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Abstract: Fire-prone landscapes found throughout the world are increasingly managed with pre-
scribed fire for a variety of objectives. These frequent low-intensity fires directly impact lower forest
strata, and thus estimating surface fuels or understory vegetation is essential for planning, evaluating,
and monitoring management strategies and studying fire behavior and effects. Traditional fuel
estimation methods can be applied to stand-level and canopy fuel loading; however, local-scale
understory biomass remains challenging because of complex within-stand heterogeneity and fast
recovery post-fire. Previous studies have demonstrated how single location terrestrial laser scanning
(TLS) can be used to estimate plot-level vegetation characteristics and the impacts of prescribed fire.
To build upon this methodology, co-located single TLS scans and physical biomass measurements
were used to generate linear models for predicting understory vegetation and fuel biomass, as well
as consumption by fire in a southeastern U.S. pineland. A variable selection method was used to
select the six most important TLS-derived structural metrics for each linear model, where the model
fit ranged in R2 from 0.61 to 0.74. This study highlights prospects for efficiently estimating vegetation
and fuel characteristics that are relevant to prescribed burning via the integration of a single-scan
TLS method that is adaptable by managers and relevant for coupled fire–atmosphere models.

Keywords: terrestrial laser scanning; biomass; consumption; longleaf pine; prescribed fire; fuel
heterogeneity; fire behavior; linear modeling; forest; wildland fire

1. Introduction

Frequently burned ecosystems are found throughout the world and are known for
their role in supporting high levels of biodiversity and structurally complex understory
plant communities [1–3]. The architectural structure of these species-rich plant communi-
ties is characterized by fine-scale (<1 m) heterogeneity that has evolved with low-intensity
surface fires. Prescribed burning is used to maintain these fire-dependent ecosystems, and
practitioners monitor and estimate surface fuels to gauge the appropriate fire frequency
and formulate prescribed fire management strategies [4,5]. Furthermore, characterization
of the surface fuels are a critical input for a range of fire behavior and effects models

Fire 2023, 6, 151. https://doi.org/10.3390/fire6040151 https://www.mdpi.com/journal/fire

https://doi.org/10.3390/fire6040151
https://doi.org/10.3390/fire6040151
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/fire
https://www.mdpi.com
https://orcid.org/0000-0001-5753-4132
https://orcid.org/0000-0002-4412-5599
https://orcid.org/0000-0003-0175-558X
https://orcid.org/0000-0002-5801-5614
https://orcid.org/0000-0001-7480-1458
https://doi.org/10.3390/fire6040151
https://www.mdpi.com/journal/fire
https://www.mdpi.com/article/10.3390/fire6040151?type=check_update&version=2


Fire 2023, 6, 151 2 of 24

(e.g., BehavePlus, QUIC-Fire, FIRETEC and the Wildland Urban Interface Fire Dynamics
Simulator) [6–10]. At the stand scale (10’s to 1000’s of ha), approximate fuel loading or
biomass estimates are dependent on the ecosystem type, burn history, and plant species
composition, as well as the climate and soil characteristics that influence productivity and
ultimately fuel accumulation rates [1,11]. Current datasets on surface vegetation or fuel
biomass are available, but they only provide estimates in horizontal dimensions, without
a vertical dimension, and at spatial resolutions that range from 30 m resolution satellite
imagery to stand-level averages for representative ecosystems [11,12]. Though these ap-
proaches have been successfully used by managers in a variety of situations, including
large-scale fire management, they do not provide information on the fine-scale variability
in fuels that drive fire behavior and effects in prescribed fires and in frequently burned
ecosystems. There are no operational products that provide information on the finer scale
attributes of surface vegetation composition and architecture, despite research in laboratory,
field, and modeling environments that have identified these biophysical characteristics
as drivers of variation in fire behavior and in the effects of surface fires [13–17]. Thus,
improving estimation of the spatial resolution of fuels, and including information about
the vertical dimensionality of the fuelbed architecture or the 3D characteristics of surface
living and dead vegetation, are critical to improving the prediction of low-intensity surface
fire behavior.

The spatial variation in biomass at scales relevant to surface fire is the most difficult as-
pect to capture because of the complexity of composition and distribution within and across
stands, even within the same ecosystem and timespan since the last burn event [6,15,18].
In southeastern U.S. ecosystems, where production and turnover rates are high [19,20],
repeated burning provides a continuum of fine surface fuels and living vegetation that
enable a broad range of fire behavior throughout the year [21,22]. As such, the low (often
<1 m height) vegetation (shrubs, grasses, forbs, leaf litter, soil organic layer, and small coarse
wood) continuously changes with each fire and ecological response [13], making estimates
of surface vegetation structure and loading, notwithstanding fuel moisture dynamics [23],
highly variable at fine temporal (<hr) and spatial scales (<1 m). Furthermore, large diameter
coarse woody debris (>20 cm) have little opportunity to accumulate, and hence contribute
little to combustion during prescribed burns because of their high moisture retention and
fast decay rates [24,25]. Furthermore, consumption, or the amount of combusted biomass,
defines a fire’s intensity, and, as such, is used as a proxy for estimating fire effects [26].
The complex fuelbed and fine-scale fire–atmosphere interactions during a prescribed fire
cause highly variable consumption patterns across a burned area. Given these ecosystem
processes and combustion patterns, monitoring of these areas is needed as often as burning
occurs, yet current approaches fall short of estimating heterogeneous biomass change and
consumption within and across stands.

While remote sensing technology, particularly terrestrial laser scanning (TLS), can cap-
ture this fine-scale 3D structure, surface biomass variation is more difficult to characterize
because mass varies more by fuel type than by its shape or volume [27–29]. To address
this, approaches have been developed to couple traditional plot level measurements of
mass with TLS data. Over a decade ago, Loudermilk et al. [27] illustrated that traditional
estimates of volume (sphere, cylinder) significantly overestimate the volume of vegetation,
and that the fine-scale volume estimated from TLS (voxel-based method) can be linked
directly to the fine-scale leaf area and mass of two common southeastern shrub species.
Since then, field sampling has transitioned from 2D to 3D [30], and examples of using TLS
to characterize understory vegetation, which are linked to estimates of biomass or leaf area,
have increased [28,31–34].

Many of these earlier studies using TLS applied research-grade instrumentation and
processing techniques that require specialized software and knowledge, which are time
consuming and not suitable for management needs. Fortunately, recent advances in lidar
technology have allowed for a transition from research to management applications, specif-
ically through available low-cost, portable push button instruments [35,36]. Instrument



Fire 2023, 6, 151 3 of 24

types range from hand-held or vehicle-mounted scanners [37,38], unmanned aerial vehicle
scanners [39], stationary scanners [40–42], and even mobile phone apps [43]. These all vary
in quality, accuracy, and inherent laser capabilities (range, output point density, number
of returns), that impacts each desired forest measurement attribute [35,44]. While these
instruments are now affordable (<$30,000), widely available, and relatively easy to use,
manipulating and merging multiple scans, and analyzing the output 3D point clouds still
require specialized software and high-level coding and analytical skills.

There is growing interest in streamlining this analytical bottleneck by capitalizing
upon single-location terrestrial laser scans to characterize plot-level fuel and vegetation
characteristics; this can be used for ecosystem and fire effects monitoring as well as provide
inputs to spatially explicit fire behavior and effects models. A new method, developed by
Pokswinski et al. [45], was spearheaded in the southeastern U.S., where prescribed fire is the
prevailing forest management tool. This TLS-based approach of characterizing understory
vegetation capitalizes on the data richness of a single scan, with typically ~6–8 million
3D points, and measures nearly the entire 3D structure of a small, forested area within
five minutes [45]. For comparison, these plots, clipped to a 15 m radius, are equivalent to
a typical forestry plot size of 0.07 ha (0.18 ac), where a portion of that area is measured
by hand (e.g., [46,47]). Currently, over 100 metrics or structural characteristics can be
calculated from each point cloud, which represent the vegetation’s spatial distribution,
density, proportion or identification of various parts of the forest (e.g., tree boles), as well
as the structure of openings or space within the forest, and differences between true empty
space and space created by occlusion. These metrics have been successful in predicting
fire severity [48], forest structure [49], and understory species richness [41], but have yet
to predict surface vegetation mass or consumption. The difficulty lies in the laboratory
processing, which requires time and resources to sort, dry, and weigh shrubs, grasses,
leaf litter and woody debris collected in situ, and the analytical complexity involved in
relating 3D structure to mass. As such, there is a need to develop an approach that easily
predicts the heterogeneity in surface vegetation biomass across ecosystems with complex
understory vegetation structure and composition.

The objective of this study was to build upon the most recent methodology for devel-
oping vegetation metrics from single-location terrestrial laser scans [45] by linking surface
biomass to these metrics. We assessed the relationship between eight vegetation and fuel
classes of surface biomass and 162 TLS vegetation and fuel metrics in a frequently burned
longleaf pine (Pinus palustris) woodland in southeastern Georgia, USA. We used a robust
variable selection method to develop linear models for each of these eight classes. We
used these linear models to estimate pre-burn mass, post-burn mass, as well as mass
consumption by fire.

2. Materials and Methods
2.1. Study Site

Fort Stewart—Hunter Army Airfield (113,017 ha, 31◦56′ N, 81◦36′ W, elevation 2–56 m)
is primarily located in Liberty and Bryan counties in the Coastal Plain Province on the
southeastern Atlantic coast of Georgia [50]. This region has hot and humid summers and
short, mild winters, with average monthly temperatures ranging from 27.92 ◦C in July to
11.06 ◦C in January (NCEI Climatology 1991–2020 dataset, Fort Stewart/Wright, GA US
Weather Station, 31.869◦ N, 81.624◦ W). The average annual rainfall is 1298 mm (NCEI
Climatology 1991–2020 dataset, Fort Stewart/Wright, GA US Weather Station, 31.869◦ N,
81.624◦ W). Fort Stewart falls within the historical range of the longleaf pine ecosystem [51],
which was severely reduced by logging in the 19th and early 20th centuries. Prior to the
federal acquisition of this land in the 1940s, the landscape was fragmented by agricultural
fields [51,52]. Currently, the overstory of these continuous sandhills and flatwoods is
dominated with restored longleaf pine (Pinus palustris), slash pine (P. elliottii), loblolly
pine (P. taeda), and turkey oak (Quercus laevis). The understory is a diverse mixture of
graminoids, forbs, and shrubs such as wiregrass (Aristada stricta), gallberry (Ilex glabra), and
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saw palmetto (Serenoa repens). Beyond military missions, the land is managed for a vari-
ety of plant and animal species, including the endangered Red-cockaded Woodpecker
(Picoides borealis); regular timber harvesting and year-round prescribed burning on a
3–5 year interval is used to maintain the desired canopy composition and density, as
well as to reduce fuels loads [53–55]. Our study site at Fort Stewart consisted of two
adjacent burn units, F6.3 (261 ha) and F6.4 (397 ha), which were represented by longleaf
pine flatwoods and intermixed cypress wetlands (Taxodium spp.). These burn units are on
Pelham loamy sand, Leefield loamy sand, and Ellabelle loamy sand, which are very deep,
somewhat poorly to very poorly drained, and moderately slow to moderately permeable
soils that formed in unconsolidated Coastal Plain sediments [56]. These areas had not been
burned in three years; the last prescribed burn occurred in 2019.

These two burn units were burned on two consecutive days, 2 and 3 March 2022.
During February 2022, the area received 29.48 mm of precipitation, with the last event of
5.84 mm occurring on February 28 (Fort Stewart/Wright, GA US Weather Station, 31.869◦ N,
81.624◦ W). On the burn days, the average direction was west to northwest (284.30493 and
260.7581) and the average wind speed was 4.52 kph, with maximum speeds of 12.96 kph
and 22.22 kph, respectively (Fort Stewart/Wright, GA US Weather Station, 31.869◦ N,
81.624◦ W). The mean temperature was 16.06 ◦C and the relative humidity ranged from
16% to 89%, averaging 53% (Fort Stewart/Wright, GA US Weather Station, 31.869◦ N,
81.624◦ W).

2.2. Sampling Design, Data Collection, and Processing

In February 2022, forty-one plots were randomly placed throughout the longleaf pine
Flatwoods of the two chosen burn units at Ft. Stewart (Figure 1). The interior wetlands
were not sampled as they are often inundated with water and as such, typically do not
ignite or contribute to fire spread. First, one lidar scan was collected in the center of each
plot using a Leica BLK360 (Leica Geosystems, Heerbrugg, Switzerland). More details on
the laser system and processing are in the “Terrestrial Lidar Processing” section below.
Approximately three meters from the plot center and at a 45◦ azimuth, a pre-burn clip
plot was established. A post-burn clip plot was also established within three meters from
the plot center. This plot was visually identified as possessing a similar fuel composition
and structure to the pre-burn clip plot. This provided for a paired sampling approach to
estimate consumption, where pre-burn mass (clipped and removed) can be linked to the
residual mass of similar vegetation and fuel types [57,58].

Before each burn, vegetation and fuel categories were recorded in both the pre- and
post- burn clip plots. Vegetation, fuel category and biomass data were collected using a
simplified approach from Hawley et al. [30]. The sampling area was 0.5 m in width by
0.5 m in length by 1 m in height. The frame was subdivided into two vertical sampling
layers or strata: ground to 30 cm and 30 to 100 cm. The vegetation and fuel categories for
this site were defined as woody live vegetation, now dead woody vegetation, woody litter,
woody dead and downed 1 h fuels, 10 h fuels, 100 h fuels, 1000 h fuels, pinecones, conifer
litter, conifer needles, and herbaceous vegetation, which includes graminoids, forbs, and
vines. The ‘now dead woody vegetation’ category was used only in post-burn sampling
to classify pre-burn woody live stems that were partially consumed by the prescribed fire
and when the aboveground plant was clearly dead or top-killed. There were no 1000 h
fuels found in our plots. A detailed description of each vegetation and fuel category is in
Appendix A. Before the burn, within both the pre- and post-burn plots, the presence and
absence of each vegetation and fuel category were recorded within each stratum. At the
pre-burn plot, the biomass was destructively harvested from each stratum. After the burn,
within each post-burn clip plot, the presence and absence of each vegetation and the fuel
category were recorded again and the biomass was destructively harvested within each
stratum. In the Athens Prescribed Fire Science Laboratory, Athens, GA, USA, the biomass
was sorted, dried, and weighed to determine the dry weight (in g m−2) of each vegetation
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and fuel category. The sorted biomass was dried at 70 ◦C until the weight of the sample no
longer changed, typically within 48–72 h. Dry mass values are found in Appendix B.
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Figure 1. Study area and sampling distribution of co-located TLS scans and vegetation and fuel
biomass samples (n = 41). They were sampled before and after two prescribed burns.

2.3. Vegetation and Fuel Mass Classes

For this study, we used our aforementioned field-derived vegetation and fuel cate-
gories (Appendix A) to create the vegetation and fuel mass classes used for our linear
modeling (Figure 2). This included total surface biomass (‘Total’), total without fine woody
debris (‘Total no FWD’), total below 30 cm height (‘Total 0–30 cm’), fine vegetation and
fuels only (‘Fine Fuels’), fine woody debris only (‘FWD’), and total below 30 cm height
without FWD (‘Total 0–30 cm no FWD’). Total was the mass of all living and dead vegetative
material. Total no FWD was the Total category minus any fine woody debris in the 10 h and
100 h fuel categories and pinecones. Total 0–30 cm was the total mass found under 30 cm in
height. Fine Fuels included all grass, forb, and vine material (live and dead), dead leaves
(pine and cypress needles, and broadleaves), other fine tree litter (bark flakes, reproductive
organs: catkins, etc.), and 1 h fuels. The Total no FWD and Fine Fuels categories were
created because coarse (1000 h) and fine woody debris (10,100 h) and live stems are rarely
consumed, or only partially consumed in these systems [25], and fire practitioners often
focus on “fine fuels” that are most available to burn during prescribed fire operations in the
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southeastern U.S. [59,60]. In fact, FWD was only 14% of the total mass, and there was no
difference in FWD mass between the pre-burn (mean: 130.0 g m−2, std: 154.8 g m−2) and
the post-burn (mean: 127.6 g m−2, std: 170.4 g m−2) samples (t-test, p = 0.92). The Total
0–30 cm category was created because most of the mass (95%) was found in this layer, and
we wanted to test its predictive power compared to the entire area measured up to 100 cm.
In the end, eight vegetation and fuel mass classes were created for our linear modeling
(Figure 2). All pre-burn data were used for the first six classes (‘Total’, ‘Total no FWD’,
‘Total 0–30 cm’, ‘Fine Fuels’, ‘FWD’, ‘Total 0–30 cm no FWD’). The next two included the
post-burn total surface biomass (‘Total 0–30 cm Post’) and the pre- and post-burn total
surface biomass below 30 cm combined (‘Total 0–30 cm Pre and Post’).
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All box plots include only pre-burn biomass data (n = 41), except for Total ‘0–30 cm Post’, which
includes only post-burn data (n = 41) and ‘Total 0–30 cm Pre and Post’, which includes both pre- and
post-burn data (n = 82). See text and Appendix A for fuel class and category descriptions.

2.4. Terrestrial Lidar Processing

For this study, we used the Leica BLK360 (Leica Geosystems, Heerbrugg, Switzerland)
terrestrial laser scanner, deployed as described above and in Pokswinski et al. [45]. The
BLK360 is particularly suited for use in forest mensuration applications because it is
lightweight (1 kg), affordable (<$20 K), quick (<5 min per scan), is splash resistant and is a
single-return laser. The area of coverage is 360◦ horizontally and 300◦ vertically. The laser
has a wavelength of 830 nm, a beam divergence of 0.4 m rad, a range accuracy of 4 mm at a
10 m distance and of 7 mm at a 20 m distance, a maximum pulse rate of 360,000 points s−1,
and a maximum range distance of 60 m [40]. The unit has multiple sampling density
settings to control the number of points, which can help manage the data collection time
and size. We used the medium density setting, which resulted in a scan time of less than
four minutes.

From each single scan, a variety of metrics were calculated to summarize the point cloud
and to serve as predictor variables for potential inclusion in the models. Prior to this, a
series of pre-processing steps was applied. The scans were first exported from the sensor
to PTX format using the Cyclone Register 360 (BLK Version) software (Leica Geosystems,
Heerbrugg, Switzerland). This format retains all gap values, i.e., pulses that do not have an
associated return [40]. The PTX point cloud was also converted to LAS format and clipped
to a 15 m radius. Then, a distance-based noise filter was used to remove stray points in
the point cloud. Next, the ground points were classified using a cloth simulation filter,
where all ground points were normalized relative to the ground, and ground points were
removed. The cloth simulation filter ground classification method classifies ground returns
by modeling a rigidness-constrained cloth surface defined by an inverted point cloud [61].

A set of metrics were calculated from the PTX data to characterize the proportion of
transmitted pulses that were returned. Within defined height bins (0.5, 1, 1.5, 2, >2 m) and
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using only the non-ground points in the normalized point cloud, summary metrics for the
height measures were generated to characterize the central tendency and variability in the
height measurements, including maximum and minimum height, mean and median height,
skewness, and kurtosis. We also implemented a summarization method that was aimed at
characterizing the areas of occlusion (i.e., all pulses are returned before reaching the current
volume), which made use of spherical voxels and allowed us to estimate the proportion of
pulses passing through a volume that is returned from that volume. Once this method was
applied, summary metrics were generated from the results based on height strata, similar
to the summarization process for the normalized data.

To generate additional metrics, the point cloud was also voxelized at an 8 cm3 spatial
resolution. Trees were then segmented and stems were classified using the TreeLS pack-
age [62], and basal area, mean DBH, mean tree height, max tree height and canopy base
height were calculated for all detected trees above 4 cm DBH. The points classified as “stem”
were then removed from the point cloud and a surface vegetation and fuels point cloud was
generated with the remaining points between 0 and 3 m in height. The surface vegetation
point cloud was then filtered with the nearest neighbor values using the ‘fastpointmetrics’
function in TreeLS. These points were filtered using threshold values of linearity, verticality,
planarity and a 2-dimensional eigenratio. The result was point clouds that contained points
that represented a high probability of fine fuels or coarse woody debris.

In summary, this process resulted in 162 TLS metrics, broken down by (1) how the
scan was divided or not [entire scan, by stratum (0.5, 1, 1.5, 2, >2 m), surface vegetation
(0–3 m), classified fine and coarse woody debris (0–3 m)], (2) metric type (general, height
statistic, quantiles, occlusion, trees), and (3) whether the metric used the point cloud or the
voxelized point cloud. A detailed description of each metric is found in Appendix C.

2.5. Linear Modeling

We applied the leaps and bounds linear regression approach, using the leaps pack-
age [63] in the R Statistical Software (v4.0.2 [64]). This approach was originally developed
by Furnival and Wilson [65], and was applied in the field of Forestry to test the linear
relationships present in a large multivariate dataset using a parsimonious approach. It per-
forms a comprehensive search for the best subsets of variables using a ‘branch-and-bound’
algorithm and a stopping rule to decide how many variables to use. If this linear regression
approach proves useful, its application across similarly structured ecosystems would be
less computationally expensive than more complex approaches (non-linear, polynomial,
etc.). Linear models in R are developed using QR decomposition to solve for least squares.

Eight linear models were run using the vegetation and fuel mass classes as dependent
variables and the 162 TLS metrics as independent variables. We used the ‘exhaustive’
method within the ‘subregs’ function, which performs an exhaustive approach on all
combinations of variables given a target maximum subset size, which in this case, was six.
A target of six was set because we wanted to optimize the number of dependent variables
for model interpretability and computational efficiency, and to be able to continue cycling
through all possible variable combinations. The six chosen variables were input variables to
the ‘lm’ function in R to provide linear model output statistics, specifically, the R2, p-value,
and RMSE for each model. Schwarz information criterion (BIC) [66] values were obtained
from the ‘which.min’ function set for BIC generated in the ‘subregs’ function in the leaps
package. Models were optimized to have low BIC values and to have the fewest variables.

Consumption was estimated using the Total 0–30 cm data. Observed consumption was
calculated by subtracting the post-burn mass values < 30 cm in height from the pre-burn
mass values < 30 m in height for each plot. Predicted consumption was calculated by
subtracting the predicted mass values of the Total 0–30 cm post-burn linear model from the
predicted mass values of the Total 0–30 cm pre-burn linear model for each plot. We applied
a linear model using the ‘lm’ R package to assess the relationship between the observed
and model predicted consumption values.
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3. Results

From the leaps and bounds regression, all linear models were significant (p < 0.05),
with an R2 ranging from of 0.65 to 0.74, when using a subset of six variables and the
exhaustive method of variable selection (Tables 1 and 2, Figures 3 and 4, Appendix D).
Using the pre-burn data, the best performing linear model was Total 0–30 cm (R2 = 0.74,
BIC = −29), while the worst performing model was FWD (R2 = 0.61, BIC = −12, Table 1).
The pre- and post-burn data combined also illustrated a significant linear model, with an R2

of 0.69. The models including the post burn data, either alone or combined with pre-burn
data, did not perform as well as the pre-burn data alone; this is because there was less
variation in the mass values post-burn. Similarly, this was also true for FWD (Figure 4b).
Furthermore, the linear relationship between the observed and predicted consumption was
significant (R2 = 0.70, p = 1.325 × 10−11, Figure 3d).

Table 1. Statistical results from leaps and bounds linear regression, which illustrate the resulting
model selected subset of six TLS metrics used to predict the associated vegetation and fuel mass
classes (linear models). All models had a df = 34, except Total 0–30 cm Pre and Post, which had
df = 75. See Appendix C for a full list of metrics and their definitions. All models resulted in a p-value
of <0.01.

Vegetation and
Fuel

Mass Class
(Linear Model)

Burn Status R2 RMSE BIC Model Selected Subset of Six TLS Metrics

Total Pre 0.72 228 −24 % PD2, Sk Prop Non-occluded2, Ku Prop Non-occluded2,
% Space5, Mean Ht Voxels, Surface VD

Total no FWD Pre 0.65 208 −17 PD2, % PD2, PD5, Ht 65th Q, Ku Prop Non-occluded1,
% Space3

Total 0–30 cm Pre 0.74 196 −29 % PD2, Sk Prop Non-occluded2, Ku Prop Non-occluded2,
% Space5, Mean Ht Voxels, Surface VD

Total 0–30 cm no
FWD Pre 0.69 168 −24 Ht 90th Q, % PD 30th Q, Ku Prop Non-occluded1, SD Prop

Non-occluded2, SD Ht Voxels, Ku CWD 1000
FWD Pre 0.61 108 −12 SD Ht2, Sk Ht2, SD Ht5, 90th Q Ht, % Space5, Mean Ht Voxels

Fine Fuels Pre 0.71 148 −25 PD2, % PD2, Ht 30th Q, Ht 65th Q, % PD 10th Q, % PD 60th Q

Total 0–30 cm Post Post 0.67 136 −20 Ht 45th Q, % PD 80th Q, % PD 90th Q, Max Tree Ht, Surface
Mean Ht, Surface Sk Ht

Total 0–30 cm Pre
and Post Pre & Post 0.69 236 −65 Median Ht1, Ht 15th Q, % Occluded5, Mean Prop

Non-occluded5, Mean Ht Voxels, Surface TGI

These eight linear models, with a possible 6 TLS metrics selected for each model, re-
sulted in 48 total selected metrics, which were identified as being the most important when
predicting mass (Tables 1 and 2). Descriptions of the selected metrics are in Table 2, and all
metric descriptions are in Appendix C. The metrics were all significant predictors (p < 0.05).
Though the metrics were not explicit between models, there were some similarities found.
In total, 33 unique metrics, or 20% of the (162 total) input TLS metrics, were selected among
the eight models. In total, 30 (91% of 33) were from metrics calculated from different strata
or height quantiles within each TLS scan. Of the remaining 3, 2 included the mean and
standard deviation of heights in the entire scan. These 2 metrics were used in 5 of the eight
models. The last one was a tree-metric: maximum tree height. This was only used once, in
the Total 0–30cm Post model. There were 6 metrics associated with space and occlusion (of
37 total) selected within five models.
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Table 2. Selected metrics from linear models illustrating the portion of the scan in which the metric
was derived, the metric type, as well as the description of each metric. Stratum refers to the height
layer within each scan in which the metric was derived, i.e., stratum 1: 0–0.5 m, 2: 0.5–1 m, 3: 1–1.5 m,
4: 1.5–2 m, and 5: >2 m. The numbers in parentheses refer to the number of times that particular
metric was selected across the eight linear models in this study. Metric type refers to either a height
statistic, general or standard TLS metric (e.g., point density), metric by quantiles, or identified tree
structures within each scan. A more detailed description of all metrics is found in Appendix C.

Portion of Scan Metric Type No. of
Metrics

Selected Metrics in
Linear Models Short Description

By Stratum *

Height Statistic

1 Median Ht1 (1) Median height (Ht) in stratum 1

2 SD Ht2 (1), SD Ht5 (1) Standard deviation (SD) of heights
in strata 2, 5

1 Sk Ht2 (1) Skewness (Sk) of heights in
stratum 2

General

2 PD2 (2), PD5 (1) Point density (PD) in strata 2, 5
1 % PD2 (4) % of points in strata 4

Space & Occlusion

1 % Occluded5 (1) % of points occluded in stratum 5

2 % Space3 (1), % Space5 (3) % of unreturned non-ground points
(true empty space) in strata 3, 5

1 Mean Prop Non-occluded5 Mean proportion (Prop) of occluded
and no returns in stratum 5

1 SD Prop Non-occluded2 (2) SD of proportion of occluded and no
returns in stratum 2

1 Sk Prop Non-occluded2 (2) Skewness of proportion of occluded
and no returns in stratum 2

2 Ku Prop Non-occluded1 (2),
Ku Prop Non-occluded2 (2)

Kurtosis of proportion of occluded
and no returns in strata 1, 2

0–3 m **

Height Statistic

1 Surface Mean Ht (1) Standardized surface fuel
mean height

1 Surface Sk Ht (1) Standardized surface fuel skewness
of height

1 Ku CWD 1000 (1)
Standardized surface fuel kurtosis of

heights knn classified as
100–1000 h fuels

General

1 Surface VD (2) Standardized surface fuel voxel
density(VD)

1 Surface TGI (1) Standardized surface fuel
triangulated greenness index(TGI)

Entire scan

Height Statistic **

1 Mean Ht Voxels (4) Mean height of standardized
point cloud

1 SD Ht Voxels (1) Standard deviation of heights in
standardized point cloud

Quantiles *
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Table 2. Cont.

Portion of Scan Metric Type No. of
Metrics

Selected Metrics in
Linear Models Short Description

5
Ht 15th Q (1), Ht 30th Q (1), Ht

45th Q (1), Ht 65th Q (2), Ht 90th
Q (1)

Max height at 5th to 95th
quantiles(Q), in intervals of 5

5
% PD 10th Q (1), % PD 30th Q (1),
% PD 60th Q (1), % PD 80th Q (1),

% PD 90th Q (1)

% of points below 10th to 90th
quantile of maximum height, in

intervals of 10
Trees **

1 Max Tree Ht (1) Maximum tree height

Total no. of metrics 33

* derived from point cloud data, ** derived from voxelized data.
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Figure 3. Observed vs. predicted surface biomass for the Total 0–30 cm vegetation and fuel mass
class, using the pre-burn ((a), n = 41), post-burn ((b), n = 41), pre- and post-burn combined (c), (n = 82),
and consumption ((d), n = 41) linear models.

The selected metrics were identical for the Total and Total 0–30 cm models (Table 1).
Three metrics for the Total no FWD and Fine Fuels models were similar: PD2 and % of PD2,
representing the point density within 0.5–1 m of the height profile and the 65th quantile in
height within the scan. The selected metrics were unique between the Total 0–30 cm and
Total 0–30 cm Post models. The metrics were more mixed in the Total 0–30 cm Pre and Post
model. This model had the largest range of metric types compared to the other models.
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4. Discussion

This study represents a critical step for the operational application of single TLS
methodology for measuring vegetation and fuel characteristics. We found that linear
models can be used in frequently burned southeastern U.S. ecosystems to estimate fine-
scale surface vegetation and fuel biomass using TLS vegetation metrics, and by predicting
pre and post burn mass, they c-an estimate consumption. We also found that the first 95%
of the total mass was found within the first 30 cm of the fuelbed and that using this value
(e.g., Total 0–30 cm) produced the highest performing linear models (e.g., Total 0–30 cm,
Table 1, Figure 3). This also includes estimating fine fuels, the largest proportion of mass
pre-burn and mass consumed (Table 1, Figure 4a). FWD could also be estimated using this
linear regression method (Figure 4b); however, we found that FWD represented 14% of
the total mass, and, more importantly, that this was minimally reduced by the fire (i.e., no
difference between pre- and post-burn FWD) and thus did not contribute significantly to
overall consumption. These findings illustrate a simple and practical method for predicting
fine-scale mass from TLS-derived metrics.

The strength of the models that we developed can be attributed to our sample size,
the large range of surface mass and fuel types sampled, and the variation in consumption
during the fires. Furthermore, the three-dimensional nature of the TLS scans created a
dataset from which a comprehensive list of TLS metrics could be derived and used to
predict a selection of surface fuel characteristics that are known to drive fire behavior.
Across the eight linear models, 33 of 162 TLS metrics (20% of total) were selected to best
predict surface biomass. The selected metrics between models corresponded similarly when
the vegetation within each category was similar (e.g., Total vs. Total 0–30 cm). The metrics
were unique between the Total 0–30 cm pre-burn and Total 0–30 cm post-burn models,
illustrating the distinct representation of the surface vegetation structure before and after
fire both within and across these scans. When combined (Total 0–30 cm pre and post burn
model), the metrics were dispersed between the individual models (Total 0–30 cm vs. Total
0–30 cm post), where complex similarities across the pre- and post-burn scans represented
a higher range of variability between the pre- and post-burn scans and associated biomass.
Over 90% of the selected metrics (30 of 33) represented vegetation and space between
vegetation in each scan’s height profile (Table 2, strata, quantiles, etc.), illustrating the
profound complexity of vegetation at fine scales in these frequently burned systems. The
3 remaining metrics selected as important metrics were the mean and standard deviation
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height of the entire voxelized point cloud, as well as the max tree height. These 3 metrics
were found in four models. Max tree height was only chosen in one model: the only
post-scan model run (Total 0–30 cm Post). This illustrates the significance of characterizing
the entire forest structure across the vertical and horizontal plane (hence using height
profiles and quantiles, etc., Table 2) beyond only explicit tree measurements to model
the variability in surface vegetation and fuel biomass. Furthermore, empty space in the
scan data were partitioned as gaps in vegetation and gaps due to occlusion. This was
represented in 37 TLS of the total 162 metrics, of which 6 were chosen within five linear
models (Tables 1 and 2). This illustrates the relevance of accounting for both true empty
space and space that appears empty in scans but is an artifact of scan occlusion; these are
all important factors when interpreting scan data and modeling surface biomass.

Given that surface fuel heterogeneity is complex and difficult to capture, the sensitivity
of TLS is up to the task of capturing most of this fine-scale structural variation. Furthermore,
our single-scan and linear modeling approach is relatively simple compared to other more
direct one-to-one coupled methods. Other methods include linking fine-scale mass and
volume of understory vegetation down to the 1.0 m3 and 6.25 × 10−2 m3 scale [27,33].
These methods use high-resolution TLS instrumentation that requires extensive processing
to merge several TLS scans together and manually crop out each 3D vegetation plot or
individual plant from the resulting merged 3D point cloud. Though this does create a
more ‘complete’ 3D image of the vegetation by reducing occlusion and enhancing realism,
its practical utility for extensive and repeated sampling work, and management appli-
cations, remains questionable. Furthermore, this method is likely prone to error that is
associated with directly linking field measurements and TLS data cropped to the 1000 cm3

(or 10 cm × 10 cm × 10 cm) scale; this is because both are performed manually and are
impacted by, e.g., wind during scans, placement of scanner and sampling frame, and
clipping biomass at 10 cm intervals. Our field and processing approach was distinct from
these methods by acquiring and processing one TLS scan from a push button instrument in
one location [45], then clipping in situ, drying, sorting, and weighing vegetation from only
two strata (0–30, 30–100 cm), and running a linear regression technique that pulls out only
a fraction (6 variables) of the TLS metrics to explain up to 74% of the variation in surface
vegetation and fuel biomass. Even if we only measured total dry mass, without sorting
into explicit vegetation and fuel categories, or even height categories (including FWD), our
linear models still performed well (e.g., ‘Total’ category, R2 = 0.70, Table 1) and could be
readily tested in other systems.

The TLS Instrument used in this study was useful because of its simple and non-bias
push-button approach. It could, however, prove useful to test the relationship between
metrics derived from other TLS instruments and surface biomass to expand this study’s
applicability. For instance, there are other 360◦ scanners that have different frequencies and
ranges [40]. There are mobile terrestrial scans that, while walking a transect for example,
could collect and process a more complete 3D point cloud of vegetation structure by
simultaneously eliminating the merging process required for stationary TLS scans and
reducing issues of occlusion. However, compared to our single-scan approach, these
mobile scanners are currently more expensive, more difficult to operate, and the quality
of the point cloud is dependent on the pace and path taken by the user, which limits
replicability [35]. This single-scan approach can be repeated in the same plot, as we did for
consumption, for long-term consistent data collection with minimal bias.

Creating TLS-derived models that estimate variation in surface biomass within forested
stands paves the way for creating realistic inputs and robust test datasets for spatially ex-
plicit fire behavior models [6]. These data are particularly useful in ecosystems that are
dominated by fine-scale surface fuels [22] and used as inputs into high-resolution coupled
fire–atmosphere models that operate in three dimensions with the ability to represent
within-stand variability [8,9,67]. Such a high-resolution representation of fuel variation
will improve our prediction of heterogeneity in fire effects and the underlying physical
influences of vegetation on the fire environment [13]. In this study, we found that the
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variability in surface mass across these two burn units (658 ha total) was considerable
[mean: 841 g m−2, stdev: 350 g m−2 from the ‘Total 0–30’ model (Figure 2)], highlighting
the need to think beyond stand-level averages [68]. Consumption followed this same trend
(mean: 580 g m−2, std: 353 g m−2), allowing for connections between energy-released-by-
fire and fire effects [69]. Both results demonstrate the ability of this method to represent
3D variability in mass and consumption across a stand, as well as the significance of low
(here <30 cm) vegetation, particularly fine fuels, when fine to coarse wood consumption is
negligible. As such, we recommend that these TLS data for pre-burn biomass estimates be
used as inputs to coupled fire–atmosphere models, while our consumption estimates can
be compared to model outputs.

This single-scan sampling technique was designed to be simple and efficient, specif-
ically for long-term monitoring [45]. Each scan captures a high-resolution 3D image of
a plot that can be analyzed repeatedly as new analyses and metrics are developed with
minimal to no post-processing. Incorporating surface biomass estimation into this approach
is critical, particularly for frequently burned ecosystems in which mass varies at fine scales,
and influences fire behavior and effects at these same scales [15]. Broader stand-level
averages do not account for this fine-scale heterogeneity and are not sufficient for coupling
to fire–atmosphere models and predicting fire effects [10,70]. This approach can add more
explicit estimates of mass to existing broad-scale approaches, such as ecosystem-level
photo-load series and custom fuel models [12,71]. The benefit for management, especially
if preliminary dry mass values have been incorporated, is that scans can be taken efficiently
within vegetation types of interest and run through the established linear models to provide
information on the explicit variability in surface biomass found within and across stands.
Surface mass can be quite variable across stands, even within the same ecosystem type
(e.g., longleaf pine Flatwoods vs. sandhills) based on fire histories, the time since fire,
management practices, and general site characteristics (soil, overstory density, etc.). This
approach could be used to monitor the effects of fire when associated with the detection of
changes in the surface biomass, both before and after a fire, and to monitor the long-term
restoration and maintenance of target surface fuel characteristics over time.

Future work for this study should be relevant to similar sites and other frequently
burned ecosystems. The extension of these models will require testing across other regional
longleaf pine forests or frequently burned ecosystems in other regions. We expect similari-
ties in ecosystems with comparable physiognomy, though model-selected TLS metrics may
vary depending on local factors, such as dominant trees, understory and site characteristics
(e.g., soil, elevation, topography, climate, management). Validation procedures are needed
to confirm their utility in the prediction of the fine-scale variability found in surface mass
when they are used for fire behavior research, particularly using these fuels predictions
coupled with site characteristics to create 3D surface fuel maps. Machine learning ap-
proaches could prove useful, especially as our sample size increases across ecosystems.
Coupling these TLS-derived surface fuel biomass methods with airborne laser scanning
could provide full spatially explicit vegetation distribution information across a given site.

5. Conclusions

In conclusion, this study illustrates an approach to expanding the utility of single-
location terrestrial laser scanning for use in prescribed fire management and monitor the
effects of fire, all benefitting from robust estimates of surface vegetation and fuel biomass.
This study demonstrates the capability of simple TLS methods to measure within and
across-stand variability, as well as estimated consumption. Lastly, these data and the
linear models presented here could prove useful for deriving inputs to and validating
outputs from coupled fire–atmosphere models, particularly for prescribed fire research
and management.
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Appendix A

Table of original vegetation and fuel categories collected in the field and their descriptions.

Vegetation or Fuel Category Description

Woody Live Live material from evergreen and deciduous broadleaf shrubs or trees aboveground
(i.e., stems, leaves, flowers, buds, etc.)

Now Dead Woody Vegetation
Only in post-burn sampling to classify pre-burn woody live stems that were partially

consumed by the prescribed fire and the aboveground plant was clearly dead
(aka top-killed)

Woody Litter Downed leaf and litter material from evergreen and deciduous broadleaf shrubs or trees
detached from its source (i.e., leaves, flowers, buds, etc.)

1 h
Downed dead branches, twigs, and other small woody pieces that are severed from their

original source of growth, and dead woody species that is still standing and attached to the
ground and is less than 0.25 inch (0.64 cm) in diameter

10 h

Downed, dead branches, twigs, and other small woody pieces that are severed from their
original source of growth, female cones (i.e., megastrobilus, seed cone, or ovulate cone)

from non-Pinus species, and dead woody species that are still standing and attached to the
ground and is 0.25 inch to 1.0 inch (0.64 to 2.54 cm) in diameter

100 h
Downed, dead tree and shrub boles, large limbs, and other woody pieces that are severed

from their original source of growth and dead woody species that is still standing and
attached to the ground and is 1.0 inch to 3.0 inch (2.54 to 7.6 cm) in diameter
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Vegetation or Fuel Category Description

1000 h
Downed, dead tree and shrub boles, large limbs, and other woody pieces that are severed
from their original source of growth and is 3.0 inch to 8 inch (7.6 cm to 20.3 cm) in diameter.

Note that no 1000 h fuels were found in our plots for this study.

Pinecones Intact female cones (i.e., megastrobilus, seed cone, or ovulate cone) from Pinus species

Conifer Litter
Needle from conifers other than Pinus species and downed woody material from conifer

species that is too small to fit into the 1-h fuel category (ex: paper-thin pieces of bark, male
pollen cones (aka microstrobilus), and pinecone fragments)

Pine Needles Downed needles from Pinus species with long or short needles

Fine Vegetation Live and dead material from bunchgrass species, wiregrass species, other graminoids, forbs,
vines, and conifer seedlings

Appendix B

Surface biomass values (g m−2) for each plot (row, n = 41) corresponding to the
vegetation and fuel mass classes (headings) used in this study and described in the text. All
values represent biomass found before the fire (pre-burn), except for the last column (Total
0–30 cm Post), which is the biomass measured after the fire in the post-burn plots. ‘Total
0–30 cm’ and ‘Total 0–30 cm Post’ classes were combined (n = 82) to produce the ‘Total
0–30 cm Pre and Post’ category (not shown here).

Total Total
No. FWD Total 0–30 cm Total 0–30 cm

No. FWD Fine Fuels FWD Total 0–30 cm Post

318.6 278.2 318.6 278.2 278.2 40.4 84.08

1124.92 1011.4 1075.04 961.52 945.96 113.52 178.92

470.16 432.36 466.08 428.28 404.44 37.8 43.52

942 854.8 942 854.8 854.8 87.2 101.12

787.68 787.68 782.2 782.2 787.68 0 16.76

490.68 472.96 490.68 472.96 472.96 17.72 95.16

553.2 531.76 550.32 528.88 521.68 21.44 23.84

565.28 320.72 565.28 320.72 320.72 244.56 110.4

622.16 533.24 618.72 529.8 521.96 88.92 219.12

739.16 725.88 685.72 672.44 555.36 13.28 169.84

1396.52 1020.12 1341.52 965.12 911.12 376.4 57.64

529.08 529.08 529.08 529.08 527.24 0 507.92

853.08 848.04 783.64 778.6 739.48 5.04 46.16

1122.36 630.76 1007.96 516.36 449.56 491.6 310.08

1373.76 876.28 1373.76 876.28 856.16 497.48 92.8

1318.32 1281.68 1150.44 1113.8 1003.8 36.64 207.16

1727.36 1434.68 1526.12 1233.44 1077.72 292.68 201.56

1648 1600.6 1256.72 1209.32 1020.44 47.4 213.04

467.52 406.36 461.44 400.28 353.04 61.16 302.6

1178.92 1131.12 1167.08 1119.28 1131.12 47.8 91.6

1276.64 806.28 1188.64 718.28 621.92 470.36 414.28

756.2 620.32 702.24 566.36 620.32 135.88 129.8

1512.44 983.6 1378.16 849.32 772.16 528.84 1027.36

434.6 434.6 434.6 434.6 423.52 0 122.16
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Total Total
No. FWD Total 0–30 cm Total 0–30 cm

No. FWD Fine Fuels FWD Total 0–30 cm Post

591.92 527.72 591.92 527.72 516.24 64.2 386.96

266.16 266.16 243.44 243.44 266.16 0 165.04

913.56 612.6 900 599.04 564.56 300.96 483.2

694.28 642.32 693.24 641.28 642.32 51.96 332.16

881.68 737.24 881.68 737.24 737.24 144.44 661.72

495.8 495.8 389.88 389.88 314.28 0 146

614.36 572.28 586.64 544.56 572.28 42.08 224.88

820.84 660.92 820.84 660.92 660.92 159.92 205.64

707.52 707.52 707.52 707.52 707.52 0 15.4

1575.24 1175.08 1520.8 1120.64 1114.44 400.16 512.4

1217.8 1197.28 1033.44 1012.92 800.76 20.52 279.44

1244.08 1074.24 1244.08 1074.24 1068.6 169.84 442.52

1212.76 1123 1185.44 1095.68 988.28 89.76 282.24

1134.36 1060.12 1037.4 963.16 842.68 74.24 378.04

938.92 889.4 938.92 889.4 889.4 49.52 544.56

639.04 531.76 639.04 531.76 531.76 107.28 709.2

264.04 264.04 264.04 264.04 261.72 0 190.8

Appendix C

The 162 TLS metrics used in the linear models for this study. The gray rows are those
chosen in our regression models for this study; see Table 1. These illustrate from which
portion of the scan the metric was derived, the metric type, as well as a description of
each metric. Stratum refers to the height layer within each scan in which the metric was
derived, i.e., strata 1: 0–0.5 m, 2: 0.5–1 m, 3: 1–1.5 m, 4: 1.5–2 m, and 5: >2 m. ‘Metric
type’ refers to either a height statistic, general or standard TLS metric (e.g., point density),
metric associated with space and occlusion of TLS points within the scan (e.g., true empty
space, occlusion by trees), metric by height quantiles, or identified tree structure within
each scan. Metrics were calculated from either the point cloud or the voxelization of the
point cloud to 2 cm × 2 cm × 2 cm voxels. “Standardized” means that the point cloud
was voxelized before the metric was calculated. Standardized surface fuels means that
identified tree stems were removed before the voxelization of each point cloud below 3 m
in height. All scans were normalized to account for topographic variation and cropped to
a 15 m radius from the center before any metric calculation. Triangular Greenness Index
(TGI) = ((Green− 0.39) * (Red− 0.61)) * Blue values extracted from the BLK camera. Visible
Atmospherically Resistant Index (VWRI) = (Green − Red)(Green + Red − Blue) extracted
from the BLK camera. See text for more details of the methodology.

Portion of
Scan Metric Type Voxelized/Point

Cloud
No. of

Metrics Metric Description

By stratum General Point Cloud 5 PD (1 to 5),
e.g., PD1 Point density (PD) in strata 1 to 5

By stratum General Point Cloud 5 % PD (1 to 5) % of points in strata 1 to 5

By stratum General Point Cloud 5 TGI (1 to 5) Triangular Greenness Index (TGI) in
strata 1 to 5

By stratum General Point Cloud 5 VARI (1 to 5) Visual Atmospheric Resistance Index
(VARI) in strata 1 to 5
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Portion of
Scan Metric Type Voxelized/Point

Cloud
No. of

Metrics Metric Description

By stratum Height statistic Point Cloud 5 Mean Ht (1 to 5) Mean height (Ht) in strata 1 to 5

By stratum Height statistic Point Cloud 5 Median Ht (1 to 5) Median height in strata 1 to 5

By stratum Height statistic Point Cloud 5 SD Ht (1 to 5) Standard deviation (SD) of heights in
strata 1 to 5

By stratum Height statistic Point Cloud 5 Sk Ht (1 to 5) Skewness of heights (Sk) in strata
1 to 5

By stratum Height statistic Point Cloud 5 Ku Ht (1 to 5) Kurtosis (Ku) of heights in strata
1 to 5

By stratum Space and
Occlusion Point Cloud 5 %

Occluded (1 to 5)
% of non-ground points occluded in

strata 1 to 5

By stratum Space and
Occlusion Point Cloud 5 % Space (1 to 5) % of unreturned non-ground points

(true empty space) in strata 1 to 5

By stratum Space and
Occlusion Point Cloud 5 Mean Prop Non-

occluded (1 to 5)
Mean proportion(Prop) of occluded

and no returns in strata 1 to 5

By stratum Space and
Occlusion Point Cloud 5 SD Prop Non-

occluded (1 to 5)
SD of proportion of occluded and no

returns in strata 1 to 5

By stratum Space and
Occlusion Point Cloud 5 Sk Prop Non-

occluded (1 to 5)
Sk of proportion of occluded and no

returns in strata 1 to 5

By stratum Space and
Occlusion Point Cloud 5 Ku Prop Non-

occluded (1 to 5)
Ku of proportion of occluded and no

returns in strata 1 to 5

0–3 m General Voxelized 2 PD CWD
(10 or 1000)

Standardized surface fuel PD
classified as 1–10 h or

100–1000 h fuels

0–3 m General Voxelized 2 TDI CWD
(10 or 1000)

Standardized surface fuel TDI
classified as 1–10 h or

100–1000 h fuels

0–3 m General Voxelized 2 VARI CWD
(10 or 1000)

Standardized surface fuel VARI
classified as 1–10 h or

100–1000 h fuels

0–3 m Height statistic Voxelized 2 Mean CWD
(10 or 1000)

Standardized surface fuel
mean height classified as 1–10 h or

100–1000 h fuels

0–3 m Height statistic Voxelized 2 Median CWD
(10 or 1000)

Standardized surface fuel median
height classified as 1–10 h or

100–1000 h fuels

0–3 m Height statistic Voxelized 2 SD CWD
(10 or 1000)

Standardized surface fuel SD of
height classified as 1–10 h or

100–1000 h fuels

0–3 m Height statistic Voxelized 2 Sk CWD
(10 or 1000)

Standardized surface fuel Sk of
height classified as 1–10 h or

100–1000 h fuels

0–3 m Height statistic Voxelized 2 Ku CWD
(10 or 1000)

Standardized surface fuel Ku of
height classified as 1–10 h or

100–1000 h fuels

Entire scan General Point Cloud 1 Ground PD Number of TLS points classified
as ground

Entire scan General Point Cloud 1 Veg PD Number of TLS points not classified
as ground

Entire scan General Point Cloud 1 % Ground % of points classified as ground
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Portion of
Scan Metric Type Voxelized/Point

Cloud
No. of

Metrics Metric Description

Entire scan General Point Cloud 1 TGI TGI

Entire scan General Point Cloud 1 VARI VARI

Entire scan General Point Cloud 1 % Above Mean Ht % of non-ground points above
mean height

Entire scan General Point Cloud 1 % Above 2SD
Mean Ht

% of non-ground points 2SD above
mean height

Entire scan General Voxelized 1 Total Volume PD of standardized point cloud

Entire scan General Voxelized 1 TGI Voxels TGI of standardized point cloud

Entire scan General Voxelized 1 VARI Voxels VARI of standardized point cloud

Entire scan Height statistic Point Cloud 1 Maximum Ht Maximum height of TLS points in the
entire scan

Entire scan Height statistic Point Cloud 1 Mean Ht Mean height of TLS points in the
entire scan

Entire scan Height statistic Point Cloud 1 SD Ht SD of TLS point heights in the
entire scan

Entire scan Height statistic Point Cloud 1 Sk Ht Sk of TLS point heights in the
entire scan

Entire scan Height statistic Point Cloud 1 Ku Ht Ku of TLS point heights in the
entire scan

Entire scan Height statistic Voxelized 1 Mean Ht Voxels Mean height of standardized
point cloud

Entire scan Height statistic Voxelized 1 Median Ht Voxels Median height of standardized
point cloud

Entire scan Height statistic Voxelized 1 SD Ht Voxels SD of heights in standardized
point cloud

Entire scan Height statistic Voxelized 1 Sk Ht Voxels Sk of heights in standardized
point cloud

Entire scan Height statistic Voxelized 1 Ku Ht Voxels Ku of heights in standardized
point cloud

Entire scan Space and
Occlusion Point Cloud 1 % Total

Unreturned Points % of unreturned points overall

Entire scan Space and
Occlusion Point Cloud 1 % Area

Occluded Points
% of possible non-ground points

from occluded

Entire scan Space and
Occlusion Point Cloud 1 % True Open Space % of unreturned non-ground points

(true empty space)

Entire scan Space and
Occlusion Point Cloud 1 Mean Prop

Non-occluded
Mean proportion of true points that

are not occluded

Entire scan Space and
Occlusion Point Cloud 1 SD Prop

Non-occluded
SD of proportion of occluded and no

returns in entire scan

Entire scan Space and
Occlusion Point Cloud 1 Sk Prop

Non-occluded
Sk of proportion of occluded and no

returns in entire scan

Entire scan Space and
Occlusion Point Cloud 1 Ku Prop

Non-occluded
Ku of proportion of occluded and no

returns in entire scan

Entire scan Quantiles Point Cloud 19 Ht 5th Q to Ht
95th Q

Height at 5th to 95th quantiles in
intervals of 5

Entire scan Quantiles Point Cloud 9 % PD 10th Q to %
PD 90th Q

% of points below 10th to 90th
quantile of max ht in intervals of 10

Entire scan Trees Voxelized 1 Total BA Total basal area
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Portion of
Scan Metric Type Voxelized/Point

Cloud
No. of

Metrics Metric Description

Entire scan Trees Voxelized 1 Mean BA Mean basal area

Entire scan Trees Voxelized 1 Mean Tree Ht Mean tree height

Entire scan Trees Voxelized 1 Mean DBH Mean diameter at breast height (DBH)
of all detected trees > 4 cm DBH

Entire scan Trees Voxelized 1 No. Trees Number of trees detected

Entire scan Trees Voxelized 1 Max Tree Ht Maximum tree height

Entire scan Trees Voxelized 1 SD Tree Hts SD of tree heights

Entire scan Trees Voxelized 1 Mean Canopy
Base Ht Mean tree canopy base height

0–3 m General Voxelized 1 Surface VD Standardized surface fuel VD

0–3 m General Voxelized 1 Surface TGI Standardized surface fuel TGI

0–3 m General Voxelized 1 Surface VARI Standardized surface fueVARI

0–3 m Height statistic Voxelized 1 Surface Mean Ht Standardized surface fuel
mean height

0–3 m Height statistic Voxelized 1 Surface Median Ht Standardized surface fuel
median height

0–3 m Height statistic Voxelized 1 Surface SD ht Standardized surface fuel SD
of height

0–3 m Height statistic Voxelized 1 Surface Sk ht Standardized surface fuel Sk of height

0–3 m Height statistic Voxelized 1 Surface Ku ht Standardized surface fuel Ku
of height

Appendix D

Raw statistical outputs (from R) of the eight linear regression models, in order as
shown in Figure 2 and Table 1.

Linear Model “Total”:

Call:
lm(formula = focus_predictor[, 1] ~ h_l2_per + s_l2_prop_sk + s_l2_prop_ku + s_l5_zero_per + vox_l1_mean + fuel0_3l1_cnt,

data = coef)
Residuals:

Min 1Q Median 3Q Max
−109.59 −26.96 −10.31 15.90 134.81

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) −3.300 × 103 8.601 × 102 −3.837 0.000516 ***
h_l2_per −1.093 × 101 2.386 × 100 −4.581 5.97 × 10−5 ***

s_l2_prop_sk −5.363 × 101 9.818 × 100 −5.462 4.31 × 10−6 ***
s_l2_prop_ku 1.673 × 100 2.906 × 10−1 5.757 1.78 × 10−6 ***
s_l5_zero_per 3.379 × 101 8.947 × 100 3.777 0.000611 ***
vox_l1_mean 6.566 × 101 9.710 × 100 6.762 8.99 × 10−8 ***
fuel0_3l1_cnt 1.522 × 10−4 3.072 × 10−5 4.954 1.97 × 10−5 ***

—
Signif. codes: 0 ‘***’

Residual standard error: 57.33 on 34 degrees of freedom
Multiple R-squared: 0.7167, Adjusted R-squared: 0.6668

F-statistic: 14.34 on 6 and 34 DF, p-value: 4.464 × 10−8
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Linear Model “Total no FWD”:
Call:

lm(formula = focus_predictor[, 1] ~ h_l2_cnt + h_l2_per + h_l5_cnt + h_zq65 + s_l1_prop_ku + s_l3_zero_per, data = coef)
Residuals:

Min 1Q Median 3Q Max
−76.143 −32.682 1.856 17.751 154.496

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 1.730 × 103 4.161 × 102 4.158 0.000206 ***
h_l2_cnt 1.567 × 10−3 2.869 × 10−4 5.463 4.30 × 10−6 ***
h_l2_per −5.622 × 101 1.114 × 101 −5.048 1.49 × 10−5 ***
h_l5_cnt −1.591 × 10−4 3.570 × 10−5 −4.457 8.60 × 10−5 ***
h_zq65 1.821 × 101 3.136 × 100 5.806 1.54 × 10−6 ***

s_l1_prop_ku 6.610 × 10−1 1.810 × 10−1 3.651 0.000869 ***
s_l3_zero_per −1.585 × 101 4.304 × 100 −3.683 0.000796 ***

—
Signif. codes: 0 ‘***’

Residual standard error: 52.38 on 34 degrees of freedom
Multiple R-squared: 0.6509, Adjusted R-squared: 0.5893

F-statistic: 10.57 on 6 and 34 DF, p-value: 1.306 × 10−6

Linear Model “Total 0–30 cm”:
Call:

lm(formula = focus_predictor[, 1] ~ h_l2_per + s_l2_prop_sk + s_l2_prop_ku + s_l5_zero_per + vox_l1_mean + fuel0_3l1_cnt,
data = coef)
Residuals:

Min 1Q Median 3Q Max
−92.231 −26.795 −8.902 20.862 113.172

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) −2.903 × 103 7.364 × 102 −3.942 0.000383 ***
h_l2_per −1.063 × 101 2.043 × 100 −5.202 9.41 × 10−6 ***

s_l2_prop_sk −4.573 × 101 8.406 × 100 −5.440 4.60 × 10−6 ***
s_l2_prop_ku 1.406 × 100 2.488 × 10−1 5.652 2.44 × 10−6 ***
s_l5_zero_per 2.966 × 101 7.660 × 100 3.872 0.000466 ***
vox_l1_mean 6.107 × 101 8.313 × 100 7.346 1.64 × 10−8 ***
fuel0_3l1_cnt 1.325 × 10−4 2.630 × 10−5 5.039 1.53 × 10−5 ***

—
Signif. codes: 0 ‘***’

Residual standard error: 49.09 on 34 degrees of freedom
Multiple R-squared: 0.7388, Adjusted R-squared: 0.6927

F-statistic: 16.03 on 6 and 34 DF, p-value: 1.191 × 10−8

Linear Model “Total 0–30 cm no FWD”:
Call:

lm(formula = focus_predictor[, 1] ~ h_zq90 + h_zpcum3 + s_l1_prop_ku + s_l2_prop_sd + vox_l1_std + h100_1000_l1_kurt, data = coef)
Residuals:

Min 1Q Median 3Q Max
−108.20 −20.29 −4.60 23.29 70.88

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 62.0884 78.1550 0.794 0.43246
h_zq90 −41.8273 9.2926 −4.501 7.54 × 10−5 ***

h_zpcum3 −5.3703 0.9913 −5.418 4.93 × 10−6 ***
s_l1_prop_ku 0.7080 0.1559 4.542 6.68 × 10−5 ***
s_l2_prop_sd 5.1922 1.0570 4.912 2.23 × 10−5 ***

vox_l1_std 134.6971 23.2959 5.782 1.65 × 10−6 ***
hr100_1000_l1_kurt 5.9487 1.7120 3.475 0.00142 **

—
Signif. codes: 0 ‘***’ 0.001 ‘**’

Residual standard error: 42.04 on 34 degrees of freedom
Multiple R-squared: 0.693, Adjusted R-squared: 0.6389

F-statistic: 12.79 on 6 and 34 DF, p-value: 1.646 × 10−7
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Linear Model “FWD”:
Call:

lm(formula = focus_predictor[, 1] ~ h_l2_std + h_l2_skew + h_l5_std + h_zq90 + s_l5_zero_per + vox_l1_mean, data = coef)
Residuals:

Min 1Q Median 3Q Max
−51.358 −17.052 0.497 16.804 51.966

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) −2111.760 440.337 −4.796 3.16 × 10−5 ***
h_l2_std 4973.248 836.842 5.943 1.02 × 10−6 ***

h_l2_skew 142.621 24.245 5.882 1.22 × 10−6 ***
h_l5_std 55.306 15.496 3.569 0.001092 **
h_zq90 −24.575 7.321 −3.357 0.001951 **

s_l5_zero_per 13.728 3.980 3.449 0.001519 **
vox_l1_mean 33.299 8.331 3.997 0.000326 ***

—
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01

Residual standard error: 26.99 on 34 degrees of freedom
Multiple R-squared: 0.6064, Adjusted R-squared: 0.537

F-statistic: 8.732 on 6 and 34 DF, p-value: 8.808 × 10−6

Linear Model “Fine Fuels”:
Call:

lm(formula = focus_predictor[, 1] ~ h_l2_cnt + h_l2_per + h_zq30 + h_zq65 + h_zpcum1 + h_zpcum6, data = coef)
Residuals:

Min 1Q Median 3Q Max
−77.99 −17.87 −6.53 19.78 79.50

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 9.332 × 101 1.525 × 102 0.612 0.544687
h_l2_cnt 7.504 × 10−4 1.473 × 10−4 5.094 1.30 × 10−5 ***
h_l2_per −3.065 × 101 5.777 × 100 −5.305 6.89 × 10−6 ***
h_zq30 5.573 × 101 1.226 × 101 4.546 6.60 × 10−5 ***
h_zq65 1.257 × 101 3.383 × 100 3.716 0.000725 ***

h_zpcum1 6.512 × 100 1.534 × 100 4.245 0.000160 ***
h_zpcum6 −4.474 × 100 1.111 × 100 −4.025 0.000301 ***

–
Signif. codes: 0 ‘***’ 0.001

Residual standard error: 37.11 on 34 degrees of freedom
Multiple R-squared: 0.7119, Adjusted R-squared: 0.661

F-statistic: 14 on 6 and 34 DF, p-value: 5.892 × 10−8

Linear Model “Total 0–30 cm Post”:
Call:

lm(formula = focus_predictor[, 1] ~ h_zq45 + h_zpcum8 + h_zpcum9 + MaxTH + fuel0_3l1_mean + fine_l1_skew, data = coef)
Residuals:

Min 1Q Median 3Q Max
−55.006 −24.121 0.059 19.535 59.856

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) −4217.699 837.654 −5.035 1.55 × 10−5 ***
h_zq45 4.168 1.359 3.066 0.004235 **

h_zpcum8 −10.555 1.919 −5.500 3.84 × 10−6 ***
h_zpcum9 49.000 9.678 5.063 1.42 × 10−5 ***

MaxTH 8.961 1.613 5.554 3.27 × 10−6 ***
fuel0_3l1_mean 106.125 29.205 3.634 0.000912 ***

fine_l1_skew 57.714 9.423 6.125 5.93 × 10−7 ***
Signif. Codes: 0 ‘***’ 0.001 ‘**’

Residual standard error: 33.68 on 34 degrees of freedom
Multiple R-squared: 0.6696, Adjusted R-squared: 0.6113

F-statistic: 11.48 on 6 and 34 DF, p-value: 5.406 × 10−7



Fire 2023, 6, 151 22 of 24

Linear Model “Total 0–30 cm Pre and Post”:
Call:

lm(formula = focus_predictor[, 1] ~ h_l1_median + h_zq15 + s_l5_0_per + s_l5_prop_mn + vox_l1_mean + fine_l1_tgi, data = coef)
Residuals:

Min 1Q Median 3Q Max
−133.710 −31.799 2.207 35.582 128.602

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) −103.825 38.383 −2.705 0.00845 **
h_l1_median 533.180 127.835 4.171 8.07 × 10−5 ***

h_zq15 58.415 12.354 4.729 1.04 × 10−5 ***
s_l5_0_per 1453.159 351.144 4.138 9.05 × 10−5 ***

s_l5_prop_mn −1314.891 316.767 −4.151 8.66 × 10−5 ***
vox_l1_mean 30.487 4.977 6.125 3.84 × 10−8 ***

fine_l1_tgi 790.205 288.305 2.741 0.00766 **
—

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01
Residual standard error: 59.51 on 75 degrees of freedom

Multiple R-squared: 0.6912, Adjusted R-squared: 0.6665
F-statistic: 27.98 on 6 and 75 DF, p-value: <2.2 × 10−16
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