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Abstract: Mapping fire risk in South Florida depends on spatially varying water levels, fuel charac-
teristics, and topography. When surface water levels recede below the lowest topographic features
(cypress strands, marshes, etc.), the ecosystem loses its natural, wetted fire breaks, and landscape-level
fire risk increases. We developed a geospatial method to generate daily, categorical fire risk maps; the
maps visualize low-to-high risk areas using a newly developed 100 m DEM, modeled water levels,
fuel types, and fire management units. We assigned fire risk by creating a water level distribution for
each unique combination of fuel type and fire management unit; fire risk was then assigned for each
pixel based on risk percentiles commonly used by fire management agencies. Assigning risk based
on unique fuel types and management units helped avoid over- or under-assigning fire risk that may
occur when applying landscape-level “average” risk relationships. Daily maps also incorporated
(1) energy release component data to better estimate fuel moisture and (2) historical burn footprints
to reduce risk in recently burned areas. Our data-driven approach generated at management-relevant
spatial scales may enable more informed prescribed burn planning and may increase the efficiency of
staff and resource allocation across the landscape on high-wildfire-risk days.
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1. Introduction

Globally, fire frequency is expected to increase due to climate change, although fire
size and intensity may be moderated in fuel-limited systems [1–3]. Unprecedented wildfire
seasons have already been observed in fire-prone areas due to climate-driven hotter and
drier weather, as well as increased fuel loads [4–6]. Global areas designated as “fire-prone”
are expected to grow, and existing fire-prone areas will likely experience, on average,
longer wildfire seasons [6–8]. The need for management-relevant fire risk modeling is a
global issue that spans fire regimes and geographies. Fire risk modeling occurs at varying
spatial resolutions and extents spanning short (hours to weeks [9,10]) and long (years to
decades [11,12]) time scales [13,14]. Fire managers in the United States primarily rely on the
National Fire Danger Rating System (NFDRS), managed by the Wildland Fire Assessment
System at the United States Department of Agriculture Forest Service Rocky Mountain
Research Station, for active fire management decisions. Other national fire risk models have
also been developed by countries undertaking significant fire management and fire suppres-
sion operations (e.g., Australia (Australia Fire Danger Rating System), Canada (Canadian
Forest Fire Danger Rating System), EU (European Forest Fire Information System)).

The US NFDRS requires a consistent set of data inputs and produces a fire risk score
based on region, fuel type, and recent weather conditions [15]. These standardized risk
metrics are necessary to support national fire management strategies and resource allocation
because they provide a common system to communicate risk and align fire management
priorities across local, state, and federal agencies [16]. However, these national products
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are often too coarse to address the local, place-based fire management challenges facing fire
managers, particularly in unique landscapes [17]. There is a need for place-based geospatial
tools driven by both data and local fire management knowledge [16–18]. Here, we detail
the development and applications of a custom geospatial fire risk model in South Florida,
USA, and discuss its use by federal fire managers.

South Florida has one of the largest prescribed fire programs in the US and is unique
in that daily water levels are critical to assessing fire risk for its vegetative areas [19–21].
As existing fire risk and fire behavior models (e.g., NFDRS, FlamMap, BehavePlus) do
not directly incorporate surface water levels, this region provides an ideal location for
Florida, which is mostly controlled by strong seasonal precipitation and overland flow from
surrounding water districts that are heavily managed and support significant agricultural
operations and rapid urban development. Florida’s urban population has doubled to
~22 million people in the last two decades, with most urban development occurring in
the form of infill and edge expansion; South Florida is now home to more than 6 million
residents in the greater Miami–Fort Lauderdale–Pompano Beach metro area [22,23].

Significant draining for agricultural conversion occurred in South Florida during the
1800s and 1900s, with smaller amounts of conversion thereafter; currently, South Florida
fruit groves and pastureland are the second largest land cover class following protected
areas [24]. The Everglades National Park (Everglades) and Big Cypress Preserve (Big
Cypress) cover 9000 km2 of southern Florida. When combined with the South Florida
Water Management District (SFWMD) lands to the north and east, the study area covers
12,500 km2 (Figure 1). This area, also known as the Southern Greater Everglades, spans
multiple ecoregions from upland pines and deep cypress strands in northern Big Cypress
to sawgrass-dominated marshes of the coastal Everglades [25].
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and South Florida Water Management District (SFWMD) water conservation areas (purple) overlaid
with major roads (white) and boundaries of current fire management units (black). Yellow points
are locations of EDEN gauges and blue points are locations of Remote Access Weather Stations that
provide energy release component data. Note, individual EDEN gauges may be excluded from
a given day’s interpolated water surface based on immediate QAQC measures conducted by the
EDEN team.

Fire is a dominant ecological process across this landscape. Because both the pre-
scribed fire season and wildfire season are influenced by water levels, managers require a
fire risk model that captures the influence of hydrology on their ability to safely and effec-
tively conduct prescribed fires, as well as safely and efficiently allocate staff and resources
during the wildfire season. Large wildfires burn several hundred square kilometers every
3–10 years on average and are started by both accidental human ignitions and lightning
strikes during the late spring and summer months [26,27]; the average wildfire (WF) is
~3700 acres with an average of ~75,000 acres burned annually. Prescribed fires are generally
smaller, though some are in the order of several thousands of acres, and are conducted
frequently, with at least some portion of most management units burning annually [28,29].
The average prescribed fire (RX) is ~1000 acres with ~100,000 acres burned annually. Most
prescribed fires are conducted in the late winter and spring months with annual variability
in the average number and size of prescribed fires dependent on weather and water level
conditions (Figure 2C).
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Figure 2. (A) Photo series visualizing the quick regeneration of understory dominated by grasses and
shrubs (Adapted with permission from [30]. 2008, U.S. Fish and Wildlife Service Southeast Region).
Images show in descending order: pre-burn, immediately post-burn, 3 months post-burn, 6 months
post-burn, 1 year post-burn, and 2 years post-burn. (B) Mean monthly precipitation and mean
temperature for Everglades National Weather Station from 1980–2017 [31]. (C) Paired boxplot of the
number of monthly wildfires and prescribed fires in BICY from 1980–2021. The average prescribed
fire (RX) is ~1000 acres with ~100,000 acres burned annually; the average wildfire (WF) is ~3700 acres
with an average of ~75,000 acres burned annually. (D) Global map highlighting other subregions
with similar topography, vegetation, and climate regimes [32].

Three landscape elements directly influence the Greater Everglades fire regime: the
plain-like landform (flat topography), seasonal subtropical moist climate, and fire-adapted
shrubs and grasses. The wildfire regime aligns with seasonal precipitation in this dry-
to-moist subtropical environment; the wet season (June to October) can bring >75 cm of



Fire 2023, 6, 236 4 of 19

precipitation per month, while the dry season (November to May) averages 25–50 cm
per month (Figure 2B) [33] (gauge data same as the figure above). Thus, wildfire season
typically peaks toward the end of the dry season in April and May, when even the water-
dominated sloughs (i.e., swampy backwaters of the open coast) can carry fire because the
above-water portions of grasses are sufficiently dry. The tall grass and shrub understory
regenerate quickly post fire in this warm climate and it is common for fuel loads to return
to near pre-burn conditions within several years after a fire (Figure 2A) [28,34]. There are
other locations around the world with similar topography, seasonal climate, and vegetation
(Figure 2D), and the place-based fire risk considerations evaluated here could translate to
managing wildland fires in other landscapes.

In 1958, Everglades National Park conducted the first prescribed burn in a national
park, with the goal of perpetuating the park’s iconic open pine ecosystem [27,34]. However,
fire has a much longer cultural and ecological history in this landscape [27,35]. Pre-contact,
multiple Native American tribes, including, but not limited to, the Seminole, Calusa,
and Miccosukee, resided in or near tree hammocks, dense and often-isolated stands of
hardwood trees, throughout the Everglades and Big Cypress. Burning the landscape was a
cultural practice intertwined with their deep commitment to land stewardship; fires also
promoted the growth of medicinal herbs and other forage and opened the understory
to invite wildlife and improve hunting [27,36]. Currently, fire management prioritizes
protecting tree hammocks and the fire-avoidant species contained therein because they
are valuable archaeological sites and contain rich biodiversity [29]. Other wildland fire
management considerations include the spatial distribution of endangered species habitats,
designated wilderness areas, a major travel corridor, and public and private infrastructure
within large expanses of publicly managed lands. Our locally informed, geospatial fire
risk model helps fire managers to strategize and allocate resources in order to protect tree
hammocks and other resources while safely igniting and managing fires in other parts of
the landscape.

The Greater Everglades ecosystem is valued for flood mitigation, water filtration,
imperiled ecosystems (e.g., pine rocklands), ~40 threatened and endangered species, and
outdoor recreation opportunities [25,37,38]. The natural spaces of the Greater Everglades
are directly adjacent to significant suburban housing expansion that has been ongoing
for decades; the significant footprint of land use change continues to alter hydrologic
flows and requires significant water management infrastructure [39,40]. The Everglades
Depth Estimation Network (EDEN), a series of in situ water gauges, was created in 1999 to
monitor changes in hydrology and contribute data to support adaptive natural resource
management in the Everglades. The EDEN Network has grown to include more than
300 gauges distributed throughout the Everglades and adjacent management areas, and a
suite of modeled hydrology products is openly available from the United States Geological
Survey (Figure 1). These water monitoring data support decisions about where and when
to retain or release water and provide an invaluable long-term perspective on how flows
and water levels have changed over the lifetime of the gauge network [41].

Water level information is integral to fire management in the Everglades, and EDEN
water level measurements are the most accessible (publicly available) and reliable source
of daily hydrologic information in this region. Satellite observations are not yet able to
compete with in situ measurements due to the necessary compromises of temporal, spatial,
and spectral resolutions. Even with appropriate temporal resolution (daily), obtaining
accurate high-resolution water surfaces in a wetland environment is complicated; in this
flat landscape, inches can change fire risk conditions [42]. Attempting to model these fine
temporal scale hydrologic changes requires gauges and modeled water surfaces, as well as
a high-resolution horizontal digital elevation model (DEM).

The objective of this effort was to work alongside South Florida fire managers to
leverage EDEN water surfaces, customized vegetation classifications, and a high resolution
(DEM) to help estimate daily fire risk. We contribute a novel geospatial decision support
model for South Florida that provides spatially detailed fire risk information beyond that



Fire 2023, 6, 236 5 of 19

of national-scale fire risk products. We also produced a high-resolution open-source DEM
for public use. The model was co-produced by local fire managers and researchers and is
designed such that fire managers can access a Github-hosted openly available R package
to run FireHydro from their desktops. The risk classifications combine fire management
expertise with a data-driven perspective on fire risk variability based on historical water
level conditions. Our method is uniquely suited to an ecosystem where small fluctuations
in surface water levels and topography drive fire behavior. We combine our understanding
of the landscape’s hydrologic patterns, vegetation fuel characteristics, and fire management
regimes to generate a daily fire risk map to support decision making for wildland fire use.

2. Model Inputs and Parameters

We developed a workflow that relies on parallel processing to compute risk for each
individual pixel. We started with a daily water level raster from the EDEN data repository
following their quality assurance procedures and then subtracted a DEM to yield a water
level raster. We intersected the fuel layer, management units, and water level raster to
assign each pixel both a fuel type, management unit, and daily water level. Based on the fire
management risk percentiles (described in Section 2.1.2 below), we assigned each pixel a
daily risk category of high, moderately high, moderate, moderately low, or low depending
on how the pixel’s daily water level value aligned with the historic water level percentiles.
Finally, additional modifications to the five-class risk map were made based on the daily
ERC values for Big Cypress and the Everglades (Section 2.1.5) and the three most recent
years of historical burn footprints (Section 2.1.6). Three outputs are produced from each
run of the FireHydro model: (1) a water level and fuel-based risk map (2) a water level and
fuel-based risk map modified by the daily ERC values (3) a water level and fuel-based risk
map where risk is reduced within historical footprints. We have also designed the model
to accept ongoing changes whereby managers can incorporate field validation of the risk
maps based on observed water levels as well as the historic context of fire behavior under
different water level conditions.

2.1. Model Overview and Data Descriptions

The FireHydro model generates a daily fire risk map for southern Florida using a
water surface, a digital elevation model (DEM), vegetation fuel types, management units,
energy release component (ERC) values from local meteorological stations, and historic
burn footprints. The spatial extent of the model includes the Everglades National Park
(Everglades), Big Cypress National Preserve (Big Cypress), and the water conservations
areas of the South Florida Water Management District (SFWMD); the model extent aligns
with the available water surface data from the Everglades Depth Estimation Network
(EDEN) run by the United States Geological Survey (USGS). The output map(s) assign fire
risk into five categories (high, moderately high, moderate, moderately low, and low) at
a 30 m resolution. FireHydro produces multiple output products to better represent the
variety of data and risk considerations needed for fire management decision support. Input
data descriptions are below (Figure 3).

2.1.1. DEM

As of spring 2023, no publicly available high-resolution DEM exists for South Florida,
so we merged openly available lidar-derived USGS DEMs to create a seamless DEM
covering our study area (Figure 2). The horizontal resolutions of the source DEMs ranged
from 1 m to 3 m resolution with a centimeter vertical resolution [43]. We resampled the
final DEM at a 100 m horizontal resolution to reduce computation time and avoid ascribing
overprecision relative to the modeled water surface data available at a 400 m horizontal
resolution.
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Figure 3. FireHydro initiates an automated download of interpolated EDEN daily water surfaces and
subtracts the DEM to yield daily water level (cm) (left). Each water level pixel is then assigned to
one of the 115 fuel type and management units through a spatial intersection, where all gridded data
products are aligned and resampled to match the 30 m vegetation data (center). We refer to mapped
units as pixels, though, the final product is not strictly pixel-based. Mapped units can be smaller
than the finest geospatial gridded product (30 m), as the output maps are spatial polygons where
pixels may have been divided by management unit boundaries. Each pixel’s daily water level is then
ranked as high, moderately high, moderate, moderately low, or low risk based on its water level
relative to the defined percentiles (3/10/20/30) within the historic water level distribution (n = 520)
for that fuel type and management unit (right).

2.1.2. Water Levels

We subtracted the DEM from the modeled daily water surface, which is collected via
an automated download from the EDEN website, to yield the daily water level. Water is
above ground where water level values are positive; water is below ground where water
level values are negative. Daily EDEN interpolated water surfaces use 250 water gauge
depth measurements to apply separate radial basis functions within eight subdomains
in order to estimate daily median water level (NAVD88) at a 400 m horizontal resolution
and a centimeter vertical resolution. The eight subdomains control for the effects of major
infrastructure, such as berms and canals, that impact landscape hydrology. The modeled
water surface data are validated using 284 independent water level measurements with a
root mean square error of 4.78 cm. [44].

We assembled a historic distribution of water levels by regularly sampling the water
surface once per week for 10 years (2012–2021; total n = 520) (Figure 3, right panel).
We used historic water levels to provide a baseline for assessing current landscape risk
and to guide discussion and risk classification exercises with fire managers. Because the
relationships between water levels and fire risk differ throughout the landscape, we created
individual distributions of water levels for each fuel type within each management unit
(Figure 4). In total, we created 115 unique fuel type and management unit water level
distributions, and water levels within each distribution were classified into one of the
five risk categories ranging from high to low. We used the following data percentiles to
delineate risk classes: 3% lowest water levels = high risk; 3.01–10% lowest = moderately
high; 10.01–20% lowest = moderate; 20.01–30% = moderately low; 30.01–100% = low. These
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percentiles translate directly to common wildland fire management quantiles used to
delineate risk by the National Park Service and other agencies [45–47].
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2.1.3. Vegetation Fuel Types

The Everglades National Park and Big Cypress National Preserve fire management
offices rely on 11 fuel types derived from 30 m resolution vegetation data to estimate
expected fire behavior [48]. These fuel types, used by the National Wildfire Coordinating
Group, are classified nationally [49,50], but local fire management staff have reclassified
vegetation communities across southern Florida to better suit the place-based details of
fuel characteristics beyond the National Fire Danger Rating System fuel models. These
11 fuel types include short, sparse dry climate grass (GR1); low load very coarse humid
climate grass (GR3); high load very coarse humid climate grass (GR8); moderate load
humid climate grass-shrub (GS3); urban/suburban (NB1); agricultural field (NB3); open
water (NB8); bare ground (NB9); low load humid climate shrub (SH6); low load broadleaf
litter (TL2); small downed logs (TL4). Ruiz et al. 2021′s initial 30 m resolution vegetation
data were unavailable in the water conservation areas, so we crosswalked the more than 50
vegetation categories in the Florida Cooperative Land Cover Map to one of the 11 fuel types
already in use [48,51]. In summary, “GR” fuel types comprise collections of different grass
species, “GS” fuel types comprise both grass and shrub species, “NB” fuel types comprise
different categories of non-burnable or ‘non-natural’ materials, “SH” fuel types comprise
collections of different shrub species, and “TL” fuel types represent different categories of
timber litter.

2.1.4. Management Units

We used 15 management units to delineate areas of the landscape with similar hy-
drological conditions that are likely to carry fire similarly during a wildfire or prescribed
fire. Depending on the location, managers may expect the same fuel type in two differ-
ent management units to behave differently or require different risk classifications. For
example, a comparison of the water level values at the “low” to “moderately low” risk
threshold for low load humid climate shrub fuels in the North 75 and South 41 management
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units shows the variability in water levels within the same fuel type across management
units. In North 75, the low- to moderately-low-risk threshold occurs at approximately the
−25 cm water level, whereas the South 41 threshold is much closer to the 0 cm water level
(Figure 4). Small shifts in the water level distributions affect data-derived risk percentiles,
and these transition points are customized to more localized hydrologic conditions when
management units are used to subdivide the landscape.

2.1.5. Energy Release Component

We incorporated an energy release component (ERC) to estimate landscape-level fuel
availability [52]. ERC quantifies the estimated potential energy (BTU/ft2) available to
burn, which is directly related to the 1000 h composite fuel moisture. ERC values are
calculated daily for each Remote Automatic Weather station (RAWS) using the NFDRS-
designated fuel model for that station and the 24 h maximum/minimum temperature,
maximum/minimum relative humidity, and precipitation duration [46]. ERC increases as
fuels dry and temperatures rise.

Daily shifts in ERC are small because the calculation does not include wind or fine
fuel moisture and the ERC has memory, meaning it incorporates the conditions from the
previous seven days, making significant daily changes in ERC values rare. Fire management
staff also use the 3/10/20/30 percentile breaks to define ERC risk; these percentiles map to
ERC values of 33+/30/22/9 [45]. For both Big Cypress and Everglades, ERC values are
averaged across all meteorological stations within the respective park and a single risk
score is assigned within each park boundary.

2.1.6. Energy Release Component

We incorporated historic wildfire and prescribed fire burn footprints to decrease the
assigned fire risk based on fire activity from the three preceding years. How fire risk is
decreased due to historical burns depends on the fuel type, but the risk reduction does
not distinguish between wildfire or prescribed fire or differentiate fire severity outcomes.
We apply risk reductions differently across fuel types to account for faster regeneration
and return to pre-fire fuel loads in grass fuel types and relatively slower regeneration in
more forested or denser fuel loads that take longer to return to pre-fire fuel loads. We apply
risk reductions as follows: for GR and GS fuel types, risk is reduced for one year post
burn; for NB fuel types, risk is reduced for two or three years post burn depending on the
management unit; and for SH and TL fuel types, risk is reduced for three years post burn.
For example, for grasses that regenerate quickly, the fire risk is reduced for one year post
fire by one risk category, whereas for later succession fuel types (e.g., cypress), fire risk is
decreased for up to three years post fire. Historic burn footprints rely on manual updates
from a National Park Service GIS database and so do not reflect real-time data.

3. Model Results and Performance
3.1. Model Outputs

FireHydro outputs four maps for each model run of a given date (Figure 5). Multiple
output maps were necessary because a single map does not communicate the complexity of
factors that may alter fire risk across the landscape. Each output map represents additional
variables to consider in day-to-day fire management; these maps can act as decision support
for staffing and staging wildfire suppression resources, conducting successful prescribed
burns, or informing water management strategies that influence hydrologic flow.
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Figure 5. Three model outputs for 18 April 2019. We randomly selected an April day within the
last five years because April often shows the landscape transition from moderate to higher fire
risk. (A) Output risk map based solely on water level risk percentiles within each fuel type and
management unit. (B) Risk assignments from map (A) with risk reductions in areas that experienced
a wildfire or prescribed fire within the last three years. Purple boxes highlight sizable risk reductions
due to historic fires. (C) ERC modified risk from map (A) due to a relatively high ERC (28) value.

3.1.1. Water Level Risk

The water level risk map is the foundational output and all other risk modifications
were made from this initial map (Figure 5A). We used the water level risk map for calibra-
tion and understanding persistent wetness (low risk) and dryness (high risk) in different
management units and fuel types. Linking fire risk outcomes across management units
(where on the landscape), type of fuel (what would burn), and daily water level (how might
the fire travel) provides fire and fuels specific information beyond that available from only
a water surface. The risk classes and historical water level distribution model inputs are
designed such that managers can directly and iteratively modify risk thresholds (water
level values/percentiles) through an input .CSV file as additional data are acquired. This
process and example modifications are detailed in Section 3.2—Model Evaluation.

While we anticipate that fire managers will modify the 3/10/20/30 risk thresholds for
certain fuels and management units, the predetermined risk breaks in FireHydro appro-
priately track the seasonal pattern of fire risk and management-relevant risk transitions
through the most active wildland fire months (Figure 6). January and February historically
are the most active months for prescribed burns; precipitation is relatively low, but the
landscape still retains some water from the prior wet season that provides more predictable
wetted fire breaks for prescribed fire operations (Figure 2B,C). In the January and February
risk maps, there are patches of moderately low to moderate risk, indicating that there may
be areas with fuels available to burn and that these areas may be less likely to result in an
escaped prescribed fire due to adjacent inundated areas (low risk) (Figure 6).

March acts as a transition from the prime prescribed fire season to wildfire season in
April and May. Prescribed fire operations do occur in March, but this depends heavily on
the timing and intensity of seasonal drying. April and May display an overall increase in
landscape-level risk, though we are able to identify unusual years such as 2019. In 2019,
December to February were drier than average resulting in elevated fire risk earlier in the
year, but spring precipitation significantly reduced fire risk during April and May. June
and July maps show the onset of the wet season; smaller, more readily controlled wildfires
are still relatively common in June, but the number of wildfires declines significantly in
July. Fire managers do also conduct prescribed fires during the summer months when
conditions are appropriate (Figures 2C and 6).
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Figure 6. Six years (2017–2022) of risk maps for the 15th of each month (January–July). January and
February reliably support prescribed fire operations with limited precipitation and overall lower risk.
March shows the transition from the prime months to conduct prescribed fires to April and May
which mark the onset of wildfire season. June and July show decreased risk due to the return of more
consistent rainfall that continues through late fall.

3.1.2. ERC-Modified Risk

The ERC-adjusted risk output (Figure 5B) for 18 April 2019, reflects increased risk
across the landscape due to a relatively high ERC value (28). We created a categorical
reference table to modify water level risk by ERC (Table A1). Not all water level risk classes
(assigned by fuel and management unit) will increase or decrease based on the daily ERC
value. Although rare, it is possible for the risk map to decrease based on ERC, but this only
occurs when ERC values are unusually low and water levels are unusually high (low risk).
When ERC risk is moderate, the overall risk may not change due to ERC. The highest ERC
risk class represents rarer combinations of increasingly hot and dry periods that last for
multiple weeks and result in overall elevated fire risk, while the lower ERC risk classes
account for the majority of days where ERC will not increase fire risk. Managers find a
separate ERC map useful because it provides a landscape-level ‘average’ measure that
incorporates recent weather into perceived risk.

3.1.3. Historical Burn Modified Risk

Risk maps adjusted for historical burn footprints always decrease risk in pixels where
a fire has occurred in the last one-to-three years (Figure 5C). Generating this map as a stand-
alone product allows fire managers to compare risk between the initial output map, where
fuel loads are assumed constant within a given fuel type (Figure 5A), and a map where fuels
have been reduced by a recent fire. When considering the allocation of resources, maps
showing reduced risk from recent fires help managers prioritize different fire containment
strategies.

3.2. Model Evaluation

Validating a fire risk model in this landscape is complex because the model objective
is to represent perceived fire risk for both prescribed fires and wildfires. There is a need to
merge data-driven approaches for model validation with input from experienced profes-
sionals, particularly in areas where monitoring data at the necessary spatial resolution are
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inconsistent or unavailable. Difficulties arise because there are tradeoffs in using a more
conservative or more liberal risk assignment method. Risk estimates that lean conservative
are likely beneficial in the context of wildfire preparedness, but risk estimates that are too
conservative may further limit the number of days deemed ‘in prescription’ (i.e., days with
appropriate weather, air quality, and staffing conditions) to conduct prescribed burns. Con-
versely, risk estimates that are not conservative enough could lead to being underprepared
during a wildfire or attempting to ignite prescribed fires when a fire escape is more likely.
There is also a lack of consistent, field-based measurements documenting how water levels
correspond to perceived and experienced fire risk. Together, the multi-purpose nature of
this model and the limitation of not being able to statistically predict fire occurrence and
spread lead us to also rely on the input and refinements from local fire management staff to
evaluate the model.

3.2.1. Water Level Risk Classes

We performed initial model evaluation by assessing the seasonality of water level risk
by fuel type and management unit (Figure 6). We then sampled 12 days that included
significant historical rain events (i.e., hurricanes and tropical storms), notable wildfires with
elevated landscape-level fire risk, and successful prescribed fires that met management
objectives. We sampled four days for each of the three categories: rainy, wildfire, and
prescribed fire. We sampled prescribed fires that were both near and far from infrastruc-
ture (canals, roads, etc.) and prescribed fires that had detailed documentation about the
objectives, day of burn conditions, and outcomes for the burn.

Model outputs were reviewed by local fire managers, during which fire managers
provided insight on how to best evaluate the model. Generally, we evaluated the model by
comparing FireHydro outputs for a given day to fire managers’ perceived risk on that day
by reviewing the percentage of the landscape assigned to all risk classes and identifying
localized areas for which the assigned risk class was exceptionally biased (notably over
or under the manager’s perceived risk). This evaluation process was iterative and may
continue to evolve with management expertise, as the input CSV makes for straightforward
risk threshold modifications.

For days immediately following hurricanes and tropical storms, greater than 99% of
the landscape was classified as low risk. For days when major wildfires burned, greater
than 75% of the landscape was classified as moderate risk or above. Even during peak
wildfire activity, portions of the landscape that readily retain water, such as deep cypress
strands that have not burned in decades, are still classified as low or moderately low
risk. Water retention in these areas was validated by individual gauge measurements
and management feedback. For days with successfully prescribed fires, model evaluation
criteria are more uncertain. Generally, these days display pockets of moderately low to
moderate risk surrounded by large extents of low risk. Risk maps on these days show that
parts of the landscape may be sufficiently dry to carry fire, but these areas are surrounded
by large stretches of low-risk areas that act as sufficiently wetted fire breaks.

3.2.2. Iterating with Fire Managers and Sample Risk Class Modifications

In addition to landscape-level seasonality and identifying characteristic fire risk days,
there are also important fine-scale spatial patterns of fire risk that require evaluation.
We iterated on several different methods with managers to improve fire risk accuracy in
localized areas. The standard water level risk percentiles appear to over-assign risk in
wetter management units and under-assign risk in drier management units. To refine these
risk percentiles, we brought regional fire managers together to evaluate fire risk maps from
recent days. We asked fire managers to identify and discuss what areas on the map have
over- or under-assigned risk. This discussion illuminated what areas on the landscape
they believe to experience similar hydrologic conditions; these newly grouped areas did
not always align with the existing management unit boundaries that were used to build
the water level distribution curves. Referencing multiple output risk maps from several
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different days, fire managers both added and subtracted management unit boundaries to
more accurately group similar areas of the landscape. In total, eight existing management
units were edited which resulted in an increase in total management units from 15 to 19;
ultimately, most of the new units were made to better capture the influence of roads (or
lack thereof) and existing natural features that impact local hydrology.

Following the regrouping of management areas, adjustments to risk percentiles were
still necessary within certain fuels and management units (Figure 7). Risk percentile
adjustments were made to the six different fuel types (GR1, GR3, GR8, SH6, TL2, TL4) in
the Deep Lake management unit because the standard fire management risk percentiles
under-assigned risk in the prairies (GR1, GR3, GR8) and pinelands (SH6) and over-assigned
risk in the western cypress strands (TL4) (Figure 7B,C). The modified risk percentile map
more accurately reflects fire risk in April because the grass (GR) fuel types indicate higher
risk due to their increased relative drying and the pinelands (SH6) show increased risk
because these are generally drier areas of the landscape (Figure 7D). Cypress strands are
generally wetter and can behave as reliable firebreaks even when water levels are beneath
the surface. Note that the western portion of cypress (TL4) in this subsetted area shows
overall lower risk due to its location deeper in the cypress strands when compared to other
more eastern areas of cypress closer to the prairie edge.
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Figure 7. (A) Aerial imagery capturing spring green-up within a cypress strand and surrounding
vegetation in the Deep Lake management unit of Big Cypress National Preserve. (B) Subsequent
panels show the same area; 30 m vegetation classification includes six different fuel types that are
used to group different vegetation communities into fire behavior classes and evaluate historical
water level risk. (C) Risk map created for 18 April 2019, using historical water levels and the standard
risk percentiles for wildland fire management staffing (3/10/20/30). Map is dominated by low and
moderately low risk, which may under-assign risk during this time of year when water levels are
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decreasing. (D) Modified risk map for 18 April 2019, using risk percentiles based on field validation
of perceived risks from water levels in the six different fuel types. This map differs from map C
in that moderately high-risk and moderate-risk areas pose a higher fire risk and correspond to the
prairie (grassy fuel types) that dry out earlier and the pinelands that are on average drier than other
fuel types.

3.2.3. ERC and Historical Burn Footprints

We iterated on the strength of the ERC fire risk modification and the historical burn
risk reductions with fire managers. We worked through several different ERC modifications
until the landscape’s average ERC risk adjustment better reflected how managers use ERC
data for decision making. The final ERC risk modification includes ERC as supplementary
data that do not overpower fire risk assigned by the water level risk thresholds. With fire
manager feedback, our historical burn risk reductions evolved from reducing risk by one
class for three years regardless of fuel type to fuel-type-dependent risk reductions where
the timing of reduced risk varies from one to three years. Model evaluation is ongoing
for different combinations of ERC risk modifications and risk reduction within historical
burn footprints.

4. Discussion

Together with local fire managers, we iteratively developed a daily, geospatial fire risk
model, “FireHydro”, for the Everglades National Park, Big Cypress National Preserve, and
the water conservation areas managed by the South Florida Water Management District
(SFWMD). The model generates a five-class fire risk map using a framework uniquely
suited to flat topography, mosaiced fuel types, and strong dependence on seasonal water
levels (Figure 1). With input from local fire managers, we subdivided the landscape into
management units to create historical water level distributions for individual fuel types. We
applied fire management percentile risk breaks (3/10/20/20) adapted from the National
Wildfire Coordinating Group’s documentation on Preparedness and Fire Danger Operating
Plans [47].

With local fire manager support, we used these risk distribution thresholds to delineate
the five high- to low-risk classes (Figures 3 and 4) and evaluated model performance based
on the model’s ability to capture the seasonality of fire risk during months that transition
from the prime prescribed fire season (January, February, and March) to the wildfire season
(April and May) to the wet season (June and July) (Figure 6). Iterative meetings were
conducted with local fire managers to co-produce FireHydro, and we worked alongside
fire managers to edit management unit boundaries and modify risk percentiles where
needed (Figure 7). Finer scale model performance and risk assignments for certain fuel
types in specific management units required additional and ongoing feedback from local
fire managers.

The model provides a suite of three daily automated risk maps (water level risk, ERC
modified risk, and historical burn reduced risk) in approximately one hour of computing
time (Figure 5). With an openly available R package forthcoming and easy-to-modify model
inputs, fire managers can continue to work with and refine the risk classification schemes.
The goal is to make FireHydro a ‘living’ tool that managers can run, edit, and revise using
an input CSV file. The model, along with documentation, is provided to managers so the
model can be run in-house. These results and model descriptions are representative of work
to date; the model parameters and inputs will continue to evolve as new data are made
available and fire managers continue to field validate the output maps. This model can also
be adapted to other landscapes, although challenges may arise in areas with less available
geospatial data, fewer hydrological gauges, and less active fire and water management
(Figure 2D).

FireHydro allows managers to assess daily fire risk throughout the active fire months,
and when the model is run daily or weekly, it can illuminate which parts of the landscape
are retaining water longer or losing water faster than anticipated. FireHydro contributes to
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implementation strategies for conducting prescribed burns and suppressing wildfires. For
example, when fire managers are hoping to conduct a prescribed fire, they try to optimize
resources based on location, staffing, and anticipated burn conditions [53]. FireHydro
acts as a first line of decision support by indicating what burn units may be available
or unavailable to burn based on water levels. Using a daily mapped product allows fire
managers to home in on plausible units and spend less time evaluating burn units on
the ground or by air. Similarly, when a wildfire ignition is reported, fire managers can
leverage FireHydro outputs, along with other real-time fire weather information, to develop
initial estimates on likely direction, rate, and extent of spread, which are necessary for
evaluating different containment strategies. These decisions rely heavily on estimating
water levels and an accurate map can make the difference between ordering costly air
resources and additional personnel versus knowing that existing fire breaks should hold or
at least slow the fire, indicating that a less aggressive initial containment approach should
be sufficient [54].

The model can also help ease the complexity of communicating fire risk conditions
in such a unique, hydrology-driven landscape. For example, in late summer when the
western and central United States experience high fire risk, conditions in South Florida may
be ideal for prescribed burning because of moderate to high water levels that lower fire
intensity, reduce spotting, and serve as wetted fire breaks [55]. Identifying, understanding,
and explaining these differences in wildland fire conditions in South Florida versus other
regions is critical to minimize unnecessary restraints on prescribed burning [56]. This is
even more impactful when burn windows and resources are limited. Conversely, during
the late winter months when the rest of the nation may not be experiencing drought or
heightened fire risk, South Florida could be experiencing drying and reduced water levels
(e.g., winter of 2019). In these situations, South Florida fire management can benefit from
supporting information from FireHydro outputs to demonstrate that the landscape is at a
high risk of fire due to lower-than-normal water levels. This additional information can
make it easier to justify additional resources and national prioritization. FireHydro outputs
act as both a prescribed fire planning tool as well as a tool for demonstrating the need for
additional resources and staffing during wildfire season.

Finally, mapped outputs from FireHydro allow fire managers to directly overlay
other important local features, such as protected archaeological sites or private and public
infrastructure. No single product can encapsulate the complete suite of considerations
that come into play when prescribed fire planning and wildfire response, so FireHydro is
intended to be used alongside other management-relevant map products and additional
weather indices. Moreover, it provides fire managers with cross-boundary perspectives
on fire risk because multiple jurisdictions are included within the mapped footprint. With
additional data relating to in situ fuel consumption measurements and FireHydro output
maps, it may also be possible for FireHydro to provide data to support prescribed fire
smoke management decisions.

As with any model, assumptions and simplifications are necessary to incorporate the
best available data into the creation of a useful product. Even with the finest resolution
(30 m) vegetation fuel dataset available, the 11 fuel classes cannot always accurately map
all fuel spatial configurations or fully differentiate the nuanced fuel composition that
ultimately governs fire behavior. The EDEN water surfaces provide the best available
hydrology data for this landscape, but water levels in this landscape can change over much
finer spatial scales than 400 m. Water levels are also changing over longer time scales due
to ecological restoration efforts happening across the Greater Everglades. Infrastructure
(roads, berms, etc.) is being removed or raised so as not to impede surface flow; these
modifications, while beneficial for restoring natural ecosystems, change where water flows
and pools across the landscape. Restoration efforts are currently underway and changes
to average water levels have already occurred in some parts of the Everglades [39]. It
may be necessary to modify FireHydro’s historical water level distribution such that we
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draw sample water level values from the most recent three to five years, instead of the
past decade.

Limitations on the water level accuracy are introduced due to the 400 m resolution
modeled water surfaces and the lidar-derived DEM. While the EDEN interpolated water
surfaces are divided into subdomains to improve accuracy and have a low average root
mean square error (<5 cm), the existing subdomains are unable to capture all unique
hydrologic conditions caused by roads, culverts, or other infrastructure [44]. The limited
number and spatial locations of water gauges are the main factors prohibiting the creation
of more subdomains that could better account for water surface heterogeneity. It is also
difficult to quantify uncertainties introduced by subtracting the DEM from the interpolated
water surfaces. Because the DEM is a lidar-derived product, the DEM may be biased
toward higher elevation values due to the inability of lidar to penetrate the ground in
dense-vegetation- and surface-water-dominated landscapes [57]. An overall landscape bias
toward higher topography may overestimate fire risk. This occurs because we subtract
the DEM (biased high) from EDEN water surfaces which could result in lower, or more
negative, water levels than would actually be observed. We will continue to validate our
DEM as additional high-resolution DEMs are made available for this landscape.

Numerous factors contribute to fire risk and, ultimately, how fires ignite and spread [58].
Rather than attempting to predict fire occurrence, the FireHydro model focuses on under-
standing, if an ignition were to occur, whether the water level conditions are right for fire
spread, and if so, to what spatial extent might the fire spread before hitting wetted fire
breaks. We do not account for detailed fuel characteristics like most other physics-based
fire spread models; for FireHydro to provide fire-spread-specific estimates, it would require
integrating additional weather data, fuel moisture, and fuel load data into the output fire
risk maps. Additionally, without capturing winds and other dynamic daily factors in
our model, it is unfeasible to use final wildfire or prescribed fire footprints as a form of
validation. There is also uncertainty around how to most accurately categorically reduce
risk in burned areas over time and by fuel type. Simplified relationships may hold for
most of the landscape, but additional field validation is necessary to spatially refine these
risk reductions.

We evaluated the percentage of the landscape in each risk class across 12 different
characteristic days (four wildfire days, four prescribed fire days, and four days following
tropical storms or hurricanes). Wildfire days were, as expected, dominated by areas of
moderate to high risk, prescribed fire days were mostly low to moderate risk areas, and
days following significant rain events showed >95% of the modeled area as low risk. As
fire managers work to revise risk relationships in priority fuel types by incorporating
additional field observations, risk modifications should be created with these baselines of
proportionate landscape risk in mind.

Future improvements to fire risk modeling in South Florida could focus on expanding
monitoring efforts and leveraging forecasted water levels. Below, we detail near-term and
long-term priorities for future work related to monitoring and forecasting fire risk.

Near-term monitoring priorities include a pilot monitoring program for systematic
regular sampling to provide water level measurements in a variety of fuel types under
different hydrologic conditions. A monitoring program could improve model validation
through (1) an in situ survey of fuel and water levels stratified across fuel types and
water level conditions and (2) the installation of additional gauges in priority areas of
the landscape that can best inform anticipated fire behavior. Additional EDEN gauges
may also be needed as hydrologic flows continue to evolve due to the removal of old
infrastructure. Remotely sensed data, such as LANDSAT, could also be leveraged to detect
burn severity and extent. Incorporating these products into the model could more efficiently
and effectively map necessary fuel risk reductions from historic burns and more readily
extend FireHydro to new landscapes.

Long-term monitoring priorities include using satellite observations of water levels to
validate and or calibrate the interpolated water surface; this would also open opportunities
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for similar methods to be applied in other landscapes, such as those outlined above, without
existing gauge networks (Figure 2D). Wildfires in 2022 burned over 500,000 acres in the
grass and wetland ecosystems outside of Rosario, Argentina; these fires are an example
of fire management in wetland environments that could benefit from improvements in
satellite water surface and fuel moisture observations. Improvements in estimating water
surface and fuel moisture in wetlands are a key step to reliably adapting the FireHydro
model to new landscapes.

A near-term forecasting priority is to generate a fourth FireHydro output that over-
lays spatially continuous forecasted wind speeds over the current output risk maps. Fire
managers are keen to understand forecasted wind speed (average and maximum) and
direction, as this has implications for how a wildfire might spread or the ability to con-
duct a prescribed burn based on anticipated fire spread and acceptable smoke dispersal.
Landscape-level wind data are a critical piece of any fire weather forecast, but it is unique
to have wind data spatially overlaid with water- and fuel-based fire risk metrics. Future
additions to the suite of FireHydro outputs should also include additional weather- and
atmospheric-based data, such as the hot–dry–windy index or other metrics that integrate
near-real-time air temperature, relative humidity, and wind data.

Two opportunities exist for long-term improvements of fire risk forecasts in the region.
The first is an extension of the current FireHydro model that ingests near-term forecasted
water levels from the EverForecast model [59]. Using the daily outputs from EverForecast
would allow fire managers to anticipate fire risk under similar historical precipitation
patterns and also provide uncertainty bounds on water levels in any given grid cell. The
second long-term forecasting priority is to use FireHydro, together with other resource
management decision support tools, in a scenario development context to explore tradeoffs
in water management decision making. Many competing resource management decisions
depend on predictable water flows—a water management strategy that diverts water
to prioritize habitat conditions for an endangered species (e.g., wading birds, crayfish,
etc.) that may result in unwarranted fire danger in another subregion of the landscape.
Providing a suite of scenario-based geospatial tools could allow resource managers to more
readily visualize the tradeoffs of their decisions, particularly during times of drought or
high precipitation [60,61].

5. Conclusions

South Florida’s highly seasonal precipitation, near-flat topography, mosaic of fire-
adapted and fire-avoidant species, year-round warm temperatures, and variety of fire
ignition sources have shaped the landscape and its unique fire regime. Partnering with fire
managers, we co-produced a geospatial fire risk model, FireHydro, that provides localized
fuel and water level information to inform management strategies for both prescribed fire
ignitions and wildfire suppression. We also created an openly available high-resolution
DEM to forward future research that relies on detailed topography data. FireHydro is one
of few place-based and manager-driven fire risk products, and FireHydro demonstrates the
added detail and benefit of characterizing fire risk with the assistance of expert knowledge
at localized scales. In unique fire environments, the creation and adoption of localized fire
risk models, in addition to the NFDRS fire risk metrics, could provide untapped, valuable
information to local fire managers.
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Appendix A

Table A1. Final risk class outcomes based on combined initial water level risk class and the ERC risk
class. For both water level and ERC risk classes, 1 = high risk and 5 = low risk.

Final Fire Risk Class Water Level Risk Class ERC Risk Class

High 1 1, 2
Moderately High 1 3
Moderately High 2 1, 2, 3

Moderate 1, 2 4, 5
Moderate 3 1, 2, 3
Moderate 4 1, 2

Moderately Low 4 3
Moderately Low 3 4, 5
Moderately Low 5 1, 2, 3

Low 4, 5 4, 5
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