocular camera. The TGC-FSFX-C anemometers were
placed in four directions of the fire site to record real-time wind speed and direction.
Considering the limitation of combustible material quantity and enabling perspective
transformation [43] for all designed fire experiments, four thermal calibration points were
established at 12.8 m east–west (E-W) and 12.8 m north–south (N-S) around the fire site.

We conducted nine small-scale ground fire experiments, and their relevant parame-
ter settings are shown in Table 1. All the fire experiments were conducted in the same
location. In order to ensure the applicability of the proposed model in different scenarios,
we collected a variety of combustibles representative of Northeast China, such as conifer,
camphor pine, and poplar leaves [44], for experiments. Moreover, we arranged different
laying factors, such as the combustible load and bed depth, to simulate diverse environ-
mental variables present during the actual forest fire spread [45]. Each experimental fire
continued until all combustible materials had burned out, which typically lasted around
8–10 min depending on the laid combustible area as well as the wind speed and direction
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at the scene. Throughout the experiments, the UAVs captured image frames of the fire
scene continuously while anemometers recorded wind characteristics at the same frame
rate. Finally, a total of 4713 fire scene images and the corresponding wind characteristic
data were collected.

Figure 1. Information about the experimental location and experimental configuration. (a) represents
the experimental fire location information. The experimental site is located in Acheng District,
Harbin, China, and the combustible materials are collected nearby, mainly including leaf wood
and conifer. (b) represents the experimental fire configuration information, mainly that from UAVs
and anemometers.

Table 1. Relevant parameter settings for nine small-scale ground fire experiments.

Num Combustibles Combustible
Area

Combustible
Weight

Combustible
Load Bed Depth Moisture

Content
Experimental

Location

1 Leaf wood 4 × 5 m² 17.895 kg 1.482 kg/m² 5.64 cm 12.2% 126.7524° E,
45.5726° N

2 Leaf wood 6.5 × 7.5 m² 42.86 kg 1.199 kg/m² 6.08 cm 12.1%
3 Leaf wood 6.5 × 7.5 m² 44.275 kg 1.201 kg/m² 6.0 cm 12.5%
4 Leaf wood 8.5 × 8.5 m² 110.345 kg 1.543 kg/m² 5.0 cm 13.9%
5 Conifer 5.5 × 7.3 m² 71.915 kg 1.791 kg/m² 5.0 cm 12.8%
6 Conifer 5.5 × 7 m² 91.06 kg 2.454 kg/m² 7.0 cm 13.1%
7 Sylvestris 7.5 × 7.5 m² 92.565 kg 1.6098 kg/m² 5.0 cm 13.3%
8 Sylvestris 5 × 8 m² 55.6 kg 1.39 kg/m² 6.05 cm 13.0%
9 Poplar leaves 5 × 8 m² 96.7 kg 2.4175 kg/m² 5.0 cm 14.0%

2.2. Data Preprocessing
2.2.1. Preprocessing for Combustion Images

There are two types of images collected for each frame, the visible image frame and
infrared image frame, as shown in Figure 2. Compared with the visible image frame, the
infrared image frame based on thermal imaging technology can avoid the interference
caused by a large amount of smoke released by combustion and the surrounding envi-
ronmental factors in extracting fire scene information [46,47]. Therefore, infrared image
frames were selected as combustion images for processing, in which the white pixels repre-
sent the burning areas, and the black pixels represent the non-burning areas. Firstly, the
median filter method [48] was used to filter the noise of the infrared image frames. Then,
the perspective transformation method [49] based on four calibration points was used to
convert them into an orthographic projection form. This is because the tilt angle exists
between the infrared image taken by the UAV and the ground, and if the original image is
directly used for prediction, the predicted result will have a large visual deviation from the
actual result. Finally, considering the hardware, the infrared image frames were resized to
128 × 128 pixels. The perspective transformation is shown in Formula (1) [27]:
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[
x′ y′ z′

]
=
[

u vs. w
] a11 a12 a13

a21 a22 a23
a31 a32 a33

 (1)

where a3×3 is the projection matrix, u and v are the original image coordinates, and w is the
depth scaling factor, with a value of 1. The image coordinates, x and y, obtained after the
perspective transformation, are shown in Formulas (2) and (3) [27]:

x =
x′

z′
=

a11u + a21v + a31

a13u + a23v + a33
(2)

y =
y′

z′
=

a12u + a22v + a32

a13u + a23v + a33
(3)

Figure 2. The comparison of the visible and infrared image frames captured by the M600 UAV.
(a) represents the visible image frame, from which it is difficult to show the fire scene clearly due to a
large amount of smoke and irrelevant environmental information. (b) represents the infrared image
frame, which clearly shows the fire scene.

2.2.2. Preprocessing for Environmental Variables

The environmental variables are classified as terrain, climate, and combustible vari-
ables, which are important for fire spread [50–52]. However, due to the limitations in terms
of the experimental conditions and scales, the effects of some environmental variables
on experimental fire spread were difficult to reflect. Specifically, all of the experimental
fires were carried out on the flat ground, meaning that slope, aspect, and elevation did
not play a role in experimental fire spread. Furthermore, our experiments were all small-
scale fires within a short time period, which led to the effects of temperature, humidity,
and combustible moisture content on experimental fire spread being static. Since the laid
combustibles were all coniferous, their impact on experimental fire spread was almost
identical. Additionally, combustible load and bed depth primarily affected the duration of
burning. Only the dynamically changing wind largely guided experimental fires’ speed
and direction of spread.

The limited environment variables discussed above may have a negative impact
on model training and testing. For instance, employing them for model training may
weaken the influence of wind on experimental fire spread while strengthening that of
other variables. Thus, we used two preprocessing methods for environmental variables.
To process wind speed and direction, we initially computed the average values taken
by anemometers in four directions. Then, we transformed these data into pixel images
using the min-max scaling algorithm [53] before incorporating them into the combustion
images via the channel merging method [54]. For other environmental variables, their
effects on the fire spread can be implicitly represented in the dynamic continuous frames
of the combustion images, as the combustion images captured by the infrared camera
change dynamically over time and have two-dimensional spatial information. Therefore,



Fire 2023, 6, 237 6 of 20

we intended to enable the model to learn autonomously about their overall impact on fire
spread by mining the information implied in the input sequence of consecutive multi-frame
combustion images. The min-max scaling algorithm is defined as [55]

x∗ =
x−min(x)

max(x)−min(x)
(4)

where x∗ is the output value, and x is the characteristic value of wind speed or direction.

2.3. The Task Definition of Predicting the Combustion Image Sequence

Suppose a fire spreads outward with time in the spatial domain of a H ×W grid
consisting of H rows and W columns. In each grid, there are C feature channels that vary
over time. Thus, we can set Xt = RC∗H∗W to denote the t-th frame in the input sequence of
combustion images, where H and W represent the height and width of the input image
frames, C represents the number of channels of the input image frames, and R represents
the domain of the fire scene features. Based on this, we can introduce the task of predicting
the combustion image sequence. Taking the combustion image frames of the previous T
timestamps (Xin = {X1, X2, . . . XT}) as the model input, then using the model to predict the
combustion image frames of the next K timestamp (X̄out = {X̄T+1, X̄T+2, . . . X̄T+K}), the
predicted combustion image frames should be as close as possible to the real combustion
image frames (Xout = {XT+1, XT+2, . . . XT+K}).

2.4. The State-of-the-Art Spatiotemporal Prediction Models

The spatiotemporal prediction models were selected to solve the defined task, given
that fire spread is a dynamic process occurring in both space and time. Two of the main
state-of-the-art models are convolutional long short-term memory (ConvLSTM) and pre-
dictive recurrent neural network (PredRNN). ConvLSTM [23] has been shown to be ef-
fective in predicting fire sequences, and its structure is shown in Figure 3. In this model,
the current input state Xt serves as the input for the current layer, together with the
hidden state Ht−1 and the historical memory state Ct−1 from the previous layer in the
horizontal direction. Then, the input is continuously fitted through the upward transmis-
sion to obtain advanced image features, and is finally output as the predicted result of
the next moment X̄t+1. The main working principle of ConvLSTM can be described as
follows [30,31]:

ft = Sigmoid(Wx f ∗ Xt + Wh f ∗ Hl
t−1 + Wc f ⊗ Cl

t−1 + b f )

it = Sigmoid(Wxi ∗ Xt + Whi ∗ Hl
t−1 + Wci ⊗ Cl

t−1 + b f )

gt = tanh(Wxg ∗ Xt + Whg ∗ Hl
t−1 + bg)

Cl
t = ft ⊗ Cl

t−1 + it ⊗ gt
ot = Sigmoid(Wxo ∗ Xt + Who ∗ Hl

t−1 + Wco ⊗ Cl
t + bo)

Hl
t = ot ⊗ tanh(Cl

t)

(5)

where ∗ is the convolution operator, and⊗ is the Hadamard product. Sigmoid and tanh are
activation functions. C and H are the history memory state and hidden state, respectively.
ft, it, gt, and ot are the forgetting gate, input gate, modulation gate, and output gate,
respectively. W is the weight matrix of each input state, memory state, and hidden state. b
is the bias parameter corresponding to each control gate.

PredRNN [34] is an improved model based on ConvLSTM, and its structure is shown
in Figure 4. Compared with ConvLSTM, it adds a spatiotemporal memory flow, which is
highlighted in blue in Figure 4a. This additional flow enables PredRNN to overcome the
problem of the lowest layer on the current timestamp, ignoring the topmost information
from the previous timestamp, as indicated by the red line in Figure 4a. Furthermore, Pre-
dRNN employs both temporal memory flow C and spatiotemporal memory flow M to cope
with long-term dynamics and short-term dynamics, respectively. Specifically, it utilizes
temporal memory flow to process historical fire features and spatiotemporal memory flow
to process the current input combustion image frame and wind characteristics informa-
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tion. This dual approach is more efficient than processing both dynamics simultaneously
using only memory units C. According to [34], PredRNN’s primary working principle is
described in Formula (6). Both ConvLSTM and PredRNN are used as comparative models
for the horizontal comparison experiment, where they are trained and tested using the
same method as the proposed model.

ft = Sigmoid
(

Wx f ∗ Xt + Wh f ∗ Hl
t−1

)
it = Sigmoid

(
Wxi ∗ Xt + Whi ∗ Hl

t−1

)
gt = tanh

(
Wxg ∗ Xt + Whg ∗ Hl

t−1

)
f ′t = Sigmoid

(
W ′x f ∗ Xt + W ′m f ∗Ml−1

t

)
i′t = Sigmoid

(
W ′xi ∗ Xt + W ′mi ∗Ml−1

t

)
g′t = tanh

(
W ′xg ∗ Xt + W ′mg ∗Ml−1

t

)
Cl

t = it ⊗ gt + ft ⊗ Cl
t−1

Ml
t = i′t ⊗ g′t + f ′t ⊗Ml−1

t

ot = Sigmoid
(

Wxo ∗ Xt + Who ∗ Hl
t−1 + Wco ∗ Cl

t + Wmo ∗Ml
t

)
Hl

t = ot ⊗ tanh
(

W1×1 ∗ Cl
t + W1×1 ∗Ml

t

)

(6)

where M and C represent the spatiotemporal memory state and temporal memory state,
respectively. The other parameters are similar to those in Formula (5).

Figure 3. The structure of ConvLSTM. (a) represents the network framework of ConvLSTM. (b) rep-
resents the inner structure of ConvLSTM.
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Figure 4. The structure of PredRNN. (a) represents the network framework of PredRNN. (b) repre-
sents the inner structure of PredRNN.

2.5. The Self-Attention Mechanism

Fire spread is a complex long-term phenomenon [32]. Historical fire features, such
as the previous burning state and energy released by burning, affect the current burning
state and future fire propagation. Therefore, predicting the combustion image sequence
is different from other prediction problems, as it involves massive amounts of historical
information on temporal and spatial attributes. Once the above spatiotemporal prediction
models fail to mine the useful information regarding fire spread increment from these
historical fire features, it may lead to an increase in redundant information that can affect
the subsequent prediction of the model. To address this issue, the self-attention mecha-
nism [39], which can be regarded as a dynamic feature selection process, is introduced.
By incorporating it into the forgetting gate structures of the spatiotemporal prediction
model, the model can capture important features from historical fire features by adaptively
weighting features. The self-attention mechanism is defined as follows [56]:

Y = So f tMax(QKT)V (7)

where So f tMax is an activation function, and Q, K, and V represent the query, key, and
value, respectively. From the perspective of the spatiotemporal prediction model and in
relation to the defined task, Q denotes the current moment’s model input. Its purpose is
to score K, which represents historical fire features, in order to obtain an attention score.
This score is then multiplied by historical fire features V, which is the same as K, to achieve
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the self-attention process. The objective of this process is to select the important features
associated with the increase in fire spread from massive amounts of historical fire features.

2.6. The Structure of the SA-EX-LSTM

In order to accomplish the defined task, two main points need to be addressed: (1) The
model should learn all historical fire feature information stored in the previous layers in as
much detail as possible during feature transfer. (2) The model should be able to select the
important features that impact the current combustion image prediction from the massive
dataset of historical fire feature information. To this end, we proposed an expanded neural
network of long short-term memory based on self-attention (SA-EX-LSTM). The model
input consists of a series of three-channel images with combustion images, wind speed,
and wind direction information. The model output is a subsequent combustion image
sequence. The overall network framework of SA-EX-LSTM is shown in Figure 5, and its
inner structure is shown in Figure 6.

Figure 5. The network framework of SA-EX-LSTM.

Concerning point (1), we followed the two-stream mechanism of PredRNN and fur-
ther improved its original feature transfer rules. When the spatiotemporal memory units
M pass vertically upwards, each passing layer will transfer all previous spatiotemporal
features (M1:l−1

t ) containing the current input combustion image and wind characteristic
information to the new layer (SA-EX-LSTML), as depicted in the blue section of Figure 5.
Similarly, when the temporal memory units C pass horizontally, each passing layer will
transfer all previous temporal features (Cl

1:t−1) containing the historical fire feature infor-
mation to the new layer, as shown in the yellow section of Figure 5. Based on this new rule,
SA-EX-LSTM at each layer can learn more complete historical fire features from improved
spatiotemporal and temporal memory flow. Furthermore, the loss of cross-frame historical
fire information (the flow of the topmost memory state of the previous timestamp to the
lowest of the current timestamp, and the flow of the memory state between parallel layers
of adjacent timestamps) can be minimized.
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Figure 6. The inner structure of SA-EX-LSTM.

Regarding point (2), we introduced the self-attention mechanism at the location of the
spatiotemporal forgetting gate f ′t and temporal forgetting gate ft, as shown in the red box
section of Figure 6. Taking the role of self-attention in the temporal forgetting gate as an
example, it performs parallel computation on historical temporal features (Cl

1:t−1) and the
current model input that has been processed by the temporal forgetting gate. Subsequently,
the calculated result is activated by the So f tMax function to obtain the weights of the histor-
ical features. Finally, the self-attention mechanism helps the model focus on the important
features associated with the increase in fire spread based on these weights. Furthermore,
since the combustion state at the t− 1-th moment has the most significant impact on the
prediction of the t-th moment, the temporal memory state of the previous timestamp (Cl

t−1)
was appended to the outcome after the self-attention process was concluded [57]. Likewise,
self-attention performed a comparable operation in the spatiotemporal forgetting gate,
except the historical temporal features (Cl

1:t−1) were replaced with historical spatiotemporal
features (M1:l−1

t ). The addition of self-attention mechanisms can help the model better
handle the complete historical fire features brought about by improved transfer rules. More-
over, when there is strong interference present within the historical fire features, meaning
that many data in these features have little influence on the current combustion image
prediction, the effect of the self-attention mechanism will become even more pronounced.
In summary, the overall process of each SA-EX-LSTM is as follows:
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ft = Sigmoid
(

Wx f ∗ Xt + Wh f ∗ Hl
t−1 + b f

)
it = Sigmoid

(
Wxi ∗ Xt + Whi ∗ Hl

t−1 + bi

)
gt = tanh

(
Wxg ∗ Xt + Whg ∗ Hl

t−1 + bg

)
f ′t = Sigmoid

(
W ′x f ∗ Xt + W ′m f ∗Ml−1

t + b′f
)

i′t = Sigmoid
(

W ′xi ∗ Xt + W ′mi ∗Ml−1
t + b′i

)
g′t = tanh

(
W ′xg ∗ Xg + W ′mg ∗Ml−1

t + b′g
)

SA
(

ft, Cl
1:t−1

)
= So f tMax

(
ft ·
(

Cl
1:t−1

)T
)
· Cl

1:t−1

Cl
t = it ⊗ gt + LayerNorm

(
Cl

t−1 + SA
(

ft, Cl
1:t−1

))
SA
(

ft, M1:l−1
t

)
= So f tMax

(
ft ·
(

M1:l−1
t

)T
)
·M1:l−1

t

Ml
t = i′t ⊗ g′t + LayerNorm

(
Ml−1

t + SA
(

ft, M1:l−1
t

))
ot = Sigmoid

(
Wxo ∗ Xt + Who ∗ Hl

t−1 + Wco ∗ Cl
t + Wmo ∗Ml

t + bo

)
Hl

t = ot ⊗ tanh
(

W1×1 ∗ Cl
t + W1×1 ∗Ml

t

)

(8)

where ∗ is the convolution operator, and · and ⊗ denote the matrix product and the
Hadamard product, respectively. ft, it, and gt represent the forgetting gate, the input
gate, and the modulation gate of the temporal memory module, respectively. f ′t , i′t, and g′t
delegate the forgetting gate, the input gate, and the modulation gate of the spatiotemporal
memory module, respectively. W and b denote the weights and biases of each control gate
unit. SA is the self-attention transition unit. Cl

t is the l-level temporal memory state of the
t-th timestamp, and Ml

t is the l-level spatiotemporal memory state of the t-th timestamp.
Cl

1:t−1 denote all the temporal memory states from the first timestamp to the t − 1-th
timestamp of layer l. M1:l−1

t delegate all the spatiotemporal memory states from the first
level to the l − 1-th level within the t-th timestamp. Hl

t denotes the l-level layer hidden
state of the t-th timestamp. ot is the output gate that couples Cl

t and Ml
t . W1×1 is a 1 × 1

reduced-dimensions convolutional layer. Moreover, LayerNorm [58] is used to ensure the
stability of data feature distribution, and accelerate model convergence.

The architecture of SA-EX-LSTM was built by PyTorch, and all the experiments were
conducted on an AMD R7-5800H 4.40 GHz processor with 16 GB RAM and an NVIDIA GTX
3060 graphics card. The batch size [59], which is the number of data points selected for one
round of training, was set to 2. To evaluate the difference between the predicted and real
results to guide the model training, the mean square error (MSE) [60] was selected as the loss
function, which is a commonly used measure in regression problems. Another important
hyperparameter in model training is the learning rate [61], which determines whether
the loss function can converge to the minimum and how to converge to the minimum.
The Adam optimizer [62] was selected to allow the model to automatically adjust the
learning rate while training, and its initial value was set to 1× 10−3. The data from eight
experimental fires (4361 pairs of combustion images and their corresponding wind speed
and direction) were used for model training, and the data from one experimental fire
(352 pairs of combustion images and their corresponding wind speed and direction) were
used for model testing.

2.7. Performance Metrics

In order to comprehensively evaluate the model’s predicted performance, several com-
mon metrics in the image generation task were selected. Structural similarity (SSIM) [63]
was used to measure the similarity between predicted and real combustion images. It is
defined as follows [64]:
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SSIM(X, X̄) =
(2µXµX̄ + c1) + (2σXX̄ + c2)(

µ2
X + µ2

X̄ ++c1

)(
σ2

X + σ2
X̄ ++c2

) (9)

where X and X̄ represent the predicted and real combustion image frame, respectively. σ2

is the variance of the image. µ is the average of the image. σXX̄ is the covariance of two
images. c is the bias constant.

The peak signal to noise ratio (PSNR) [65] was used to measure the noise of the
predicted combustion images, i.e., the presence of some white pixels (predicting a fire
in that raster) in the surrounding environment of the predicted combustion image. It is
defined as follows [66]:

MSE = 1
H×W ∑H

i=1 ∑W
j=1[X(i, j)− X̄(i, j)]2

PSNR = 10× lg
[
(2n−1)2

MSE

]
(10)

where MSE denotes the mean square error of X and X̄. H and W represent the height and
width of the image, respectively.

Learned perceptual image patch similarity (LPIPS) [67] was used as one of the perfor-
mance metrics of the model. Compared with SSIM and PSNR, LPIPS can better explain
the slight gap between predicted and real combustion images. Among the above three
metrics, the larger the SSIM and PSNR values, the smaller the LPIPS value, and the better
the model-predicted performance.

3. Results
The Influence of Different Input Sequence Lengths on Model Prediction

Different input sequence lengths can impact the predicted performance of the model,
as they imply different amounts of historical fire information. To account for this, we used
combustion image sequences in sets of five, ten, fifteen, and twenty frames, with corresponding
wind characteristics, as inputs to the model. Subsequently, we predicted the combustion
image sequence for the following sixty frames beginning from the last frame of the input.
The partial results of the predicted fire sequences in the testing set are shown in Figure 7. In
addition, to determine the optimal number of input frames, we evaluated the model’s prediction
performance and time required to predict the 60-frame sequence in the whole testing set, and
used a spline curve to fit these data. The fitting results are presented in Figure 8.

Figure 7. Example of predicted results for SA-EX-LSTM with different frame inputs. A total of 5, 10,
15 and 20 frames of combustion images and their corresponding wind speed and direction were used
as the model inputs for predicting the next 60-frame combustion images.
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Figure 8. Quantitative results of SA-EX-LSTM prediction using different frame inputs. (a–c) rep-
resent the quantitative results for the model-predicted performance using different frame inputs.
(d) represents the quantitative result of the time required for model prediction using different frame
inputs, where the blue line indicates the initialization time (data preprocessing and model weight
loading), and the red line indicates the prediction time.

The SA-EX-LSTM was compared with the state-of-the-art spatiotemporal prediction
models, including ConvLSTM and PredRNN, to assess its predicted performance. Con-
sidering the two improvements made in the proposed model, the expended LSTM model,
EX-LSTM (the SA-EX-LSTM model without self-attention mechanism), was also used as a
comparison model. The aforementioned models were applied to the testing set sequences
by inputting 15-frame combustion images and their corresponding wind characteristics to
predict future 60-frame combustion images. The predicted results from multiple moments
were selected, and their predicted errors are visualized in Figure 9. Red pixels indicate
over-predicted pixels (there is no fire in the grid, but the model predicts that there is a
fire), and blue pixels represent under-predicted pixels (fire exists in the grid, but no fire is
predicted). In addition, we quantified the performance variation of these models across the
entire continuous prediction period for the testing set sequences, as shown in Figure 10.
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Figure 9. Visualization of the predicted results for multiple moments using different models. A total of
five moments of prediction results are selected: T = 16, T = 30, T = 45, T = 60, and T = 75. The horizontal
and vertical axes of each result are the pixel grid counts, and the unit is 10 cm. (a–d) represent the
predicted results of ConvLSTM, PredRNN, EX-LSTM, and SA-EX-LSTM, respectively. Red pixels
indicate the parts experiencing over-prediction by the models, and blue pixels indicate the parts
experiencing under-prediction by the models.
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Figure 10. Quantitative results regarding variation in continuous predicted performance using
different models.

4. Discussion

Changes in input sequence length can affect the predictive performance and the
prediction time of the model [68,69], as demonstrated in Figures 7 and 8. With the input
frames increasing, the predicted performance of SA-EX-LSTM gradually improves. This
phenomenon is because more input frames provide more historical information on fire
features, allowing the model to better learn the process and trend of fire spread. This effect
is particularly significant when the model input frames are small. By accumulating input
frames from 5 to 20, the SSIM and PSNR increase by 0.041 and 5.27675, and the LPIPS
decreases by 0.02838. Furthermore, the growth rate of the model’s predicted performance
begins to slow down after the input frames exceed 15 frames, as historical fire feature
information from too early is less relevant to the current fire spread. Inputting too many
previous combustion images can lead to information redundancy, which interferes with
model prediction [70]. Although the increase in input frames is beneficial to the model’s
predicted performance, it is also accompanied by an increase in initialization time and
prediction time, thereby impacting model efficiency [71,72]. As the input frames accumulate
from 5 to 20, the prediction time of the model increases by 10.17%, with no significant
decrease in growth rate. Therefore, it is not feasible to blindly increase the input frames
only for the model’s predicted performance, and the predicted efficiency should also be
taken into consideration. In order to strike a balance between the two, we ultimately select
15 consecutive frames of combustion images as the input for SA-EX-LSTM.
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The predicted results of SA-EX-LSTM and its comparative models at multiple equidis-
tant moments can be clearly seen in Figure 9. All of the models can predict the next
one-frame combustion image well. However, as the number of predicted time frames
increases, some models face difficulty in maintaining their predictive performance due to
the accumulation of prediction errors in pixels [73]. ConvLSTM [31] shows a significant
decrease in predictive performance in the mid-term of the predicted sequence (continuously
predicting 30 frames, T = 45) due to the inadequate processing of historical fire features [33].
In comparison, PredRNN [34] and EX-LSTM still have a better-predicted performance in
the mid-to-late term of the predicted sequence (continuously predicting 45 frames, T = 60).
This result shows that the addition of spatiotemporal memory units to the two models
helps the original memory units share the processing pressure for short-term dynamics
(the current combustion image and wind characteristics information) [34]. Only SA-EX-
LSTM maintains good predicted performance in the late term of the predicted sequence
(continuously predicting 60 frames, T = 75).

Figure 10 presents the quantitative results of the continuous predicted performance us-
ing the models discussed above. SA-EX-LSTM, represented by the yellow line, consistently
exhibits the highest predicted performance and stability, thanks to the improved feature
transfer rules and the integrated self-attention mechanism [39]. During the prediction of
the next 60-frame combustion images, SA-EX-LSTM achieves an SSIM over 0.88669 and
PSNR above 27.99768 while keeping LPIPS below 0.06692 [74]. Furthermore, EX-LSTM is
used as a comparative model for an ablation experiment [75] to more accurately describe
the influence of the aforementioned improvements. By improving the feature transfer rules,
EX-LSTM can learn more complete historical fire features to guide the model prediction,
resulting in superior predicted performance compared to PredRNN throughout the pre-
dictive process. However, it should be noted that ConvLSTM’s predicted performance
decreases faster than PredRNN after the mid-term of the prediction sequence due to the
improved rules introducing excessive historical fire information, which the model cannot
use correctly. The self-attention mechanism can address this issue by being integrated into
the forgetting gates of the model, thereby helping the model select the important features
associated with the increase in fire spread and suppress redundant features from massive
datasets of historical fire features [35]. The improvement in the model-predicted perfor-
mance by the self-attention mechanism is evident in the quantified results of SA-EX-LSTM
and EX-LSTM.

Although there are some limitations to the experiment, they have minimal impact on
the overall evaluation of the proposed model. The improved transfer rules and integrated
self-attention mechanism increase model complexity and prediction time, but this is offset
by the improvement in predicted performance. Given that SA-EX-LSTM only takes 2.6 s
to predict the testing set sequence (a total of ten 60-frame sequences), we did not consider
its gap with PredRNN and ConvLSTM in terms of prediction time. Within the fire margin
of the infrared image, there exist areas that have been fully burned and appear as black
pixels in Figure 2b. Since we did not fill the areas, the models in this paper classify them as
combustible. This may result in a decrease in the model’s predicted performance. Moreover,
although our evaluation of the proposed models was limited to predicting 60-frame (60 s)
combustion images, the model can be applied to longer-duration fires by adjusting the frame
rate captured by the infrared camera [76]. Our proposed model predicts the combustion
image sequence based on wind characteristics and achieves good predicted performance
in small-scale experimental fires, positively impacting the application of spatiotemporal
prediction models in fire spread. In addition, all of the models in the study were trained
and tested using infrared images taken by the UAVs, providing theoretical support for the
application of UAVs in fighting forest fires.

5. Conclusions

In order to accurately predict combustion image sequences to better guide forest
fire management, we proposed an expanded neural network of LSTM based on self-
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attention (SA-EX-LSTM). The proposed model has two improvements over the previous
spatiotemporal prediction model. First, it incorporates a more detailed feature transfer rule,
enabling the model to learn more complete historical fire features. Second, the self-attention
mechanisms are incorporated into the temporal and spatiotemporal forgetting gates to
help the model select the important features associated with the increase in fire spread.
We conducted a total of nine fire experiments and used these data to train and test the
proposed model. Upon analyzing the results, we draw the following conclusions:

(1) The input sequence length is a critical variable for the model, as it influences the
model prediction through the embedded historical fire information. As the input frames
increase, the model’s predicted performance improves, but this is also accompanied by an
increase in the initialization time and prediction time. For the dataset used in the study, the
optimal value is 15 frames.

(2) In comparison to state-of-the-art models, including ConvLSTM [31], and Pre-
dRNN [34], the proposed model consistently exhibits the highest predicted performance
and stability when predicting the subsequent 60-frame combustion images. Its SSIM and
PSNR can reach above 0.88669 and 27.99768, respectively, while maintaining an LPIPS value
below 0.06692. Furthermore, ablation experiment results indicate that the improved feature
transfer rules and the integrated self-attention [39] are both indispensable. By processing
the historical fire features, they can improve the predicted performance of the proposed
model to varying degrees.

(3) The proposed model predicts the combustion image sequence based on wind
characteristics and achieves good predicted performance in small-scale experimental fires,
positively impacting the application of spatiotemporal prediction models in the field of fire
spread prediction. In addition, all of the models in this study were trained and tested using
infrared images taken by the UAVs, providing theoretical support for the application of
UAVs in fighting forest fires.
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