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Abstract: Fire perception based on machine vision is essential for improving social safety. Object
recognition based on deep learning has become the mainstream smoke and flame recognition method.
However, the existing anchor-based smoke and flame recognition algorithms are not accurate enough
for localization due to the irregular shapes, unclear contours, and large-scale changes in smoke and
flames. For this problem, we propose a new anchor-free smoke and flame recognition algorithm,
which improves the object detection network in two dimensions. First, we propose a channel attention
path aggregation network (CAPAN), which forces the network to focus on the channel features with
foreground information. Second, we propose a multi-loss function. The classification loss, the
regression loss, the distribution focal loss (DFL), and the loss for the centerness branch are fused
to enable the network to learn a more accurate distribution for the locations of the bounding boxes.
Our method attains a promising performance compared with the state-of-the-art object detectors; the
recognition accuracy improves by 5% for the mAP, 8.3% for the flame AP50, and 2.1% for the smoke
AP50 compared with the baseline model. Overall, the algorithm proposed in this paper significantly
improves the accuracy of the object detection network in the smoke and flame recognition scenario
and can provide real-time fire recognition.

Keywords: smoke and flame recognition; anchor-free; path aggregation network; multi-loss

1. Introduction

Fire is a devastating natural disaster that often causes enormous social and ecological
damage and severe economic losses. Early fire recognition, warning, and autonomous
response can effectively reduce fire damage [1]. In typical buildings, physical signal-based
detectors, such as smoke detectors, heat-release infrared flame detectors, and ultraviolet
flame detectors, are widely used for fire alarms. However, these conventional physical
sensors require proximity to the source of fire; thus, they cannot be used in environments
such as large-space buildings and open spaces (e.g., forests, construction sites, ports,
and grasslands) and cannot provide accurate fire details such as the fire location, size,
and extent of the burning. Therefore, computer vision-based smoke and flame recognition
are essential tasks for modern surveillance systems.

Fire recognition based on computer vision includes smoke and flame recognition.
Smoke recognition is mainly based on features such as the shape and color of the smoke
and processing methods, include wavelet transform, neural network, and fuzzy algorithm.
Flame recognition is mainly based on features such as the flame color, shape, and dynamic
characteristics, and the processing methods include the neural network, Support Vector
Machine, Markov model, and expert system. Binti et al. [2] performed fire recognition
based on RGB and YCbCr features in 2015. Li et al. [3] 2017 proposed a fire recognition
algorithm based on flame color, dynamics, and flicker characteristics. Wang et al. [4]
extracted a variety of features for forest fire recognition in 2019, including color, texture,
area, and shape features. All of the above researchers constructed feature extractors to
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improve the accuracy of smoke and flame recognition, but these manually designed feature
extractors are highly redundant, which makes it difficult to accurately recognize fire.

In recent years, several deep learning-based methods for smoke and flame classifica-
tion and detection have been proposed to improve the accuracy and efficiency of smoke and
flame recognition. Muhammad et al. [5] used a transfer learning method to improve per-
formance by using MobileNet as a backbone network and fine-tuning the fully connected
layer on a small flame dataset. Sharma et al. [6] combined a pretrained Visual Geometry
Group-16 (VGG-16) model and Residual Network-50 (ResNet-50) to develop a fire recogni-
tion system. With the increase in object detection methods, fire recognition requires not
only determining whether a fire has occurred but also locating and extracting the exact area
of the fire. Several different object detection methods have been proposed for the fire recog-
nition task. Wu et al. [7] proposed a new architecture based on the You Only Look Once
(YOLO) algorithm that utilizes the newly added smoke class and flame area changes to
minimize false recognition. Xie et al. [8] proposed a video fire recognition method that uses
deep static features extracted by Convolutional Neural Networks (CNNs) and dynamic
features based on motion flicker extracted by background subtraction and flicker detection
to improve accuracy. The work in Ref. [9] developed an image-based fire detection algo-
rithm based on the YOLO-V3 network to detect smoke and flames. Despite their success,
most previous studies focused on model optimization, and the complex situations in real
environments need to be considered. We observe the following three problems in existing
practices: (1) existing algorithms mainly recognize fire through flames, but smoke is more
important for fire recognition; (2) anchor boxes with fixed shapes and sizes cannot meet the
recognition of smoke and flames with variable shapes and sizes; (3) the algorithms are not
accurate enough to locate smoke and flames with uncertain and ambiguous boundaries. To
address the shortcomings of the current fire recognition algorithms, and borrowing from
the anchor-free network architecture in the field of object detection, this paper proposes an
anchor-free smoke and flame recognition algorithm.

The main contributions are summarized as follows:

• Our algorithm employs a pixel-by-pixel approach to directly predict the bounding
box locations and corresponding class of the objects, resulting in faster training and
testing as well as a lower training memory footprint.

• Incorporating the channel attention mechanism and new connections into the multi-
scale feature fusion network makes the network focus on the channel features with
foreground information and improves the accuracy of the algorithm.

• We use a multi-loss fusion method to provide more accurate and informative bounding
box locations of smoke and flame objects by modeling the flexible distribution for
bounding boxes.

2. Related Work
2.1. Smoke and Flame Recognition Algorithms

Existing vision-based smoke and flame recognition algorithms are divided into im-
age processing-based and deep learning-based methods. Zhang et al. [10] used an al-
gorithm combining Fast Fourier Transform (FFT) and wavelet to analyze video flame
contours. Jiang et al. [11] used the improved Canny edge detector to detect the fire re-
gion. Kosmas et al. [12] implemented a fire recognition system modeling fire behavior by
employing various spatiotemporal features using linear dynamical systems and a bag-of-
systems approach. Toulouse et al. [13] developed a method that focused on detecting the
geometric features of flames, such as the location and length, and classified the fire images’
pixels based on the flame color and presence of smoke. The work in [14,15] developed
vision-based fire detection models to improve the detection of fire in buildings. In recent
years, deep learning methods have been widely and effectively applied in different ways in
smoke and flame recognition research. The work in Ref. [16] reviewed the state-of-the-art
applications of Intelligent fire detection in building and construction. Ba et al. [17] proposed
a smoke recognition model incorporating spatial and channel attention mechanisms in



Fire 2023, 6, 225 3 of 16

CNN to enhance the feature representation for scene classification. Wu et al. [18] pre-
sented a novel intelligent fire detection approach through video cameras for preventing
fire hazards from losing control in chemical factories and other high-fire-risk industries.
Park et al. [19] proposed ELASTIC-YOLOv3, a fire recognition method for urban environ-
ments that can quickly recognize a fire at night in urban areas by reflecting its nighttime
characteristics. To analyze fire emergency scenes, Sharma et al. [20] proposed a method
that uses a deep learning image segmentation network to recognize objects based on their
build material and vulnerability. Muhammad et al. [21] integrated the principal component
analysis as a preprocessing module with the improved YOLO-V3 to boost the network
predictions for smoke in the wild. The work in Ref. [22] presented an attention-based CNN
model for the detection of fire and used the gradient-weighted class activation mapping
method to visualize and locate the fire in images. However, the existing smoke and flame
detection network is not accurate enough due to the irregular shapes, unclear contours,
and large-scale changes in smoke and flames. Table 1 summarizes the recent developments
in the field of flame and smoke recognition algorithms. In this paper, we follow the deep
learning-based object detector design, and we show it is possible to achieve higher accuracy
for smoke and flame recognition with optimized network architectures.

Table 1. Recent developments and comparison of different flame and smoke recognition algorithms.

Basic Methodology Dataset Improvement Direction Ref.

Image Processing

Flame Combining wavelet and FFT [10]
Flame Improving Canny Edge Detector [11]
Flame Combining spatio-temporal flame

modeling and dynamic texture analysis
[12]

Flame/smoke Combining traditional image features and
machine learning methods

[13]

Deep Learning

Flame/smoke Improving CNN model structure [14]
Flame/smoke Video fire detection model using indoor

closed-circuit television surveillance
[15]

Smoke Improving CNN model structure [17]
Flame Improving CNN model structure [18]
Flame Improving CNN model structure [19]

Flame/smoke Multitask learning [20]
Smoke Improving CNN model structure [21]
Flame Improving CNN model structure [22]

2.2. Anchor-Free Object Detectors

Researchers have proposed anchor-free object detection algorithms to overcome the
shortcomings of existing anchor-based object detection algorithms, which remove the
predefined anchor boxes and directly predict the object’s bounding boxes and classes.
The object detection process of YOLO-V1 [23] is a regression problem that can directly
extract features from the input image to predict the bounding boxes and class probabilities.
DenseBox [24] is considered to be the earliest anchor-free method. DenseBox takes each
pixel as a centroid, predicts a bounding box for each pixel, and then filters the bounding
box using Non-Maximum Suppression (NMS). The detection accuracy of the algorithm on
small objects, such as face detection, is significantly higher than that of the anchor-based
algorithms. CornerNet [25] is a single-stage anchor-free object detector that detects pairs
of corners of a bounding box and groups them to form the final detected bounding box.
CenterNet [26], inspired by CornerNet, uses the object’s centroid as the detection center,
and can detect objects by adding their boundaries and size information. FCOS [27] employs
a centerness branch to mitigate the issue of excessive and improper bounding boxes, which
utilizes multiple binary classifiers for object classification. Compared with the anchor-based
object detection network, the anchor-free object detection network is more conducive to the
recognition of smoke and flames without fixed shapes and sizes. The proposed network
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architecture in this paper adopts a comparable structure to FCOS but incorporates a more
robust backbone network.

2.3. Multiscale Feature Fusion

One of the important research elements of the object detection task is how to effec-
tively represent and process the multiscale features output from the backbone. The feature
pyramid network (FPN) [28] is the earliest multiscale feature fusion network that pro-
poses a top-down fusion path to fuse multiscale features. The Path Aggregation Network
(PANet) [29] adds an extra bottom-up path on top of the FPN to achieve a higher per-
formance in multiscale feature fusion. Tan et al. [30] proposed a weighted bidirectional
feature pyramid network (BiFPN) for simple and efficient multiscale feature fusion. BiFPN
introduces learnable weights to learn the importance of different input features while
iteratively applying top-down and bottom-up multiscale feature fusion. PANet achieves
a good balance between speed and accuracy in these multiscale feature fusion networks.
In this paper, we aim to optimize multiscale feature fusion with the attention mechanism.

3. Methods
3.1. Anchor-Free Smoke and Flame Recognition Network Architecture

Existing smoke and flame recognition algorithms use anchor-based object detection
methods to recognize smoke and flames. These methodologies rely heavily on the design of
anchor boxes, thereby limiting their capacity to account for the shapes and sizes of smoke
and flames, especially when their scale is still insignificant. The smoke and flame recogni-
tion algorithm based on the anchor-free network architecture no longer uses anchor boxes,
directly predicting the locations and the class of the target box containing the pixel based
on each pixel. Since the anchor-free network architecture generates only one predicted
box for each pixel, the architecture is simpler, and the computational effort is significantly
reduced compared with that of the anchor-based network architecture. At the same time,
the hardware requirements of the model are also reduced to facilitate deployment. The net-
work architecture proposed in this paper adopts a comparable structure to FCOS, which
contains a backbone network, a multiscale feature fusion network, and five detection heads;
the overall architecture is shown in Figure 1. EfficientNet [31] is used as the backbone
network to perform basic feature extraction after image preprocessing. A multiscale feature
fusion network is introduced after the backbone network to further exploit the multiscale
information of the image. The feature fusion network utilizes the information of a total of
five feature layers, using a top-down and bottom-up fusion structure, which can utilize
both the semantic features of the higher layers and the image information of the lower
layers and is beneficial for the recognition of smoke and flames at different scales. The
different detection heads of the network are responsible for the recognition of smoke and
flames at different scales. The features of the smoke and flames are further extracted to
predict the classes and locations of the bounding boxes.

Let Fi ∈ RH×W×C be the feature map at layer i of the network, and the ground-truth
bounding boxes of each input image are defined as:

Bi = (x0
(i), y0

(i), x1
(i), y1

(i), c(i)) (1)

where (x0
(i), y0

(i)) and (x1
(i), y1

(i)) are the coordinates of the top-left and bottom-right
corners of the bounding box, respectively, and c(i) is the class the object in the bounding
box belongs to. For each location (x, y) on the feature map Fi, it can be mapped onto the
input image as

( s
2 + xs, s

2 + ys
)

(s is the feature map downsampling step), which is near the
center of the respective field region of the location (x, y). Unlike the anchor-based object
detectors, the anchor-free object detector directly takes location (x, y) as a training sample
instead of an anchor box.
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Figure 1. The network architecture of the anchor-free smoke and flame recognition algorithm
proposed in this paper. The backbone network is replaced with EfficientNet to extract features from
the input images.

The training samples are classified as positive and negative samples. The anchor-free
smoke and flame recognition network considers the location (x, y) as a positive sample if it
falls into any ground-truth box, and the class label of the location is the class label of the
ground-truth box. Otherwise, it is a negative sample. Since the region inside the ground-
truth box near the edge is often still the background rather than the foreground object that is
to be predicted, these positive samples near the edges tend to produce low-quality predicted
bounding boxes. To suppress the low-quality predicted bounding boxes, the anchor-free
smoke and flame recognition network proposed in this paper uses the centerness branch
in FCOS; the centerness branch is parallel to the classification branch, and binary cross-
entropy loss is used during training and added to the total loss function. During prediction,
the predicted centerness is multiplied by the classification score; with high probability,
these low-quality bounding boxes might be filtered out by the final NMS process.

The outputs of the classification branch represent the foreground and background
scores, and the 4D vector T = (l, t, r, b) of the regression branch outputs depicts the
distances from the locations to the four sides of the ground-truth bounding box, as shown
in Figure 2. Let (x0, y0) and (x1, y1) be the coordinates of the top-left and bottom-right
corners of the ground-truth bounding box, respectively, and if location (x, y) is associated
with the ground-truth bounding box, the four regression targets for the locations can be
formulated as:

T∗ =

(
l∗ = x− x0

(i), t∗ = y− y0
(i)

r∗ = x− x1
(i), b∗ = y− y1

(i)

)
. (2)

Figure 2. The anchor-free smoke and flame recognition algorithm works by predicting a 4D vector
(l, t, r, b) depicting the relative offsets from the four sides of a bounding box to the location.

3.2. CAPAN

In the smoke and flame recognition scenario, smoke and flame objects in fire images
have different scales. PANet combines multiscale contextual information by applying
up-and-down sampling and multiscale feature fusion through top-down and bottom-up
paths. However, the smoke and flame feature maps of different channels tend to focus on
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different scene categories, as shown in Figure 3. To enhance the foreground features and
suppress the background features, we propose CAPAN for more efficient feature fusion.
PANet and CAPAN are shown in Figure 4. CAPAN constructs a multiscale feature fusion
network based on the multiscale features P3 to P7 extracted by the backbone. Different
from PANet, CAPAN adds Efficient Channel Attention (ECA) [32] after the first top-down
feature fusion from P3 to P7, where the attention weights of each level are independent,
and the attention modules of different levels are responsible for the extraction of the channel
relationship in their respective levels. The multiscale features obtained by the attention
module are then subjected to the second bottom-up feature fusion. In addition, the new
connections are added to the second feature fusion to avoid the information loss caused by
channel reduction.

Figure 3. The smoke and flame feature maps of different channels tend to focus on different scene
categories.

Figure 4. The architecture of PANet and CAPAN.

The ECA is improved from the Squeeze-and-Excitation Networks (SENet) [33]. SENet
first proposed a channel attention learning method. SENet maps channel features to a
low-dimensional space and then maps them back, making the channel relationship and its
weights indirect. Unlike SENet, ECA enhances the cross-channel information exchange,
while keeping the channel dimension constant. The ECA architecture is shown in Figure 5.
The ECA learns more effective channel attention while reducing the model complexity.
The channel weights in the ECA are calculated as follows:

ωi = σ(
k

∑
j=1

α
j
iy

j
i), yj

i ∈ Ωk
i , (3)

where Ωk
i is the k-domain channel of yi, yi is the feature representation of channel i after

global averaging pooling, α
j
i is the shared parameter, σ is the activation function, and ωi

represents the weights of channel i. The value of k as a key parameter can be adjusted in
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size to determine the range of interactions between channels, and the range of interactions
increases with the increasing channel dimension.

CAPAN improves the fusion performance of low-level and high-level features by
adding channel attention and residual connections to the feature fusion network, forcing
the network to focus on the channel features with foreground information and weakening
the background features.

Figure 5. The architecture of the ECA module, which enhances the cross-channel information
exchange while keeping the channel dimension constant.

3.3. Distribution Focal Loss

The issue often encountered with flame and smoke objects is the lack of distinctly
recognized boundaries. The ground-truth labels are sometimes not credible, resulting in
low-quality predictions of the bounding boxes. In previous research work, most models
focused on model optimization, such as better detection accuracy, lighter weight models,
and faster detection speed [34–36]. However, the smoke and flame boundary situation
that exists in reality was not considered, and the algorithm proposed in this paper takes
into account the smoke and flame boundary situation. The algorithm proposed in this
paper takes the distances from the locations to the four sides of the bounding box as the
regression targets. The representation of bounding boxes can be viewed as Dirac delta
distribution without considering the ambiguity and uncertainty of the smoke and flame
boundaries in the fire images, as shown in Figure 6. To solve this problem, on the basis of
the original loss function of the object detection algorithm, the distribution focal loss [37]
is introduced to supervise the smoke and flame recognition network model during the
training, which enables the model to learn a more accurate distribution of the locations of
bounding boxes, while reducing the gap between the predicted bounding boxes and the
ground-truth bounding boxes.

The locations of the bounding boxes are no longer modeled as Dirac delta distri-
butions but arbitrary distributions P(x) due to the use of the DFL. Given a label range
y(y0 ≤ y ≤ yn, n ∈ N+), the values of [y0, yn] are discretized into a set [y0, y1, y2, . . . , yn−1, yn].

According to the discrete distribution property
n
∑

i=0
P(yi) = 1, the estimated regression value

can be calculated as ŷ =
n
∑

i=0
P(yi)yi. The regression branch has n + 1 predictions for each

distance from the location to the four sides of the bounding box, and P(yi) can be imple-
mented through a softmax classifier. In addition, the predicted locations will not be far
away from the labels. To make the model focus on yi and yi+1 near label y, enlarging the
probabilities of nearest two values to label y in the form of a cross-entropy loss function.
Denoting P(yi) as Si, the DFL is defined as follows:

LDFL = −((yi+1 − y) log(Si) + (y− yi) log(Si+1)), (4)

where the aim of LDFL is to enlarge the probabilities of the values near the label y. When
Si =

yi+1−y
yi+1−yi

and Si+1 = y−yi
yi+1−yi

, LDFL obtains the global minimum solution; in this case,
the predicted value ŷ is infinitely close to the label y.
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(a) (b)

Figure 6. (a) Uncertainty of flame boundaries. (b) Ambiguity of smoke boundaries. Due to the
ambiguity and uncertainty of the smoke and flame boundaries in the fire images, the ground-truth
bounding boxes (blue boxes) are sometimes not credible (see red circles).

The DFL models bounding box locations as arbitrary distributions, thereby offering a
more precise representation of the boundary associated with the smoke and flame perime-
ters. This leads to more precise bounding box predictions for anchor-free networks and
better localization accuracy of smoke and flame objects.

3.4. Multi-Loss Fusion
3.4.1. Classification Loss

In the training process of the classification network, the location is a positive sample
if it falls into any ground-truth bounding box, and the class label of the location is the
class label of the ground-truth box. Otherwise, it is a negative sample. In most fire images,
the area of the effective region only accounts for a small part of the feature map. To solve
this problem, the classification loss function in this paper adopts the focal loss [38], and the
focal loss is defined as follows:

LFL =

{
−(1− p)γ log(p), when y = 1
−pγ log(1− p), when y = 0

(5)

pt =

{
p, when y = 1

1− p, when y = 0
(6)

LFL = −(1− pt)
γ log(pt), (7)

where pt denotes the category probability, and p ∈ [0, 1] denotes the estimated probability
when y = 1. When y = 1, pt = p, and when y = 0, pt = 1− p. γ is an adjustable parameter.
The focal loss consists of a standard cross-entropy component − log(pt) and a dynamic
scaling factor (1− pt)γ. The scaling factor (1− pt)γ automatically reduces the contribution
of the easy-to-classify samples during the training and quickly focuses the model on the
difficult samples.

The focal loss was proposed to address the extreme imbalance between the foreground
and background classes during the training of single-stage object detection networks. In this
paper, the focal loss solves the problem of the unbalanced positive and negative samples
during the training of the smoke and flame recognition model, allowing the model to
learn to focus on the difficult-to-classify samples and achieve a better smoke and flame
recognition performance.

3.4.2. Regression Loss

In this paper, the regression loss function of the anchor-free network adopts the more
comprehensive CIoU loss function [39]. In the field of object detection, the IoU is commonly
used to calculate the difference between the predicted bounding boxes and the ground-truth
bounding boxes; the IoU is defined as follows:
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IoU =
A ∩ B
A ∪ B

, (8)

where A and B are the predicted box and the target box, respectively. CIoU is a more
comprehensive optimization of IoU, taking into account the distance, scale, and aspect ratio
between the predicted box and the target box. The CIoU loss function is defined as follows:

v =
4

π2 (arctan
wgt

hgt − arctan
w
h
)2 (9)

CIoU = IoU − ρ2(b, bgt)

c2 − av (10)

LCIoU = 1− CIoU, (11)

where a is the weight value, v is used to measure the similarity of the aspect ratio between
the predicted box and the target box, b and bgt are the predicted box and the target box,
respectively, w and h are the width and height of the predicted box, respectively, wgt and
hgt are the width and height of the target box, respectively, c is the diagonal of the smallest
outer rectangle of the two rectangular boxes, ρ is the Euclidean distance between the center
points of the two rectangular boxes, and LCIoU is the CIoU target loss.

The CIoU loss function directly optimizes the distance between the two rectangular
boxes for faster convergence. In addition, it considers the aspect ratio to quickly reduce the
difference between the prediction boxes and the target boxes.

3.4.3. Loss for Centerness Branch

The centerness branch is used to predict the normalized distance from the location to
the center of the bounding box for which the location is responsible. Low-quality predicted
bounding boxes would be suppressed by the predicted centerness, thus improving the
recognition accuracy. The centerness is defined as follows:

centerness =

√
min(l, r)
max(l, r)

× min(t, b)
max(t, b)

(12)

where l,r,t, and b are the distances from the location to the four sides of the bounding box,
respectively. The closer the location is to the center of the bounding box, the higher the
centerness score and vice versa. The centerness branch uses a binary cross entropy (BCE)
loss function, and the loss function for the centerness branch can be presented as:

Lcenter = BCE(centerness,
∧

centerness) (13)

where
∧

centerness is the predicted value and centerness is the target value.

3.4.4. Multi-Loss Fusion

The total loss consists of the focal loss, CIoU loss, DFL, and the loss for the centerness
branch, and the weighted fusion of the above four components of the loss is used to
optimize the parameters of the smoke and flame recognition model; the total loss is defined
as follows:

Loss = LFL + λ1LCIoU + λ2Lcenter + λ3LDFL, (14)

where LFL is the focal loss, LCIoU is the CIoU loss, Lcenter is the loss for the centerness
branch, and LDFL is the DFL. λ1, λ2, and λ3 are scaling factors to balance the four parts of
the loss, which can theoretically be chosen as a whole real number greater than 0. Therefore,
it is impossible to enumerate all cases. In this paper, the ratio of λ1, λ2, and λ3 is set to 2:1:1,
respectively, based on experience and practical debugging.

4. Experiments

This section introduces the experimental environment, dataset, evaluation indicators
of the model effect, and analysis of the experimental results of the training network.
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4.1. Smoke and Flame Dataset

The dataset used in the experiment was constructed by collecting smoke and flame
pictures from public websites and videos shot in the field. In total, 8540 high-quality images
were obtained, classified into flame and smoke. The images came from different scenes,
such as forests, factories, cities, warehouses, houses, and electrical and construction sites.
The image dataset consisted of fire incidents occurring during day and night, spanning
various stages of fire development, from ignition to extinction. The completed dataset is
shown in Table 2.

Table 2. The number of images and lables in the three categories: only smoke, only flame, smoke
and flame.

Dataset Only Smoke Only Flame Smoke and Flame Total

Number of images 1924 2693 3923 8540
Number of annotated samples 6389 10,702 - 17,091

After numbering the above dataset images, we used the LabelImg tool to manually
label the images, including drawing the bounding boxes and classifying categories; the
dataset was annotated in PASCAL VOC dataset format. The dataset was randomly divided
into a training set, validation set, and testing set. The number of images in the training and
validation sets was 7686, and the number in the test set was 854. The ratio of the training
set to the validation set was 9:1.

4.2. Experimental Environment

The experiments were conducted on computing platforms comprising NVIDIA RTX2080
SUPER and Intel i7-9750H, with a memory capacity of 32 G. Pytorch was the development
framework, the batch size was set to 16, the learning rate was set to 0.01, the learning
rate decay adopted the linear decay mode, and each model trained 100 epochs. Moreover,
the input image size was set at a resolution of 512 × 512.

4.3. Evaluation Indicators

In order to directly compare these models, the average detection accuracy mAP,
mAP@0.5, flame AP50, and smoke AP50 were selected in this paper as the evaluation
metrics for the model. For the binary classification problem, according to the combination
of the true category and the predicted category, samples can be divided into four types:
True Positive (TP), False Positive (FP), True Negative (TN), and False Negative (FN).
The confusion matrix of the classification results is shown in Table 3.

Table 3. The confusion matrix of the real and predicted categories for dichotomous problems.

Labeled Name Predicted Confusion Matrix

Positive Positive TP
Positive Negative FN

Negative Positive FP
Negative Negative TN

Precision and recall are defined as follows:

Precision =
TP

TP + FP
(15)

Recall =
TP

TP + FN
(16)
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AP and mAP are defined as follows:

AP =
∫ 1

0
Precision(Recall)d(Recall) (17)

mAP =
1
N

N

∑
i=1

APi (18)

4.4. Algorithm Comparison Analysis

To verify the effectiveness of the algorithm proposed in this paper, our method was
compared with seven representative methods, including Faster-RCNN, multiple YOLO
series detection algorithms, and three other single-stage object detection algorithms, where
the FCOS was used as the baseline. The comparison results are listed in Table 4.

Table 4. The comparison between the model proposed in this paper and the existing six object
detection network model on the testing set in terms of the mAP, mAP@0.5, AP50 on flames, AP50 on
smoke, and FPS.

Method mAP mAP@0.5 Flame AP50 Smoke AP50 FPS

Faster-RCNN 26.8 62.5 58.1 67.7 7
SSD 28.1 63.2 62.5 63.5 23

YOLOv3 28.9 63.5 63.4 68.1 30
YOLOv4 33.4 72.1 68.2 76.9 28

YOLOv5m 46.7 76.9 70.1 83.7 55
EfficientDet 36.9 70.8 61.7 80.5 26

FCOS 47.5 78.2 69.2 87.2 36
Our method 52.5 83.4 77.5 89.3 33

From the comparison with the six object detection algorithms and our method, it
can be seen that the algorithm proposed in this paper had the highest average detection
accuracy, which was improved by 5% for the mAP compared with the baseline, and showed
higher recognition accuracy in terms of both flame and smoke, which improved by 8.3%
and 2.1% for the AP50, respectively, with a best comprehensive performance. The algorithm
proposed in this paper ran at a speed of 33 frames per second, and can more easily be
applied to smoke and flame recognition in real scenes.

To verify the performance of our algorithm in the scenes with irregular shapes and
unclear contours of smoke and flames, as shown in Figure 7, some representative images
were selected to visualize and compare the recognition effect of our algorithm with the
baseline. The recognition results showed that the proposed algorithm was significantly
better than the baseline model regarding both localization and classification accuracy.
Compared with Figure 7a, all objects were detected, as shown in Figure 7e. Compared with
Figure 7b,c, Figure 7f,g showed more accurate predicted bounding boxes. Compared with
Figure 7d, the obscured flame boundary was better identified in Figure 7h. The recognition
results show that the CAPAN improved the fusion efficiency of low-level features and
high-level features, the network paid more attention to foreground object information,
and the multi-loss fusion approach enabled the network to learn a target box location
distribution that is closer to the real distribution.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 7. (a–d) Baseline. (e–h) Our method. The recognition effect of the baseline and our method in
terms of the smoke and flame boundaries and the small target smoke and flames.

4.5. Effect of Adding the ECA at Different Positions

The algorithm proposed in this paper improved the model performance by CAPAN.
To verify the effect of embedding the ECA module at different positions on the model,
the FCOS incorporated with PANet and DFL was used as the baseline. Three experimental
setups were established for comparative analysis. As shown in Figure 8, prior to the feature
fusion layers N3 to N7 was the first addition of a position, between the feature fusion
layers N3 to N7 and the feature fusion layers M3 to M7 was the second addition of a
position, and the third additional position came after the feature fusion layers M3 to M7.
As listed in Table 5, I, II, and III denote the first, second, and third positions, respectively.
The experimental results show that adding the ECA module at the second position had the
best recognition effect.

Figure 8. The different additional positions for the ECA module.
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Table 5. The recognition effect of embedding an ECA module at different positions in the model in
terms of the mAP and mAP@0.5.

Method Adding Location mAP mAP@0.5

Our method
I 51.3 82.7
II 52.5 83.4
III 52.2 82.1

4.6. Algorithm Ablation Study

To verify the improvement in the ECA channel attention module and the DFL re-
garding the performance of the anchor-free smoke and flame recognition algorithm, this
work validated the advantages of the proposed anchor-free smoke and flame recognition
algorithm by conducting ablation experiments on the different improvements; the FCOS
was used as the baseline. As listed in Table 6, after combining the ECA channel attention
module with the multiscale feature fusion network, the network paid more attention to the
important foreground information of the fire images, and the mAP@0.5 was increased from
78.2% to 80.3%. A multi-loss fusion method was used to learn the arbitrary distribution
of the target box locations so that the distribution of predicted box locations was closer to
the real distribution, and the mAP@0.5 increased from 78.2% to 81.7%. The results of the
ablation experiment showed that both the ECA channel attention module and the DFL im-
proved the recognition accuracy of the smoke and flame recognition algorithm based on the
anchor-free network architecture. When the two methods were combined, the recognition
accuracy was significantly improved. The recognition proficiency of the model satisfies the
requirements of smoke and flame recognition tasks in video surveillance settings.

Table 6. The ablation experimental results of the different improvements proposed in this paper in
terms of the mAP and mAP@0.5.

Method ECA DFL mAP mAP@0.5

FCOS 47.5 78.2

Our method
X 51.8 80.3

X 52.1 81.7
X X 52.5 83.4

5. Discussion

In Sections 4.4–4.6, we designed different experiments to verify the effectiveness of
the method proposed in this paper.

The smoke and flame recognition algorithm proposed in this paper achieved satisfac-
tory results on the recognition of smoke and flame targets with ambiguous and uncertain
boundaries and can provide real-time smoke and flame recognition. Nevertheless, our
experiments indicate that the proposed algorithm is susceptible to misclassifying fire-like
targets as fire targets. This occurrence can be attributed to the resemblance between fire-
like targets and fire targets with regard to shape and color. Thus, this poses a significant
challenge to the accurate recognition of fires, as shown in Figure 9. Encouragingly, these
difficulties are not insurmountable. During the training of the object detection model,
the ability of the model to recognize fire-like objects can be improved by adding fire-like
images to the training samples, which showed good results. In forthcoming research, our
proposed model will be further optimized with the objective of constructing a dataset for
fire-like images, thereby enhancing the smoke and flame recognition ability of the model.
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Figure 9. When the model proposed in this paper detects fire-like images, it is easy to produce
inaccurate detection results.

6. Conclusions

This paper proposes an effective and reliable method for recognizing smoke and
flames with no fixed shape in the early stages of fire. The procedure for developing the
anchor-free smoke and flame recognition model has been clearly described, as well as the
all improvements that promote the algorithm’s ability to recognize smoke and flames for
the model. The algorithm was improved by 5% for the mAP compared with the baseline
and showed a higher recognition accuracy for both flame and smoke, with improvements
of 8.3% and 2.1% for the AP50, respectively. By incorporating the ECA channel attention
module and residual connections into the multiscale feature fusion network, the model
can concentrate on foreground object information, which improves the recognition of
smoke and flame objects. Moreover, the algorithm utilizes a multi-loss fusion method to
address the issue of ambiguous and uncertain smoke and flame boundaries, leading to
more accurate regression branch output. Our experimental results demonstrate that the
proposed algorithm outperforms other existing methods with a higher object recognition
performance, and the detection speed satisfies the requirements of real-time detection.
Thus, it has practical applications in high-fire-risk scenes, such as forests and chemical
plants. The deployment of this algorithm in the industry has the potential to significantly
enhance fire safety and emergency management.

Future work will focus on applying existing models to detect smoke and flames in
videos. In addition, the detection of fire-like targets will be optimized to further improve
the accuracy of the detection model.
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