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Abstract: Patterns of spatial heterogeneity in forests and other fire-prone ecosystems are increasingly
recognized as critical for predicting fire behavior and subsequent fire effects. Given the difficulty in
sampling continuous spatial patterns across scales, statistical approaches are common to scale from
plot to landscapes. This study compared the performance of four spatial interpolation methods (SIM)
for mapping fine-scale fuel loads: classification (CL), multiple linear regression (LR), ordinary kriging
(OK), and regression kriging (RK). These methods represent commonly used SIMs and demonstrate
a diversity of non-geostatistical, geostatistical, and hybrid approaches. Models were developed
for a 17.6-hectare site using a combination of metrics derived from spatially mapped trees, surface
fuels sampled with an intensive network of photoload plots, and topographic variables. The results
of this comparison indicate that all estimates produced unbiased spatial predictions. Regression
kriging outperformed the other approaches that either relied solely on interpolation from point
observations or regression-based approaches using auxiliary information for developing fine-scale
surface fuel maps. While our analysis found that surface fuel loading was correlated with species
composition, forest structure, and topography, the relationships were relatively weak, indicating that
other variables and spatial interactions could significantly improve surface fuel mapping.

Keywords: classification; multiple linear regression; ordinary kriging; regression kriging

1. Introduction

Forest fuel inventory and monitoring provide the basis for fuel management activ-
ities, including assessing wildfire hazards and risk, prescribed fire planning, designing
silvicultural treatments, and predicting fire behavior and effects at various scales. The most
commonly assessed physical fuel attribute is the load (kg m−2). Fuel load is a required input
to nearly all fire behavior and effects models and is coupled to terrestrial carbon inventories
and wildlife habitat assessments [1–4]. Fuel inventory approaches have traditionally as-
sumed that spatial variability in fuel load is of little consequence for management decisions
and thus focus on providing estimates of the spatially averaged fuel load for a given area
based on a limited set of sampled locations. Yet, recent studies highlight that fine-scale vari-
ability in the fuel complex, as exists in virtually all wildland fuel beds, exerts considerable
influence on many ecologically relevant fire behavior and effects metrics [5–12]. However,
directly mapping fine-scale fuel variability is costly and time-consuming, especially across
large areas [11,13]. To overcome these limitations and generate spatially continuous fuel
load maps to support forest and fire management activities, spatial interpolation methods
(SIMs) can be used to estimate the fuel load at unsampled locations.
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Developing continuous surface fuel maps using spatial interpolation requires three
sequential steps. The first step involves collecting fuel inventory data at a subset of points
within an area of interest. The next step involves fitting a model of the fuel load using a
selected SIM, and the final step involves developing a map from the fitted model. Two
critical decisions in this process influence the map accuracy, namely creating a sampling
scheme at a spatial sampling frequency sufficient to capture spatial autocorrelation and se-
lecting an appropriate SIM. Although decisions in both stages are essential, this manuscript
focuses on the effect of SIM selection on map accuracy.

The general approach of SIMs is to use weighted averaging to estimate a value of
interest at an unmeasured location, ẑ(x0), based on data from sample points, z(xi), and a
weighting factor, λi , as per Equation (1):

ẑ(x0) =
n

∑
i=1

λiz(xi) (1)

The major difference among SIMs stems from using different approaches to calculate
the weighting function, such as including spatial autocorrelation and/or auxiliary explana-
tory variables [14]. Methods incorporating spatial autocorrelation include geostatistical
techniques, such as ordinary kriging, and non-geostatistical methods, such as inverse
distance weighting. These approaches exploit the correlation between sample variability
and the distances between samples to predict values at unmeasured locations [15]. Alter-
natively, approaches such as regression modeling and classification rely on a relationship
between the primary and auxiliary variables such as terrain, forest type, or vegetation
characteristics to predict values at unsampled locations [4,16]. Though these approaches
exploit relationships between the variable of interest and covariates, they do not include any
information regarding the spatial structure of the data. Hybrid methods such as regression
kriging that utilize both correlations with auxiliary data and spatial autocorrelation have
gained popularity for spatial interpolation with environmental data [17–19]. Although
several researchers have compared the accuracy of various SIMs for mapping environmen-
tal data [19,20], no universally optimal method for interpolation exists. The selection of
the most accurate SIM depends on how well the method reflects the processes governing
the spatial distribution of the variable of interest, including the variable’s intrinsic spatial
autocorrelation and correlation with any auxiliary variables [21,22].

One of the most significant challenges in developing accurate surface fuel maps
is capturing the spatial variability in the fuel load within and between different fuel
components. This variability arises due to interactions between the physical environment
(e.g., climate, soils, and topography) and ecological processes (e.g., productivity, deposition,
decomposition, and disturbances) that determine surface fuel accumulation [23–25]. One of
the most commonly used approaches to capture the variability in surface fuels is to classify
an area into unique groups using auxiliary, often remotely sensed, data (e.g., vegetation
type, topographic data, or land-use classes) and then assign a fuel load to all areas of a given
category based on the sampled data (e.g., 4). A drawback of a classification approach is
that it reduces variability in the data to a few unique values, often with unrealistically stark
class boundaries. A national-scale example of this is the fuel characteristics classification
system (FCCS) maps of fuel load produced by LANDFIRE [26] at a 30 m spatial resolution.
Although Prichard et al. [27] applied an aspatial method to consider the inherent variability
and associated uncertainties in the fuel components that comprise wildland fuel beds,
their intention was to inform larger-scale emissions estimates. For physical fire behavior
modelling at finer scales, however, spatially explicit estimates of component fuel loads are
required. Other researchers have used regression-based methods where the relationship
between auxiliary variables and the surface fuel load is modeled and used to predict values
at unmeasured locations. Several studies have found significant correlations between the
surface fuel load and topographic and forest structural metrics [11,28,29]. However, these
studies often report weak correlations, indicating that surface fuel maps developed based
on these relationships may have limited accuracy. In other cases, studies have found no
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discernable correlation between surface fuel load and overstory forest structure (e.g., [30]),
suggesting that including these variables in the development of surface fuel maps will
not improve map accuracy. Other studies have found that surface fuels exhibit strong
fine-scale (1–20 m) spatial autocorrelation, which, if taken into account, may increase
fuel map accuracy [10,25,31–33]. Although previous research has acknowledged spatial
autocorrelation in fuel loads (e.g., 11,16), only Pierce et al. [33] have explicitly assessed the
degree to which this improves spatial interpolation. Their results indicate that including
spatial autocorrelation did not significantly improve the fine-scale predictive accuracy
compared to linear regression approaches. However, the scale of the analysis (30 m) utilized
in their study was greater than the spatial autocorrelation scale of surface fuels [10,32],
which may have limited improvements in local scale predictive accuracy. More generally,
we posit that the differences in the spatial scale of the sample data used in these studies
might explain the seemingly disparate results and conclusions.

In this paper, we compare the performance of four SIMs for estimating and mapping
fine-scale fuel load (1 m × 1 m resolution) in a mixed conifer forest in Colorado, USA.
The four approaches were: classification, multiple linear regression, ordinary kriging,
and regression kriging. We chose these methods because they are commonly used in
ecological studies and cover a range of SIMs, including non-geostatistical, geostatistical,
and hybrid approaches.

2. Materials and Methods
2.1. Study Area and Data Collection

We conducted this study on the 17.6 ha (400 m × 440 m) Pikes Peak Forest Dynamics
Plot (PFDP) located within the Pike and San Isabel National Forest along the Front Range
of Colorado (39.01◦ N, −105.00◦ W; Figure 1A). The PFDP was established in the summer
of 2016 as a collaboration among Colorado State University, the USDA Forest Service
Rocky Mountain Research Station, and Region 2 of the USDA Forest Service for long-term
forest dynamics monitoring. The PFDP is representative of mixed conifer forests in the
southern Rocky Mountains with an elevation range from 2781 to 2833 m (Figure 1B), a
dry continental climate with 660.7 mm of rain per year, and a mean daily temperature
ranging from −4.7 ◦C in January to 14.0 ◦C in August (prism.oregonstate.edu; accessed on
6 June 2022). Topographically, the PFDP is shaped by two significant ridges, one oriented
west–east in the northern portion of the plot and another oriented northwest–southeast
in the southwestern portion (Figure 1B). The dominant overstory vegetation for the study
site included ponderosa pine (Pinus ponderosa Lawson and C. Lawson) and quaking aspen
(Populus tremuloides Michx.) on the southern aspects and mixtures of Engelmann spruce
(Picea engelmannii Parry ex Engelm.), blue spruce (Picea pungens Engelm.), and Douglas-
fir (Pseudotsuga menziesii (Mirb.) Franco) on the northern aspects. The site’s average
density, basal area, and quadratic mean diameter were 1040 trees ha−1, 29.5 m2 ha−1, and
19.0 cm, respectively.

All trees in PFDP at least 1.37 m tall were spatially mapped and had their species,
diameter at breast height, height, and crown base height recorded. Trees were mapped
using tapes within a surveyed grid of 20 m × 20 m cells, and independent validation of the
tree locations showed a mean error of less than 0.1 m. To characterize the surface fuel load
across the site, we visually estimated the 1, 10, and 100 h dead, down, and woody fuel load
on 1 m2 irregularly located plots (n = 429) using the photoload method (Figure 1C; [34]). The
irregular design resulted in sample spacing ranging from 1 to 580 m covering the reported
spatial autocorrelation scales for western U.S. forests [10,32]. Because photoload estimates
are often consistent but biased, we randomly chose 50 additional 1 m2 plots adjacent to
the PFDP for the double sampling correction of the bias [35]. On each of the 50 plots, we
first visually estimated the fuel load for each time-lag size class and then extracted the fuel
for oven-drying following the method by Matthews [36]. We then developed a correction
equation for each fuel component by linearly regressing the collected fuel load against
the visually estimated fuel load [35]. We estimated the litter and duff fuel load using the
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depth-to-load method [37]. We first calculated means for the litter and duff depth in each
plot from nine randomly selected points and then multiplied the average depth by a locally
derived bulk density estimate. We estimated the locally derived bulk density from 20
randomly selected off-site 0.09 m2 plots. On each plot, nine sample pins were inserted to
the top of the litter layer, we extracted all the litter to estimate the dry weight, multiplied
the average height of the exposed pins by the sample area to calculate the volume, and
divided the dry weight by the volume to determine the bulk density with the same process
performed for the duff layer. Finally, to calculate each plot’s total fuel load, we summed
the individual components’ fuel load (1, 10, and 100 h dead, down, and woody fuel, and
litter and duff).
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Figure 1. (A) General location of the Pikes Peak Forest Dynamics Plot (PFDP) on the Pike and San
Isabel National Forest; (B) Contour plot of elevation within the PFDP with fuel sampling locations
(n = 429) shown as black dots. (C) NAIP aerial imagery of the PFDP with fuel sampling locations
shown as white dots.

Using the stem-mapped data and a 10 m digital elevation model (DEM; available at
nationalmap.gov; accessed on 6 June 2021), we estimated several forest structural auxiliary
variables across multiple scales ranging from 1 to 20 square meters using a rectilinear
grid around the center of each sampling point. Auxiliary variables associated with forest
structure included cover type, basal area, distance to nearest tree, distance to nearest large
tree, trees per hectare (TPH), and TPH of large trees. For this analysis, we considered all
trees with a diameter at breast height greater than 12.5 cm to be a large tree. Cover type
was classified by applying a Gaussian kernel smoother [38] to the stem-mapped data to
estimate the probability of occurrence by species and then assigning the cover type based
on the species with the highest probability of occurrence at each location. Topographic
variables were calculated from the DEM including slope, aspect, and flow direction [39],
topographic wetness [40], and curvature [41].

nationalmap.gov
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2.2. Spatial Interpolation Methods

We compared the performance of four SIMs for mapping fine-scale (1 m2) fuel loads:
classification (CL), multiple linear regression (LR), ordinary kriging (OK), and regression
kriging (RK). These methods represent commonly used SIMs and demonstrate a diversity
of non-geostatistical, geostatistical, and hybrid approaches. We assessed the SIMs for the
total surface fuel load, litter, duff, and 1, 10, and 100 h dead, down, and woody fuels as
these are standard inputs to fire behavior and effects models [10]. A description of each
SIM is provided below.

2.2.1. Classification

Classification is an aspatial SIM that utilizes the relationships between a categorical
factor and sampled data. Classification approaches consist of two main steps. First,
secondary information is used to identify several classes, k, within the region of interest
such that all points exclusively belong to one and only one class. For each class, a value is
estimated from the sample data and assigned to each point following Equation (2):

ẑik = µ + αk + εik (2)

where ẑik is the predicted value at location xik belonging to class k, µ is the global mean
of samples, αk is the difference between µ and the mean of class k, and εik is a random
error term. In keeping with the general formula presented in Equation (1), the weighting
function for classification approaches is estimated per Equation (3), where nk represents
the number of observations in class k:

λi =

{
1
nk

f or xi ∈ k,
0 otherwise

(3)

The use of classified means as an interpolation method assumes that in the absence of
direct observation, the best prediction at a location is the within-class mean. CL approaches
assume that the within-class values are random and independently distributed, are not
spatially autocorrelated, and that the variance is homogeneous. A more thorough discus-
sion of CL approaches in spatial interpolation can be found in the study by Webster and
Oliver [42].

As described above, we developed cover type maps for scales from 1 to 20 square
meters. Our final CL model for each fuel component was based on the scale that provided
the lowest Akaike information criterion (AIC).

2.2.2. Multiple Linear Regression

Multiple linear regression is an aspatial interpolation approach that models the re-
lationship between auxiliary information and the primary variable of interest to predict
values at unsampled locations. This relationship is frequently estimated following the
classic ordinary least-squares approach, as per Equation (4):

ẑ = α + βi(xi) + ε (4)

where xi are the auxiliary explanatory variables, βi is the linear slope coefficient that cor-
responds to each xi, α is the intercept, and ε is the residual error term. When using LR
approaches, the weighting function, λi, is set to 1 such that the prediction of the variable of
interest at any point is purely a function of the auxiliary information at that location. Esti-
mates based on LR assume that the data are random, not spatially autocorrelated, and have
homogeneous variance. Furthermore, LR assumes a linear relationship between primary
and auxiliary data and nominal multicollinearity among the auxiliary data. Additional
details of LR can be found in the study by Eberly [43].

We modeled each fuel component as a function of the forest structure and topographic
auxiliary variables for a single scale using a backward model selection process to remove
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non-significant (α > 0.05) predictor variables. We evaluated normality and multicollinearity
through a visual inspection of the Q–Q plot and VIF, respectively. For each fuel component,
we selected the regression model that resulted in the lowest AIC for further assessment.

2.2.3. Ordinary Kriging

Ordinary kriging is one of the most common geostatistical spatial interpolation meth-
ods in the environmental sciences. In OK, values at unsampled locations are estimated
based on distance-dependent spatial autocorrelation modeled from observed data. The
spatial autocorrelation term is identified through a sample semivariogram, which estimates
the semivariance, λ(h), as a function of the lag distance, h, the number of data pairs at a
given lag distance, N(h), and the measured value of the primary variable of interest, z, at
locations xi and xi + h, as per Equation (5):

λ(h) =
1

2n

n

∑
i=1

[z(xi)− z(xi + h)]2 (5)

A statistical model is fit to the sample semivariogram to estimate the coefficients for
kriging. Three coefficients are typically estimated based on the fitted model: the range, sill,
and nugget. The sill represents the maximum variation in the data, the range parameter is
the lag distance at which the sill is reached and provides an estimate of the limit of spatial
dependence, and the nugget represents the sum of the unresolved error occurring in the
measurement or autocorrelation at a scale below the lag distances sampled [14]. In this
study, we estimated the experimental variance by fitting a Matern function [44] to our
sample variogram using an ordinary least-squares approach, following Equation (6):

γ(h) = c

{
1− 1

2v−1Γ(v)

(
h
α

)2
Kv

(
h
α

)}
(6)

where c is the semivariance or sill, α is the range parameter, ν is a shape parameter,
Γ is the gamma function, and Kv is the modified Bessel function. Unlike CL and LR,
OK does not assume sample independence and results in exact predictions at sampled
locations (i.e., predictions equal observations at sampled locations). OK leverages spatial
dependencies within the observed data for the prediction at unsampled locations. However,
OK does not consider any auxiliary information in the spatial interpolation process. As the
autocorrelation of the observed data decreases, the fitted models approach a pure nugget
model, resulting in the prediction of the global mean at all locations. A more detailed
description of ordinary kriging can be found in the study by Li and Heap [14].

2.2.4. Regression Kriging

Regression kriging is a hybrid spatial interpolation technique that combines the linear
relationship between auxiliary information and the primary variable of interest estimated
through LR with OK for spatial interpolation. RK links these two interpolative approaches
together as consecutive steps. First, linear regression estimates the expected value as a
function of the auxiliary information described above for LR. Then, semivariograms are
fitted to the regressed residuals. The predicted value of the variable of interest at a given
location is estimated following Equation (7):

ẑ(s) = βo +
p

∑
k=1

βk·Xk(s) +
n

∑
i=1

λi·ε(si) (7)

where ẑ(s) is the predicted value of the variable of interest at locations s, βo is the estimated
intercept, βk are the estimated regression model coefficients, Xk(s) are the values of the
independent variables at locations s, λi are the kriging weights, and ε(si) are the observed
regression residuals at measured location si. Because the regression estimation residuals
have a mean of 0, RK utilizes simple kriging rather than ordinary kriging to estimate the
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weights, λi. Depending upon the strength of the relationship of primary data to auxiliary
data and the strength of the unresolved spatial autocorrelation of the residuals, RK will
produce results similar to pure kriging or pure regression [45]. This has led some to suggest
that pure kriging approaches and pure regression approaches can be considered as a special
case of RK [46]. Given that RK can exploit both the spatial structure of the data and the extra
information provided by the auxiliary information, RK theoretically should outperform
either OK or LR. For a more detailed discussion of regression kriging approaches, see the
study by Hengl [45]. Our implementation of RK used our LR models with the minimized
AIC for each fuel component as the starting model structure.

2.3. Comparison of Interpolation Methods

We assessed the comparative performance of each SIM with a k-folds cross-validation
approach [47]; in this manuscript, we set k to ten. The data were split into ten subsets, one
subset was withheld, and the SIM was fit using the remaining data (i.e., k− 1). The withheld
data were then utilized to assess the predicted values. We calculated the average error
statistics for each of these ten iterations of cross-validation. We evaluated the performance
of each SIM using the following statistics: mean error (ME); mean absolute error (MAE);
mean absolute percent error (MAPE); and Pearson’s correlation coefficient.

All analyses were performed in R v1.46-1 [48] with the following packages and their
respective uses: tidyverse 1.3.0 for data importing and wrangling [49]; ggplot2 v3.3.2 for
visualization [50]; spatstat v2.1-0 for calculating the basal area and cover type maps [51];
sp v1.4.-5 [52] and raster 3.4-10 [39] for handling the DEM data and raster 3.4-10 for calcu-
lating slope and aspect; hydroGOF v.0.4-0 for cross-validating the CL and LR methods [53];
and gstat 2.0-6 [54] and automap 1.0-14 [55] for fitting and cross-validating the OK and RK
methods. All statistical inferences were stated with an α ≤ 0.05.

3. Results

The fuel sampling locations were well-distributed across the vegetation types, slopes,
and aspects found on the PFDP (Figure 1C). Thirty-two percent of the sample locations
were in areas dominated by Engelmann spruce, 26% were in areas dominated by quaking
aspen, 22% were in areas dominated by ponderosa pine, 17% were in areas dominated by
Douglas-fir, and 4% were in areas dominated by blue spruce. The sample locations had an
average slope of 9%, with a range from 1.6% to 22%, and were distributed across aspects.

The total surface fuel load ranged from 0.25 to 19.9 kg m−2 with a mean of 4.0 kg m−2

(Table 1). The total fuel load was evenly divided between duff (48%) and dead down and
woody fuels (45%), with litter making up the remaining 7% (Table 1). The dead down and
woody fuel load increased with the time-lag size class, with the mean 100 h dead down and
woody fuel load being three times greater than the 1 h dead down and woody fuel load.
The mean fuel load was greater than the median for all the fuel components, indicating
that the fuel load distributions were right-skewed.

Table 1. Descriptive statistics of surface fuel load (kg m−2) by fuel component on the Pikes Peak
Forest Dynamics Plot.

Fuel Component Min First Quartile Median Mean Third Quartile Max

1 h woody 0.02 0.10 0.18 0.29 0.34 2.42
10 h woody 0.12 0.24 0.44 0.67 0.73 15.00

100 h woody 0.03 0.03 0.14 0.87 1.20 9.16
Litter 0.00 0.15 0.25 0.29 0.38 1.08
Duff 0.00 0.55 1.65 1.91 2.80 9.88
Total 0.25 1.88 3.47 4.02 5.48 19.90

The fuel load was generally lowest in areas dominated by ponderosa pine and quaking
aspen (Table 2) and greatest in areas dominated by Engelmann spruce and blue spruce.
The areas dominated by Douglas-fir tended to have intermediate fuel loads compared
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to the other vegetation types, except for the litter load, which was greater than the other
cover types. Cover type was a significant predictor for all the components and total fuel
load (p < 0.01 for all components; Supplementary Table S1). The best-fitting CL models
had scales from 3 to 10 m with coefficients of determination (r2) ranging from 0.04 to 0.29
(Table 3). Estimating the total fuel load and fuel load by component using CL resulted in
prediction maps with stark transitions between the cover types (Figure 2).

Table 2. Mean and total fuel load by fuel component and cover type on the Pikes Peak Forest
Dynamics Plot.

Cover Type *
Fuel Load (kg m−2)

Total 1 h 10 h 100 h Litter Duff

PIEN 5.69 0.39 0.94 1.09 0.27 3.00
PIPO 2.30 0.17 0.49 0.46 0.29 0.88
PIPU 5.32 0.56 0.53 1.42 0.32 2.49
POTR 3.12 0.15 0.53 0.88 0.23 1.33
PSME 4.20 0.38 0.62 0.84 0.40 1.96

* Cover type codes: PIEN, Engelmann spruce, Picea engelmannii; PIPO, ponderosa pine, Pinus ponderosa; PIPU,
blue spruce, Picea pungens; POTR, quaking aspen, Populus tremuloides; PSME, Douglas-fir, Pseudotsuga menziesii.

Table 3. Selected predictors for best classification and linear regression models of total fuel load and
fuel load by component. The scale is the spatial resolution of predictor variables that minimized each
model’s Akaike information criterion. The coefficient of determination (r2), mean square error, mean
absolute error, and coefficient of variation are also reported for each model.

Component Scale (m) Predictors (p) r2 MSE MAE CV

Classification
1 h woody 6 Cover type 0.15 0.09 0.19 104

10 h woody 3 Cover type 0.04 0.98 0.46 148
100 h woody 7 Cover type 0.04 1.67 0.94 149

Litter 4 Cover type 0.08 0.03 0.14 61
Duff 5 Cover type 0.29 2.16 1.11 77
Total 10 Cover type 0.24 6.48 1.86 63

Linear regression

1 h woody 6 Cover type; basal area; distance to
tree; distance to large tree; slope 0.24 0.08 0.18 99

10 h woody 13 TPH; distance to tree; aspect; flow
direction; topographic wetness 0.13 0.90 0.44 142

100 h woody 3 Cover type; curvature; flow
direction; topographic wetness 0.08 1.61 0.90 146

Litter 4
Cover type; basal area; TPH of

large trees; aspect; slope, surface
relief ratio; topographic wetness

0.20 0.03 0.13 58

Duff 19

Cover type; basal area; TPH; TPH
of large trees; distance to large
tree; aspect; slope; curvature;

surface relief ratio

0.51 1.62 0.90 66

Total 10 Cover type; basal area; distance to
tree; aspect; flow direction 0.30 6.05 1.74 62
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The forest structure and topographic variables were significant predictors in the linear
regression models for all the fuel components and the total fuel load (Table 3). Cover type
remained a significant predictor for the total fuel load and all components expect for the
10 h dead down woody fuel load. Local basal area or TPH were significant predictors for
the total fuel load and all components except for the 100 h dead down woody fuels. At least
one topographic variable was selected in the final regression for all the fuel components
and the total fuel load. However, there was not consistency in the variable selected across
the fuel components nor for the total fuel load, and the scale of the best-fitting models had a
wider range than the CL models. When retained in a model, increasing the local basal area
or TPH increased the fuel loading, the fuel load decreased as the distance to the nearest tree
increased, and the fuel loading increased in areas of greater topographic sheltering (i.e.,
north aspects or greater topographic wetness index values; Supplementary Table S1). The
inclusion of additional predictor variables beyond cover type resulted in predicted maps
that generally captured the same patterns as those using CL but with variability within the
vegetation classes (Figure 2).

Positive nugget-to-sill ratios for OK and RK indicated the presence of spatial corre-
lation in all the fuel load estimates (Table 4). The scale of autocorrelation (i.e., the range)
varied from 6.08 to 39.70 m for OK and from 6.08 to 24.10 m for RK. The greatest spatial
autocorrelation scales occurred for 1 h and 10 h down woody fuels and duff for both OK
and RK (Table 4). RK had similar or lower ranges than OK, suggesting that the auxiliary
variables accounted for some of the autocorrelation within the data. The differences in the
predicted nugget values between OK and RK were minor, while the predicted sill values
tended to be slightly lower for RK compared to OK. Where ranges exceeded 10 m, the
predictive surface fuel maps based on OK captured the general patterns in the fuel load
associated with vegetation class boundaries but with a smeared gradation along the transi-
tion between the cover types and greater variability in the fuel load than the maps based
on CL and LR. However, the predictive fuel load maps based on OK for litter, 10 h down
woody fuel load, and total fuel load did not indicate any discernible pattern associated
with any overstory or topography. Instead, they illustrated a speckling pattern associated
with the sampling locations and small range values. The surface fuel maps based on RK
appeared as a hybrid of the LR and OK surface fuel maps with stark contrasts in the fuel
load along the vegetation boundaries and less variation within a vegetation type than those
based on OK (Figure 2).

Table 4. Fitted semivariogram parameters for surface fuel load, by component, and total used for
ordinary kriging and regression kriging in the Pikes Peak Forest Dynamics Plot.

Component Nugget Sill Range

Ordinary kriging

1 h woody 0.04 0.06 39.70
10 h woody 0.00 1.18 7.96
100 h woody 0.85 0.91 27.80

Litter 0.01 0.02 6.08
Duff 1.20 1.64 49.50
Total 0.00 7.71 6.30

Regression kriging

1 h woody 0.05 0.03 24.10
10 h woody 0.00 1.14 7.66
100 h woody 0.85 0.80 25.60

Litter 0.01 0.02 6.08
Duff 1.11 0.83 17.90
Total 1.33 4.94 6.29

All of the SIM methods resulted in small mean errors, indicating that the predictions
were unbiased (Table 5). The MAPE varied from over 100% to around 40% depending on
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the specific fuel component and spatial interpolation method (Table 5). Regardless of the
SIM, the greatest MAPEs were associated with the dead, down, and woody fuel loads,
followed by duff, litter, and total fuel load. RK resulted in the lowest MAPE for the 1 h and
100 h dead down woody fuels components, litter, duff, and total fuel load, with reductions
ranging from 1 to 3% compared to the next best SIM and 3–12% for the worst SIM. For
the 10 h dead down woody fuel load, OK resulted in the lowest MAPE, though there was
only a 3% improvement over RK, which had the greatest MAPE of all the SIMs. RK had
the greatest robs,pred for the 1 h and 100 h dead down woody fuel components, litter, duff,
and total fuel loads and was tied with LR for the greatest robs,pred for the 10 h dead down
woody fuel load. The robs,pred for RK was from 1.17 to 2.54 times greater than that of the
SIM with the lowest correlation coefficient. However, relative to the next greatest robs,pred,
RK had from 0 to 1.12 times greater correlation coefficients.

Table 5. The mean error (ME), mean absolute error (MAE), mean absolute percent error (MAPE), and
correlation coefficient between observed and predicted (robs,pred) from cross-validation.

Component Method ME MAE MAPE robs,pred

1 h woody

CL <0.01 0.19 67% 0.35
LR <0.01 0.19 66% 0.43
OK <0.01 0.18 65% 0.36
RK <0.01 0.18 64% 0.45

10 h woody

CL <0.01 0.47 70% 0.14
LR <−0.01 0.46 68% 0.27
OK <0.01 0.45 67% 0.22
RK <0.01 0.47 70% 0.27

100 h woody

CL <−0.01 0.96 110% 0.11
LR <0.01 0.92 106% 0.22
OK <0.01 0.89 103% 0.25
RK <0.01 0.87 101% 0.28

Litter

CL <0.01 0.14 50% 0.24
LR <0.01 0.14 48% 0.30
OK <0.01 0.13 46% 0.40
RK <−0.01 0.13 45% 0.44

Duff

CL <0.01 1.18 62% 0.42
LR <0.01 1.06 55% 0.59
OK <0.01 0.98 51% 0.61
RK <0.01 0.96 50% 0.64

Total

CL <0.01 1.89 47% 0.47
LR <0.01 1.80 45% 0.51
OK 0.04 1.91 48% 0.39
RK 0.02 1.70 42% 0.55

4. Discussion

Fuel maps are commonly utilized by fire and land managers across a range of spatial
scales to assist with the planning and locating of fire suppression opportunities, evaluating
fire hazard and risk, designing wildland fuel treatments, and simulating fire behavior
and effects [56–58]. Fine-scale variation in fuel characteristics is increasingly recognized
as an important driver of fire behavior and effects [9,59], and as such, there is a growing
demand for high-resolution maps of wildland fuels. Our results indicated that all four
SIMs produced fine-scale (1 m2) surface fuel maps with unbiased estimates. Although
there were relatively minor differences in the predictive capability between the four spatial
interpolation methods, regression kriging provided a lower MAPE and explained a greater
proportion of the variance relative to the other approaches. Riech et al. [16] also found
that the inclusion of a spatial autocorrelation term in a regression-based model resulted in
improved predictions of surface fuel loads. These findings indicate that regression kriging
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may be a better choice for developing fine-scale surface fuel load maps than approaches
relying solely on interpolation from point observations or regression-based approaches
using auxiliary information.

Though there have been few comparisons of various SIMs for predicting fuel loads,
there have been several previous studies that have implemented regression-based ap-
proaches to predict surface fuel loads from field-based and active and passive remote
sensing data [13,33,60]. While previous studies have found moderate success with the
prediction of coarse woody debris using linear and machine learning regression approaches,
results for fine woody and litter surface fuels have been mixed. Bright et al. [61] reported r2

values of 16 and 21 percent with a %RMSE of 39 and 80%, respectively, for litter/duff and
1–100 h surface fuel loads. Hudak et al. [62] explained 32% of the variation in surface fuel
loading (combined duff, litter, woody, and herbaceous) in frequently burned longleaf pine
(Pinus palustris Mill.) forests. Arellano-Pérez [63] explained 12% of the surface fuel load
variability in Spain with a %RMSE of 35%. Lydersen et al. [11] found that the overstory
structure explained 16–29% of the surface fuel variation in Californian forests. Our RK
models resulted in r2 and MAPE values that were well within the range of previously
published studies despite differences in the scale, extent, and characteristics of the study’s
ecosystems and the sampling design and data collection methods used. The similar predic-
tive capabilities across the various forest types, productivity gradients, and disturbance
regimes found among these studies likely stem from the high spatial variability in the
surface fuel load, as noted by Keane et al. [10] and Vakili et al. [32] among others. Given the
large variations in and small ranges associated with surface fuel load, it might be possible
to increase the overall accuracy through additional sampling. Though more studies are
needed to better understand the effect of the sample size on fuel mapping accuracy and
SIM selection, the large number of samples required would likely be impractical for fire
management applications. Therefore, future mapping efforts might consider spending
more effort on obtaining high-quality auxiliary information to improve the correlation in
regression rather than increasing the sample size.

Conceptually, the spatial distribution of surface fuel load is controlled by a complex
suite of biophysical and plant functional traits that influence productivity, litterfall, and
decomposition rates [64]. Although we did not directly measure litterfall and decompo-
sition on the site, we did find significant correlations with several indirect measures of
decomposition and litterfall, including vegetation structure, composition, and topography.
Overall, we found that the dominant species explained the most variation in our RK model,
followed by metrics representing forest density and topography. These results were consis-
tent with previous studies that have related litterfall and decomposition rates with species
traits, forest structure, and environmental variables [11,64–67]. These findings indicate that
the statistical modeling of fuel accumulation based on relevant forest structure, compo-
sition, and biophysical variables can be effective at capturing the high spatial variability
associated with the long-undisturbed mixed conifer ecosystems of the Rocky Mountains.
However, the low correlation coefficients and large MAPE indicate that there is still room
for improvement in fuel mapping.

There are several possibilities for increasing fuel mapping accuracy through the in-
clusion of other biophysical, forest structural, and disturbance history predictor variables
describing the spatial and temporal dynamics of fuel accumulation and decay processes.
One possible approach is to utilize repeat measurements of the forest structure through
the incorporation of linked remote sensing technologies and forest inventory data. The
use of repeat measures can supply estimates of both forest productivity and disturbances,
both of which influence the spatial and temporal distribution of surface fuels. Though
several studies (e.g., 61) have used repeated measures of relatively coarse-scale (<900 m2)
remote sensing data to develop fuel maps, there have been fewer studies that have utilized
repeated measures to develop fine-scale fuel maps. At these finer scales, several studies
have shown the promise of terrestrial and aerial LiDAR and uncrewed aerial system (UAS)
structures for motion approaches for capturing forest structure parameters for mapping
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fuels and for capturing vegetative structural changes (e.g., [68–73]), but we are unaware of
any studies that have utilized long-term repeated remote sensing measures for fuels map-
ping. With these three-dimensional remote sensing techniques providing spatially explicit
estimates of individual trees, these data could provide a better correlation of how a forest
structure impacts the input of fuels and microclimatic influences on fuel decomposition to
improve surface fuel mapping. Further studies are needed to assess how repeated measures
from three-dimensional remote sensing technologies can be used to improve the precision
of fuel mapping and the characterization of fuel development relative to other mapping
methodologies. Additionally, it is important to recognize that other approaches, including
mechanistic-based simulation modeling of fuel accumulation (e.g., [74]), also need to be
more broadly assessed and compared. Finally, hybrid fuel mapping approaches that link
multiple data types (e.g., satellite-based remote sensing, terrestrial LiDAR, and destructive
sampling) with mechanistic modeling may have the greatest potential to capture the spatial
and temporal feedbacks that drive fuel accumulation, resulting in more accurate multi-scale
fuel maps.

While there is considerable room to improve fine-scale surface fuel mapping methods,
there is also a need to understand how improvements in surface fuel mapping effect fire
behavior and effects predictions. Fine-scale surface fuel maps such as those we created
and tested in this study are primarily used for fire behavior and effects predictions from
next-generation three-dimensional process-based models. Further studies that assess the
uncertainty and sensitivity of model predictions associated with surface fuel maps are
needed to advance these models. Ideally, such evaluations would take place across a range
of ecosystems, environmental conditions, and for both prescribed and wildland fires and
would ultimately be tied into new experimental research aimed at validating the predictions
from such models [75].

5. Conclusions

Surface fuel maps are used by land managers to predict fire behavior and effects
during prescribed fire planning, assessing wildfire hazards and risk, and locating and
designing effective silvicultural fuel-hazard-reduction treatments. Increasing the resolution
of fine-scale fuel variability will enable the application of next-generation fire behavior
modeling tools for fire management planning [58,75]. In this study, we compared the ability
of four different spatial interpolation methods to capture the fine-scale (1 m2) variability in
the surface fuel load in a mixed conifer forest with terrain-driven variation in the vegetation
and microclimate. We found that regression kriging outperformed the other approaches
that relied solely on interpolation from point observations or regression-based approaches
using auxiliary information for developing fine-scale surface fuel maps. Although our
analysis found that surface fuel loading was correlated with species composition, forest
structure, and topography, the relationships were relatively weak, indicating that additional
predictors and spatial associations could significantly improve the surface fuel mapping. In
addition to developing more accurate approaches to map surface fuels, additional research
is needed to understand how uncertainty in surface fuel maps influences fire behavior
and effects predictions across a range of model platforms, environmental conditions, and
ultimately land management decisions associated with wild and prescribed fires.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/fire6060216/s1, Table S1: Anova summaries of classification
and linear regression methods predicting total fuel load and fuel load by component. Table S2: Re-
gression tables of classification and linear regression methods predicting total fuel load and fuel
load by component. PIEN is the dummy-coded cover type. Were PIEN = Engelmann spruce,
PIPO = ponderosa pine, PIPU = blue spruce, POTR = quaking aspen, and PSME = Douglas-fir.

https://www.mdpi.com/article/10.3390/fire6060216/s1
https://www.mdpi.com/article/10.3390/fire6060216/s1
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