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Abstract: In this paper, a solution based on an improved particle swarm algorithm is proposed for
the path planning problem without a road network in forest fire rescue scenarios. The algorithm
adopts an adaptive inertia weight and a dynamically updated learning factor strategy to enhance
the global and local search capabilities of the algorithm. In terms of cost function design, the article
considers three factors: path length, terrain slope, and obstacle avoidance ability to ensure the safety
and effectiveness of the path. The experimental results show that: (1) the path planning algorithm
based on improved particle swarm optimization can effectively avoid spreading wildfire and reach
the designated target point with a good “detour” effect; (2) the path planned by the improved PSO
algorithm performs better than the original PSO algorithm in terms of fitness evaluation and average
slope; and (3) changes in the particle population, dimensions, and learning factors in the particle
swarm optimization algorithm can affect the convergence of the final path. Increasing the particle
dimensions can bring more reasonable and specific paths; decreasing the learning factor increases the
convergence iterations, but also obtains a better path planning solution and higher fitness.

Keywords: forest fire spreading; path planning; particle swarm optimization

1. Introduction

In recent years, forest fires have become a frequent occurrence in many countries
worldwide due to extreme weather conditions, which pose a serious threat to human life
and property safety. For example, forest fires in California in 2018 resulted in direct and
indirect economic losses of around USD 14.85 billion, accounting for 9.1% of the state’s
annual GDP [1]. In Australia, the massive forest fires in 2020 caused 28 deaths and the
loss of three billion animals [2]. Moreover, in Turkey, from 2000 to 2020, approximately
63,724 forest fires occurred, destroying roughly 320,000 hectares of forest [3]. As forest fires
typically take place in remote and steep mountainous areas, they significantly impact the
natural environment [4]. Additionally, forest fires tend to spread and grow larger due to
various factors such as difficult accessibility and fire and smoke diffusion. These factors
make it challenging for firefighters to find suitable routes for firefighting efforts. Therefore,
obtaining a reasonable path that avoids forest fire risks and meets the needs of firefighting
operations is of great significance when facing complex dynamic fire environments.

Contemporary research in path planning mainly focuses on unmanned aerial vehicles
(UAVs) designed for aerial navigation. Wang et al. proposed an optimal path planning
method for forest fire rescue UAVs using a vortex search algorithm that factors in two
important considerations: spatial terrain and UAV energy [5]. Huo et al. proposed a
task assignment and path planning method for multiple UAVs, developing a planning
model that considers time resolution and balance constraints [6]. Path planning is also
utilized in forest fire fighting decision-making. For instance, Sakellariou et al. developed a
spatial decision support system (SDSS) that instructs the closest fire truck to the affected
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area by finding the most efficient route. [7]. However, these path planning studies are
seldom carried out in dynamic forest fire zones that do not have any road network. For
path planning in complex dynamic environments, swarm intelligence algorithms are a
good solution: Soot et al. combined the cuckoo search (CS) algorithm, bat algorithm
(BA), and firefly algorithm (FA) in the field of path planning [8]; Ghamry et al. utilized
particle swarm optimization (PSO) to create a path plan for multiple UAVs on forest fire
missions [9]. From these studies, it is apparent that the efficiency and robustness exhibited
by swarm intelligence algorithms while addressing complex dynamic challenges make
them suitable for forest fire path planning scenarios that have numerous coupled risks.
Among swarm intelligence algorithms, the most notable is the particle swarm optimization
(PSO) algorithm, recommended by Kennedy and Eberhart in 1995, which serves a critical
role in swarm intelligence computing. Initially, this algorithm was used to mimic the social
behaviors of bird flocks and fish schools, and later it was further applied to optimization
problems. Numerous improved versions of this method have been utilized to address
a variety of complex engineering and scientific optimization challenges, such as power
systems [10], mechanical engineering [11], image processing [12], data mining [13], and
cloud computing [14]. Compared with other heuristic optimization algorithms, PSO has
several advantages, including fewer adjustable parameters, the ability to handle target
functions with stochastic properties, and the ability to conduct iterative calculations without
requiring a good initial solution. Nonetheless, the traditional PSO algorithm has some
restrictions, such as a reduction in population diversity with the increase in iteration times,
and the likelihood of being caught in local optima.

In the present study, it was observed that most path planning algorithms are primarily
designed for drones, whereas path planning for ground fires is predominantly conducted
in enclosed fire areas such as buildings [15,16]. Despite this, only a handful of studies have
investigated path planning specifically for complex environments, such as wildland fire
spread across terrains of varying slopes and forest vegetation. The challenges associated
with path planning research in such situations mainly arise from the difficulty of analyzing
and modeling dynamic simulation data for wildfires, as well as the inability to effectively
characterize the search space. In addition, the large variability in search space in path plan-
ning often leads to insufficient algorithm efficiency. Our research endeavored to address
these issues with the following improvements and innovations: firstly, we employed a
topological vertical partitioning method based on topology to model complex dynamic
forest fire spread environments, thereby reducing the complexity of path planning in dy-
namic space based on the characteristics of fire spread dynamics; secondly, we introduced
adaptive inertia weight and an adaptive learning factor calculation method to solve the
issue of the particle swarm optimization algorithm being prone to fall into local optimal
solution in path planning; finally, considered the dynamic nature of wildfires, including
slope changes and spatiotemporal spread, as path planning scenarios in the application.
We incorporated slope cost, personnel speed, and fire range as optimization objectives,
ensuring the feasibility and applicability of planned paths.

The article is structured as follows. Section 1 elucidates the significance of path planning
in forest fire scenarios and provides an overview of the existing research. Section 2 introduces
the topological vertical partitioning method and the improved particle swarm path planning
algorithm used in this study. Section 3 deploys the simulation results, demonstrating the
optimization effects of the algorithm under varying parameters. Section 4 presents a summary
of the paper and highlights future research directions for path planning algorithms in forest
fire scenarios.

2. Materials and Methods

The path planning problem for forest fire fighting scenarios involves two subjects: the
forest fire rescue team and the spreading fire. To model these mathematically, the algorithm
in this study utilizes the configuration space. The algorithm’s overall design concept is
illustrated in Figure 1.
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Figure 1. The overall design of the improved particle swarm optimization algorithm for path planning.

The algorithm comprises two main components. The first part is to numerically
model the physical space that necessitates path planning. This involves capturing the
initial configuration of the forest fire rescue team and the initial state of the forest fire
field, while tracking their evolution over time to generate a time-varying search space.
The second component is the optimization of the generated time-varying search space
using an improved particle swarm method based on the prescribed cost function of the
planned path. We provide a detailed account of the mathematical modeling process and
path optimization process for both in the following sections.

2.1. Spatial Modeling of Forest Fire Spread

The spread of forest fires is characterized by an irregular shape influenced by many
factors, such as combustible materials, temperature, wind speed, and wind direction in
the forested region. To represent such irregular shapes, two strategies are typically used:
(1) boundary representation and (2) solid representation [17]. In this study, the three-
dimensional forest fire spreading scene defines W = R3 as the three-dimensional state
space for path planning, whereas solid representation establishes the forest fire spreading
space, F. For space, F, we assume that the fire field is a convex polyhedron, D, which is
composed of vertices, edges, and faces. Each edge serves as a boundary between two faces,
whereas each vertex forms the perimeter between three or more edges. Finally, each face
has at least three vertices. The equation of planes passing through these points takes the
following form:

ax + by + cz + d = 0 (1)

in which the constants a, b, c, d ∈ R.
Construct f : R3 → R , f (x, y, z) = ax + by + cz + d. Let m be the number of faces. For

each face of D, a half-space Hi is defined as a subset ofW :

Hi = {(x, y, z) ∈ W| fi(x, y, z) ≤ 0} (2)
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Thus, a convex polyhedron is defined as the intersection of a finite number of half-
spaces, as follows:

D = H1 ∩H2 ∩ . . . ∩Hm (3)

Furthermore, the forest fire spread space, F, is defined as:

F = D1 ∪D2 ∪ . . . ∪Dm (4)

2.2. State Space of Firefighting Rescue Configuration Modeling

Defining the set of rescue team transformations is essential for modeling rescue team
movement. This set encompasses future transformed versions of attributes, such as rescue
team position, state, and direction, at a specific point in time. The collection of all future
attribute transformations of the rescue team is referred to as the configuration space, C [18].
Paths between points in the configuration space are continuous and determine whether or
not two points are connected to each other.

X = τ(s) =
{

0, path blocking
1, path connected

(5)

The visited states of the points in τ(s) are denoted by x1, x2, . . ., where s ∈ [0, 1]. In
addition, the connectivity of the path is determined as follows:

A topological space, X, is considered connected if, for all x1, x2 ∈ X, there exists a path
such that τ(0) = x1 and τ(1) = x2.

2.3. Time-Varying Search Space Modeling

To precisely model the forest fire spread space, F, the boundary function, f , of the
convex polyhedron is defined as a linear function. In this context, to more accurately
determine the spread of forest fire over time, the time variable is introduced into this
function, as follows:

Ht
i = {(x, y, z, t) ∈ W| fi(x, y, z, t) ≤ 0} (6)

where (x, y, z, t) represents the coordinates of the fire front during the forest fire spread
at time t. Additionally, we can define the time-varying fire field, D, and the time-varying
forest fire spread space, Ft, as follows.

Dt = Ht
1 ∩Ht

2 ∩ . . . ∩Ht
m (7)

Ft = Dt
1 ∪Dt

1 ∪ . . . ∪Dt
1 (8)

The time-varying path search space, C t
search, is established by defining the time-varying

state forest fire spread space, Ft. To obtain C t
search, we compute the path obstacle space, C t

obs,
from the fire rescue team’s configuration space, C. The complement of C t

obs in C yields:

C t
obs =

{
q ∈ C

∣∣A(q) ∩ Ft 6= ∅
}

(9)

where q ∈ C represents the configuration of rescue team A, with q = (xt, yt, zt, h), where h
denotes the unit quaternion. Additionally, C t

obs refers to the set of all configurations, q, in
which rescue team A(q) intersects the obstacle region, Ft. Given that both Ft and A(q) are
closed sets inW , the obstacle region, C t

obs, is also a closed set in C.
The remaining configuration then becomes the time-varying path search space, C t

search,
which is defined as:

C t
search = C/C t

obs =
{

q
∣∣q ∈ C, and q /∈ C t

obs
}

(10)
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C t
obs is a closed set in C; therefore, C t

search is required to be an open set, which implies
that the rescue team can reach arbitrarily close to the obstacle, which is not practical in
forest fire rescue scenarios. Thus, C t

search needs to be redefined in a closed set approach [19]:

C t
search = cl

(
C t

search
)
= int

(
C t

search
)
∪ ∂C t

search (11)

where int
(
C t

search
)

denotes the set of all points in C t
search and ∂C t

search denotes the set of all
boundary points of C t

search.

2.4. Vertical Partitioning and Simplification of Time-Varying Search Space

Once C t
search has been determined as the path search space, to decrease the compu-

tational burden, a technique known as vertical dissection [20] is employed to streamline
C t

search. The process is outlined below:
First, split C t

search into two finite families. The first finite family is cell cavity 1 and
the second finite family is cell cavity 2. Each cell cavity 2 is a trapezoid or triangle with
vertical edges. Dissect cell cavity 2 as follows: define P as the set of vertices used to outline
C t

obs, and let each vertex p ∈ P. From this point, extend a ray upwards and downwards
through through C t

search with the vertex as the endpoint until it reaches C t
obs. Depending on

whether or not this ray can extend in both directions, four cases arise, which are illustrated
in Figure 2.
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Splitting C t
obs along the above rays produces a vertical dissection, and extending these

rays produces a dissection of C t
search, as shown in Figure 3. The cell cavities 2 produced by

this method can only include trapezoids and triangles. Each cell cavity 1 is a vertical line
segment which is the boundary between two cell cavities 2.
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In order to accurately depict the topology of C t
search following vertical dissection, cell

cavity 2 is further explicitly defined as an open set on R2, indicating the interior of a system
or triangle, and cell cavity 1 as the interior portion of a line segment.
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After vertical dissection processing, a topology graph, G(V, E), needs to be defined in
dealing with the motion planning problem in the cell cavity.

For each cavity Ci, let qi be denoted as a sample point. qi is the mass center of Ci
and qi ∈ V in the topology graph G(V, E). Then, there exists a mass center point for each
cavity 1 and cavity 2. For cavity 1, its sampling point is its midpoint. For cavity 2, the
sample point is represented by the centroid of the convex polygon. By connecting the
sample points from neighboring cavity 1 to the corresponding sample points of cavity 2, the
connection edges between the samples become the paths between the cell cavities. All the
paths between adjacent cavities are connected to define the path topology graph, G(V, E).
Each cell cavity 2 is a convex polygon; the route topology graph made by linking the mass
centers can access each sample point, and therefore satisfies the accessibility condition,
as well as the connectivity condition. G(V, E) is created from the cell cavity dissection;
therefore, this dissection maintains the connectivity of C t

search. After obtaining the route
topology graph, G(V, E), solve the path generation problem from the initial point qI to
the target point qG further. Let C0 and Ck represent the cell cavities containing qI and qG,
respectively. Search a roadmap from qI to qG in the graph G(V, E). If it does not exist,
the path is reported as unsolved. If it exists, let C1,C2, . . . , Ck−1 represent the sequence
of paths computed along from C0 to Ck. The sample points qi(i = 1, 2, . . . , k− 1) in the
cell C1,C2, . . . , Ck−1 connect to provide an initial solution to the path planning. Using
Equation (5), set τ(0) = qI and τ(1) = qG. The path solution τ : [0, 1]→ C t

search can be
obtained by connecting each point in q0 to qk along the route topology graph. To ensure
that the generated path solution does not conflict with obstacles, Figure 4 of the dissection
process must be consulted.
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2.5. Improved Particle Swarm Optimization Search

These initial solutions are able to meet the needs of avoiding the forest fire spread area,
but do not consider the terrain slope and travel speed as the path cost. Therefore, iterative
optimization of the initial solutions in the path search space is required. In this study, a
particle swarm algorithm was chosen to carry out the iterative optimization of the initial
solutions, where the objective function of the optimization is a multi-element coupled path
cost function of:

G(q1, q2, . . . , qk) =
1

α ∑k
i=1

S(qI ,qi+1)

Ṽ(qI ,qi+1)
+ β ∑k

i=1 mM(qI , qi+1)
(12)

where qi (i = 1, 2, . . . ,k) is each mass center passed by the target planning path, S(qi, qi+1),
is the path length function from mass center qi to mass center qi+1, and Ṽ(qi, qi+1) is the
velocity adjustment function determined by different slope magnitudes. The values of the
speed adjustment function are detailed in Table 1. M(qi, qi+1) is the judgment function of
whether the path falls into the preference region, and m is the corresponding preference
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coefficient. Thus, it is known that the preference coefficient for dangerous terrain areas
is relatively low, whereas the preference coefficient for flat and safe areas is relatively
high. α and β are cost adjustment weights, which can be taken as 1. g(q1, q2, . . . , qk) is the
adaptation degree of the target planning path.

Table 1. Comparison table of walking speeds under different slope conditions.

Slope (◦) Average Walking Speed
(Steps/minute)

Average Walking Speed (km/h)

Uphill Downhill

0~3 120 5.0 5.0
3~5 100 4.0 4.5

5~10 90 3.5 4.5
10~15 80 3.0 4.0
15~20 60~70 2.5 3.5
20~25 50~60 2.0 3.0
25~30 40~50 1.5 2.5

The original particle swarm algorithm [21] updates the velocity and direction of the
search by sharing information among particles. Its key formula for particle update velocity
is as follows:

vk+1
id = ωvk + c1r1

(
pk

id,pbest − xk
id

)
+ c2r2

(
pk

d,gbest − xk
id

)
(13)

where i denotes the particle ordinal number, i = 1, 2, . . . , N; d denotes the particle dimen-
sional ordinal number, d = 1, 2, . . . , D; k denotes the number of iterations; ω denotes the
inertia weight; c1 and c2 represent the individual learning factor and the social learning
factor, respectively; r1 and r2 are random numbers in the interval [0, 1] to increase the
search randomness; vk

id denotes the velocity vector of particle i in the dth dimension in the
kth iteration, xk

id denotes the position vector of particle i in the dth dimension in the kth
iteration, pk

id,pbest represents the historical optimal position of particle i in the dth dimension
in the kth iteration, i.e., the optimal solution obtained by the search of the ith particle
(individual) after the kth iteration; pk

d,gbest represents the historical optimal position of the
particle swarm in the dth dimension in the kth iteration, i.e., the optimal solution in the
whole particle swarm after the kth iteration. In the original particle swarm optimization
algorithm, the inertia weight, ω, and learning factors, c1 and c2, are often set to constant
values (ω = 1, c1 = c2 = 2).

The previous particle swarm algorithm frequently results in poor route planning and
global convergence due to the rapid attainment of local convergence. Therefore, this paper
proposes a new time-varying velocity update approach to reduce the possibility of path
planning in forest fire scenarios falling into local optimal solutions. The inertia weights,
individual learning factors, and social learning factors in the speed update formulation are
defined as follows:

ωk+1 =
[
wk −

(
wk − wmin

)] r
R

(14)

ck+1
1 =

[
ck

1 −
(

ck
1 − c1min

)] r
R

(15)

ck+1
2 =

[
ck

2 −
(

ck
2 − c2min

)](
1− r

R

)
(16)

The proposed approach aims to strike a balance between exploration and exploitation
of the search space to achieve efficient and effective path planning in forest fire scenarios.
From Equations (14)–(16), it can be seen that at the beginning of the iteration, the velocity
update weight, wk, is relatively large, the self-awareness factor, ck

1, of the particle is relatively
large, and the social awareness factor ck

2 is relatively small, at which time the particle has
a better global search ability. As the number of iterations increases, the velocity update
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weight, wk, decreases, the individual learning factor, ck
1, decreases, and the social learning

factor, ck
2, increases, at which time the particle local search ability is enhanced.

3. Results and Discussion

To evaluate the efficacy and rationality of the designed algorithm, this study used DEM
data and fire propagation data obtained through computational simulations at different
times for a forest in Guangdong, China. The algorithm’s performance was simulated with
predetermined starting and endpoint inputs, and the calculated routes were obtained for
different stages of fire propagation. Table 2 provides accuracy and projection details for the
DEM data. Table 3 presents a summary of simulated particle swarm parameters and initial
point parameters.

Table 2. Information of DEM data used in simulation.

Properties Description Value

Raster Interpretation Geometric nature of the raster ‘cells’
XIntrinsicLimits Raster limits in intrinsic x coordinates [0.5, 3612.5]
YIntrinsicLimits Raster limits in intrinsic y coordinates [0.5, 3612.5]

CellExtentInLatitude Extent in latitude of individual cells 2.7778 × 10−4

CellExtentInLongitude Extent in longitude of individual cells 2.7778 × 10−4

LatitudeLimits Latitude limits of the geographic quadrangle bounding
the georeferenced raster [22.645233, 23.576067]

LongitudeLimits Longitude limits of the geographic quadrangle bounding
the georeferenced raster [112.384655, 113.387988]

RasterSize Number of rows and columns of the raster or image
associated with the referencing object [3351, 3612]

AngleUnit Unit of measurement used for angle-valued properties ‘degree’
ColumnsStartFrom Edge from which column indexing starts ‘north’

RowsStartFrom Edge from which row indexing starts ‘west’
Coordinate System Type Geographic coordinate reference system ‘geographic’

Table 3. Parameters for simulation calculation.

Case Start Point Target Point N D wmin [c1min,c2min] Stage

1 22◦43′0.08′′ N
112◦36′32.79′′ E

22◦43′34.86′′ N
112◦37′14.88′′ E

100
10 0.4 [0.4, 0.4] 1, 2, 3, 4, 5, 6200

300

2 22◦43′0.08′′ N
112◦36′32.79′′ E

22◦43′34.86′′ N
112◦37′14.88′′ E

200
5

0.4 [0.4, 0.4] 1, 2, 3, 4, 5, 610
15

3 22◦43′0.08′′ N
112◦36′32.79′′ E

22◦43′34.86′′ N
112◦37′14.88′′ E

200 10 0.4
[0.4, 0.4]

1, 2, 3, 4, 5, 6[0.8, 0.8]
[0.12, 0.12]

According to the computational experiments in [22], all initial values of c1 and c2 are
set to 2, and the initial value of w is set to 0.9 to ensure that the initialized population can
obtain an accurate solution. As stated in reference [23], when c1 + c2 > 4, it can lead to an
increase in particle oscillations, and ultimately, the particles may range beyond the search
space. When c1 + c2 < 4, the particles exhibit bounded periodic oscillations, resulting in
better search performance.

After calculation, Figure 5 shows the planned paths for different stages of fire spread
in Case1 when N = 100. It can be seen that the paths calculated by the algorithm avoid the
fire grids on the map and reach the target point, achieving a good bypass effect. Figure 6a
presents the average slope of the paths planned by the original PSO and the improved PSO
at different stages of fire spread under the parameters of N = 100. It can clearly be seen
that in stages 1 to 6, the slope of the improved PSO is smaller than that of the original PSO,
indicating better performance. Figure 6b shows the maximum fitness values of the two
algorithms corresponding to different stages of fire spread (a higher value indicates less
action time and gentler slope). It can be seen from the figure that in stages 1, 3, 4, 5, and
6, the fitness value of the paths planned by the improved PSO is higher than that of the
original PSO, whereas in stage 2, the fitness values of the two are almost the same.
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Furthermore, a–d illustrate the variations in the final path length and average slope of
planned paths, with different particle numbers, N, particle dimensions, D, and minimum
cognition factors.

In Figure 7a, it can be observed that with the increase in the number of particles, the
total length of the final path showed a varying degree of reduction in most fire spread
stages. When N = 100, the range of variation in the path length from Stage 1 to Stage 6 was
approximately 1500~1900 m, and when N = 300, the range of variation in the path length
from Stage 1 to Stage 6 became 1400~1600 m, indicating that the increase in the number
of particles helps to find a shorter path during the planning process. In Figure 7b, due to
the starting point being at a higher elevation on the map and the destination being at a
lower elevation, the average slope of the obtained path is negative, with most of the slope
variation ranging from [−45◦] to [0◦]. Similarly, as the objective function takes into account
the slope factor, with an increase in the number of particles, the optimization process tends
to converge towards paths with smaller slopes.
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1 

 

  
(a) (b) 

  
(c) (d) 

 
Figure 7. The variation in features under different particle dimensions and quantities. (a) The
variations in total path length under different particle numbers. (b) The variations in average slope
under different particle numbers. (c) The variation in total path length under different particle
dimensions. (d) The variation in average slope under different particle dimensions.

In Figure 7c, the range of changes in path length is 1600~2000 m when D = 5, whereas it
increases to approximately 1100~1500 m when D = 15. The increase in particle dimensionality
actually further leads to an increase in the final path length. This suggests that particle
dimensionality has a certain inhibitory effect on path length optimization, possibly due to
the excessive number of path nodes leading to a more tortuous path. Additionally, in the
process of optimization based on the objective function, the path length is not the only factor
considered. When particle dimensionality is low, the uncertainty in slope changes between
path nodes is greater, leading to them being trapped in a locally convergent state. This reason
can be verified in Figure 7d, which shows that under a condition of particle dimensionality
equal to 5, there is a positive average slope. This is because the existence of path nodes ranges
from low to high, while in the simulated planning scenario, it is a process that ranges from
high to low. Therefore, such solutions are generally difficult to meet the requirements of the
path planning objective. In this application scenario, while ensuring the algorithm’s time
efficiency, a particle node number of 10 is a more reasonable choice.

In addition, this study tested the minimum values of the learning factors c1min and
c2min, with the aim of exploring the convergence of the algorithm under different learning
factor conditions. Figure 8 shows the fitness variation during stage 3 of the propagation
phase in Case 3.
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As shown in Figure 8, with other parameters held constant, increasing the learning
factor results in a gradual decrease in the stable convergence generation of the particle
swarm-based path planning algorithm. When both c1min and c2min are 0.4, the particle swarm
converges in 476 generations. When both c1min and c2min are 0.8, the particle swarm converges
in 461 generations. When both c1min and c2min are 1.2, the particle swarm converges in
145 generations. Hence, the variation in the minimum learning factor in the particle swarm
has a notable impact on the number of the generations required for convergence. Moreover,
as the learning factor increases, the number of generations required to reach convergence
becomes shorter; however, this may not always lead to obtaining the optimal solution. Figure 8
highlights that the path planning algorithm’s fitness value at convergence is the highest when
the minimum learning factor is 0.4, compared with the lowest value obtained when the
minimum learning factor is 1.2. Hence, the minimum learning factor in this model needs to
be determined according to the actual computational scenario.

4. Conclusions

In summary, this paper illustrates how to conduct path planning considering multiple
risk factors and costs through the use of forest fire scenarios. By modeling the configuration
space of the fire rescue team and the spatiotemporal space of forest fire propagation, we
established a time-varying path search space. We simplified the search space through
vertical cell decomposition, reducing the complexity of search space in the forest fire path
planning scenario. In addition, we established a path planning model based on particle
swarm optimization which optimized path length and path slope. Furthermore, the path
planned by the algorithm exhibited an excellent “detour effect” in the dynamic spread of
the fire while still achieving its objective of reaching the target point.

We evaluated the planning performance of the original particle swarm optimization
algorithm and the improved particle swarm optimization algorithm under the same pa-
rameter settings. The results showed that optimizing the particle swarm optimization
algorithm led to paths with smaller slope and higher fitness values at different stages of
fire spread.

Moreover, during the simulation process, by setting different cases, we found that the
number of particles and the dimensions of the particles in the particle swarm optimization
algorithm can lead to changes in the final convergence and results. Increasing particle
dimensions provide more reasonable and stable routes for the model while decreasing the
convergence iterations.

Our research shows that the improved particle swarm optimization algorithm can
adapt well to the path planning optimization task in forest fire spread scenarios. In future
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work, we plan to optimize the particle swarm parameters and objective function model
and explore the impact of detailed parameter changes in the improved particle swarm
model on optimization results. We will also incorporate more risk factors into the objective
function of this algorithm to achieve a more reasonable path planning effect.
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