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Abstract: Creating a safe and resilient urban environment is a crucial part of sustainable urban de-

velopment. Therefore, it is imperative that a city’s safety resilience is evaluated from various per-

spectives. To evaluate and improve the resilience of urban fire safety more scientifically, this study 

proposes a theoretical framework for evaluating urban safety resilience based on the triangle model 

and an index system including fire hazard, regional characteristics, and fire resilience is established. 

The entropy weight method and cloud model are used for quantitative evaluation, and the weights 

and risk level ratings are analyzed and discussed. The results demonstrate that the method consid-

ering urban safety resilience plays a significant role in promoting the development of urban fire 

safety and can provide a reference for policymakers in improving fire services. 
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1. Introduction 

Promoting urbanization is a significant part of each country’s modernization and 

economic development, and the city problem gradually becomes a composite grand sub-

ject. The reason is that cities carry more functions such as housing, traveling, industrial 

production, commercial activities, medical care, and education. In addition, the planning 

and construction of cities have become increasingly focused on ensuring safety and sta-

bility. In China, fire is a main threat to urban safety, and rapid urbanization has simulta-

neously led to an increase in fire risk [1]. With the increase in building height, it is more 

difficult to evacuate and rescue when a fire occurs, and fire accidents occur more fre-

quently. According to the data from the China Fire Service Bureau, a total of 636,800 fires 

were reported in the first three quarters of 2022. The number and direct losses of fires 

show an overall increasing trend, indicating that the fire situation is still serious, espe-

cially electrical fires which are still one of the most important causes of fire. In addition, 

some new energy or industries constantly bring about new risks of fire. The probability 

of death in crowded places is relatively high, and the consequences of fire on vulnerable 

groups are very serious. 

But compared to forest fires, little attention is paid to urban fires. From the perspec-

tive of urban fires, Turner studied the social and organizational factors associated with 

unintentional fire events, Jennings reviewed studies on fire risk and incidence from the 

perspective of socioeconomic parameters and geographic planning, and Hu continued to 

study typical socioeconomic factors on urban fire risk about developing countries [2–4]; 

Liu et al. analyzed the effects of governmental data governance on urban fire risk, based 

on data for 105 Chinese cities [5]. In addition, there are also studies combining artificial 

intelligence algorithms and IoT technologies to identify key points of urban fires, formu-

late urban fire station planning, and establish fire spread models [6–8]. 
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Due to the specificity of the spatial scale, the study of urban fires, unlike single-build-

ing fires, will put more emphasis on the association with the whole city. Urban resilience 

makes cities resilient to disasters with buffering and carrying capacity. However, consid-

ering that fire risk and vulnerability of disaster carriers in different areas are dynamically 

changing, we hope to maintain the level of urban fire safety within an acceptable range. 

Therefore, urban fire risk evaluation is inextricably linked to urban safety resilience. Many 

researchers have revealed the relationship between city disaster reduction and construc-

tion plans for a safety-resilient city. For example, Burby et al. proposed a conceptual 

model for urban land use planning oriented to disaster reduction [9]. Anelli et al. estab-

lished an index method to measure urban natural risk, therefore enhancing the resilience 

to natural hazards in urban planning [10]. Xu and Xue emphasized the importance of im-

proving the resilience of urban public spaces and explored key indicators, which provided 

management decision-makers with suggestions for planning and construction [11]. 

However, there is an absence of comprehensive research about safety resilience and 

urban fire risk. On this basis, the research structure of this paper is as follows: Section 2 

reviews the concept and evolution of urban safety resilience to explore the application 

scenarios of the triangular theoretical model. Section 3 establishes an index system for 

urban fire risk based on the triangular safety resilience model and presents the methods 

used in evaluating risk level—the entropy weighting method and the cloud model. Sec-

tion 4 obtains the weight of each index through the statistical data of a selected Chinese 

city and analyzes its situation of fire risk to improve safety resilience and fire safety man-

agement. Section 5 summarizes the core idea and expands on the future use of the pro-

posed model. 

2. Urban Safety Resilience 

2.1. Concept of Urban Safety Resilience 

The concept of resilience originally came from physics and mechanics when referring 

to the ability of an object to recover its deformation after being deformed by external 

forces. Later, Holling, a scholar in the field of ecology, introduced it as an indicator to 

measure the ability of ecosystems to restore their balance [12]. Since then, the theory of 

resilience has been widely used and promoted from simplified abstract ecosystems and 

traditional engineering systems to complex multi-stable systems. Cities are not just com-

plex social-ecological systems, they are also disaster-bearing systems with flexible safety 

functions and primary targets for safety management. From the perspective of enhancing 

resilience to ensure safety, resilience and safety are closely related, so promoting urban 

safety resilience has received wide attention as a new topic. Desouza pointed out that 

safety resilience refers to the ability of urban systems to absorb, adapt, and cope with ex-

ternal changes [13]. Meerow states that urban security resilience is the ability of urban 

systems and their socio-ecological and socio-technical networks to maintain their state 

and recover quickly in the face of perturbations to adapt to current or future changes [14]; 

Marana studies urban security resilience from the perspective of public-private relations 

and defines it as the ability of cities to resist, absorb, adapt to, and recover from acute 

shocks and chronic stresses. Additionally, this study argues that urban resilience can be 

improved through public-private relationships [15]. Chinese researcher Fan proposes, 

based on the national safety governance system, to strengthen the construction of urban 

resilience in terms of science and technology, management, and culture, focusing on the 

ability to resist and adapt to risks during the response to unexpected public safety events 

and to advance the level of urban safety governance [16]. 

The Chinese government has decided to improve urban resilience, an important part 

of national planning, and the Fourteenth Five-Year Plan and Vision 2035 outline explicitly 

calls for building “livable, innovative, intelligent, green, humanistic, and resilient cities”. 

The main initiatives include reducing the dangers of urban disaster sources, such as avoid-

ing the construction of parks with major hazards in densely populated areas; reducing the 
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vulnerability of urban disasters, such as improving the construction quality of urban pipe-

line projects and enhancing their adaptability to catastrophic weather; improving the re-

silience of cities, such as stocking emergency relief materials, preparing redundant water 

and power supply facilities, and building shelters. By enhancing urban safety resilience, 

a series of processes can be realized in which the complex city system reacts to dangerous 

perturbations, absorbs them, maintains resilience, and restores safety, meaning that the 

city can return to the expected level of safety function in a shorter period after an impact. 

2.2. Urban Safety Resilience Models 

There are many different definitions of safety resilience, but few systematic models 

of urban security resilience are discussed. Fan et al. proposed a public safety triangle the-

oretical model, which formed a public safety theoretical framework on urban safety resil-

ience from three aspects: emergencies, disaster carriers, and emergency management [16]; 

Chen et al. assessed urban resilience from three aspects: adaptability, resistance, and re-

covery, and demonstrated that the proposed model could be used to simulate the resili-

ence of cities under different disaster scenarios [17]; Bruneau and Liu, respectively, aimed 

at urban resilience in earthquake disaster scenarios and the spatial-temporal evolution of 

resilience in Chinese provincial capitals, but both judged and constructed a system of 

safety resilience in four dimensions: economic, social, organizational (or environmental), 

and technological [18,19]. 

To use urban safety resilience as the basic logic for evaluating risk, an urban safety 

resilience model needs to be established to clarify the basic framework of safety resilience 

management and construction so that it can reflect the relationship between disaster ele-

ments, resilience recovery capacity, and response subjects. Applying the public safety tri-

angle theory model to urban safety resilience has theoretical rationality and operational 

feasibility. Huang et al. practiced the model in the field of safety-resilient city research, 

adapting it to the study of public safety events, urban safety systems, and urban resilience 

[20]. The model, as shown in Figure 1, constructs public safety events, urban disaster-

bearing systems, and safety-resilient management as the three sides of a triangle theory 

model, with their corresponding key features for response, recovery, and adaptation as 

the resilience phases. 

Based on the basic model, a more specific urban safety events’ framework of safety 

resilience can be extended, which contains resilience processes that reflect the resilience 

of the city’s continuous adaptation and safety stability. They can reflect the city’s ability 

to cope with the risk of uncertainty and can be used to continuously improve and enhance 

strategies and programs for urban adaptation and resilience. 

 

Figure 1. Triangle theoretical model of urban safety resilience. 
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3. Model and Methods 

3.1. Fire Risk Evaluation Model Based on Safety Resilience 

When conducting research in the practical field of fire safety, it is essential to consider 

China’s urban safety construction, fire protection planning, and emergency planning. 

Based on Fan and Huang’s model, this study takes fire hazard, regional characteristics, 

and fire resilience as the three edges of the triangle model, which correspond to the disas-

ter elements, response subject, and recovery capacity in the resilience model, as shown in 

Figure 2 [16,20]. 

 

Figure 2. Triangle theoretical model of urban fire risk evaluation. 

As a disaster element itself, a fire hazard is an external disturbance acting on the 

safety state of the city, which can be quantified by hazard source distribution, key fire-

fighting units, historical accident damage, etc. Especially for the areas where the elderly 

and children are concentrated, there are fewer discussions in past studies on the fire haz-

ard they endure. 

According to the urban safety resilience triangle model, urban areas as disaster-bear-

ing carriers are the objects of production accident fires and living fires, so people and the 

environment in the city absorb and bear the main impacts brought by emergencies. The 

personnel injuries, economic losses, building destruction, and environmental damages 

caused by fire events will increase the fire risk level. From the perspective of urban safety 

resilience construction, the greater the resilience, the higher the bearing capacity of the 

urban carrier will be, and the impact and loss on the carrier will be smaller. 

Fire resilience is a part of emergency and safety management in response to sudden 

fire accidents and is a series of policies and measures taken by the government and other 

public organizations to prevent, manage, and mitigate the effects of fire. Improving urban 

safety resilience to protect public life, health, and property, and to maintain social stabil-

ity, is an important manifestation of urban safety management during the recovery pe-

riod. 

3.2. Fire Risk Evaluation Index System 

3.2.1. Index System Establishment 

Based on the established fire risk evaluation model, an urban fire risk evaluation in-

dex system adapted to Chinese cities is proposed. Considering the accessibility and au-

thority of data, 12 indicators are selected under the three perspectives of fire risk, regional 

characteristics, and fire resilience. Each indicator is expressed quantitatively by specific 

numbers, which can be divided into positive and negative indicators according to their 

effects on fire risk. Among them, the positive indicators reveal a promoting effect on the 

risk level, whereas the negative indicators are the opposite, and each indicator is pre-

sented in Table 1. 
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Table 1. Urban fire risk evaluation index system. 

Perspective Indicators Indicator Direction 

Fire risk 

C1 Fire hazard places Positive 

C2 Important populations distribution Positive 

C3 Fire severity Positive 

C4 Historical fire casualties Negative 

Regional character-

istics 

C5 Regional population Positive 

C6 Economic status Positive 

C7 Urbanization level Negative 

C8 Seasonal influence Positive 

Fire resilience 

C9 Fire stations construction Negative 

C10 Firefighting capacity Negative 

C11 Safety supervision Negative 

C12 Danger management Negative 

Taking C7 Urbanization level as an example to explain the direction dividing foun-

dation. According to the comparison of the occurrence of fires in recent years, rural fires 

are still a difficult point for fire prevention and control, and promoting urbanization can 

reduce the risk of fire. Typically, from the data released by the Ministry of Emergency 

Management on urban and rural fires nationwide in 2020, fires in rural areas accounted 

for 49.3% of the total number of fires, which is 6.1% higher than in cities and towns, caus-

ing 48.1% of the total losses, which is 12.2% higher than in cities and towns [21]. Not only 

there are more rural fires, but larger fires in rural places also account for more than 60% 

and more casualties. Due to the poor escape awareness of rural residents, low fire re-

sistance rating of buildings, and weak firefighting infrastructure, 84.7% of the total num-

ber of people killed on the spot at the scene of a fire in rural areas, the proportion is 7.3% 

higher than in cities. Based on these data trends, it can be found that as the C7 Urbanization 

level grows, the risk of fire will be decreased, denoted by a negative indicator. 

The main sources of data selected for each indicator are: 

(1) Fire accident yearbook released by China Fire and Rescue Bureau: C3 historical 

fire severity is expressed by the average loss of fire accidents, C4 historical fire casualties 

are expressed by using the million casualty rate due to fires in the previous year, C8 sea-

sonal influence is expressed by the proportion of fires in winter and spring, C9 fire stations 

construction, and C10 firefighting capacity are expressed by the number of fire stations per 

10,000 people and the number of hydrants per 10,000 people, respectively. 

(2) Socio-economic indicators from regional statistical bureaus: resident population 

density, disposable income of urban residents, and overall urbanization rate of the region 

are used as indicator data for C5 regional population, C6 economic status, and C7 urbani-

zation level. 

(3) Emergency Management department statistical information disclosure: C11 safety 

supervision, C12 danger management use the annual report of regional firefighting work, 

website of inspection public listing information, etc. They are expressed by the number of 

fire hazards in key units inspected per 10,000 square kilometers and the number of major 

hidden dangers which were listed for supervision and rectification. 

(4) POI (point of interest) obtained from Baidu Map: based on the geographical dis-

tribution, the unit density of buildings such as factories, industrial parks, gas stations, etc., 

is used as the indicator of C1 fire hazard places, and the unit density of buildings such as 

social welfare institutions, nursing homes, colleges, and secondary, primary, and kinder-

garten schools is used as the indicator of C2 important populations distribution. 
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3.2.2. Criteria of Risk Level 

The quantified fire risk indicators in the above system have different units and mean-

ings. To derive the final comprehensive fire risk evaluation results, the risk level corre-

sponding to each indicator needs to be divided. The data of each indicator is nondimen-

sionalized and divided into five levels according to the relevant standards, norms, safety 

planning, management objectives, etc. Levels are divided from Ⅰ to Ⅴ, which indicates low 

risk (Ⅰ), general risk (Ⅱ), high risk (Ⅲ), higher risk (Ⅳ), and extremely high risk (Ⅴ), and 

then the fuzzy operation method of weight and membership is used to derive the com-

prehensive fire risk level. 

3.3. Entropy-Cloud Model Risk Evaluation Method 

3.3.1. Entropy Weight Method 

The concept of entropy originates from thermodynamics. According to the second 

law of thermodynamics, entropy is a matter’s state parameter that reflects the irreversibil-

ity of spontaneous processes, indicating that the thermal change process is directional and 

irreversible. In general, the larger the entropy value, the greater the disorder of the ther-

mal motion of molecules, so the magnitude of entropy reflects the violent degree of mo-

lecular motion. In 1948, Shannon introduced it to information theory, proposed to quan-

tify disordered, abstract information by entropy, and digitize it to describe the degree of 

disorder of a system [22]. Until now, information entropy has been widely used in the 

fields of computers, engineering risk evaluation, and economic management, and it is rea-

sonable and feasible to use it in the fire risk evaluation of cities [23,24]. 

According to the principle of the entropy weight method, the weight is determined 

by the scale of information contained in the index, which can eliminate the interference of 

human subjective factors and is an objective way of assigning weights. When the index 

data are also objective data, the influence of subjective factors is completely excluded dur-

ing the calculation of index weights. In other words, it enables the researcher to decide on 

indicators with more effective information from the statistics. The steps are as follows. 

1. Raw data processing 

To eliminate the differences in weights caused by different scales in the process of 

risk assessment, the relevant indicators need to be nondimensionalized and turned into 

positive indicators. The common calculation methods include Min-Max normalization, Z-

score standardization, regularization, and mean valuation. Min-Max normalization is 

used to map the data to a specified range to better fit the relevant risk indicator data. The 

greater positive indicators manifest higher fire risk, and the greater negative indicator re-

flects the lower fire risk, and the normalization is calculated according to the following 

formula. 

For positive indicators: 

min

max min

ij

x x
x

x x





 (1) 

For negative indicators: 

max

max min

ij

x x
x

x x





 (2) 

2. Standardization of data matrix 

Supposing there are n evaluation objects and m evaluation indicators, the original 

data corresponding to each indicator can form the judgment matrix  ij n m
A a


 , and 

after the standardization the matrix is  ij n mX x


 . 

3. Calculation of the indicators’ entropy 
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The information entropy of the jth indicator can be expressed as 

1

1
ln

ln

n

j ij ij
i

H p p
n 

   (3) 

ijp  is the weight of the jth indicator in the ith case, which indicates the variation of the 

indicator. 

1

ij

ij n

ij
i

x
p

x





 

(4) 

4. Calculation of the indicators’ entropy weight 

 

 
1

1

1

j

j m

jj

H

H








 (5) 

3.3.2. Cloud Model Method 

The cloud model was proposed by Deyi Li, a member of the Chinese Academy of 

Engineering [25]. Based on stochastic mathematics and the fuzzy theory, the cloud model 

realizes the interconversion between qualitative and quantitative. It is an uncertainty 

transformation model between a qualitative concept and its quantitative representation 

expressed in natural language values [25]. Suppose that U  is a quantitative universe rep-

resented by exact values, C  is a qualitative concept on U . Let x U  is a random in-

stantiation of the qualitative concept, and    0,1x   is the certainty degree of x  be-

longing to C . Then the distribution of x  over the domain is called a cloud and each x  

is called a cloud drop. The properties of the cloud model are described by three numerical 

characteristics: expectation xE , entropy nE , and hyperentropy eH , which construct 

the mapping relationship between qualitative and quantitative. The main algorithms of 

the cloud model include the normal cloud generator and the backward cloud generator, 

where the normal cloud generator represents the process of moving from qualitative con-

cepts to quantitative representations and is a concrete implementation of generating cloud 

drops from the numerical characteristics of clouds, and the backward cloud generator is 

the opposite. 

The use of cloud models as an aid for various types of assessments in the safety field 

has been widely used and has proven the superiority of the models [26–28]. Under the 

urban fire risk assessment scenario, to apply the normal cloud generator to generate the 

standard cloud map of each evaluation indicator, first of all, the three numerical charac-

teristics of the evaluation indicator should be determined. 

Taking the actual distribution into account, in addition to the intervals with exact 

values at both ends, there exists the evaluation interval of min0, kC 
    and max ,

kC    , 

where the indicator variables no longer obey the traditional cloud model distribution. So, 

the finite interval cloud model is improved on the basis of the traditional cloud model. 

Therefore, the infinite interval normal distribution transforms into a finite-interval normal 

distribution, and the marginal fuzzy interval transforms into a uniform distribution with 

a certainty of 1, which can better adapt to the indicators under the fire risk assessment 

scenario. The corresponding characteristic parameters are calculated as follows. 

max min

2

k k
k
x

C C
E


  (6)
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 
max min

2 3

k k
k
n

C C
E







 (7)

k k
e nH E  (8)

where: k
xE , k

nE , and k
eH  are the expectation, entropy, and hyperentropy of the evalu-

ation level interval k , respectively; max
kC  and min

kC  are the upper and lower bound 

values of the interval k ;    is the order of the normal density function in the finite 

interval, taking the largest integer of  ;   is the empirical value, referring to the rele-

vant literature, generally taken as 0.01. 

After obtaining the cloud model characteristic parameters of each indicator, the nor-

mal finite interval cloud generator is used to create the standard cloud map of each indi-

cator belonging to each risk level, and the specific algorithm is implemented as follows. 

1. Generate a normal random number 
'
nE  with expectation nE  and variance 

2
eH . 

2. Generate a random number ix  with expectation xE  and variance 
' 2
nE . 

3. Calculate the membership of ix  to the qualitative concept, in the traditional cloud 

model, when obeying the normal distribution: 

 
 

2

' 22

i x

n

x E

E
ix e



  
(9) 

According to the improved normal cloud generator, when the indicator is far from 

the expectation xE , ix  obeys a uniform distribution with a membership of 1, i.e., 

   

 
 

 

max maxmin

2

' 2 maxmin

max

2

1 0, ,

,
i x

n

k kk
i x x

x E
kk

E
i x x

x x E E C

x x E Ee






       
  

 (10) 

4. Repeat the above steps N  times to obtain a cloud consisting of N  cloud droplets 

of  ,i ix  . 

3.3.3. Risk Evaluation Steps 

Integrating the principles of the above methods, the entropy weight-cloud model ap-

proach is used to evaluate urban fire risk. First, a reasonable evaluation index system and 

the corresponding evaluation criteria are established, and the weight of each index is de-

termined by the entropy weight method. Then the membership degree of each evaluation 

index is calculated by the improved normal cloud generator of the finite interval cloud 

model and generates the corresponding cloud drops [26]. Finally, the fire risk evaluation 

of the area is given according to the comprehensive determination results, as shown in 

Figure 3. 

 

Figure 3. Procedure of urban fire risk evaluation. 
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The method takes into account the fuzzy nature of the relevant indicators, which is 

in line with the concept of resisting uncertainty and randomness emphasized in the con-

struction of safety resilience, and the specific steps are as follows. 

Step 1: Based on the assessment index system  1 2 12, , ,C C C C   and the corre-

sponding index data, the weight of each index is calculated using the entropy weight 

method, and the weight vector is expressed as  1 2 12= , ,   ， . 

Step 2: According to the risk grading criteria of the evaluation index system, the cloud 

characteristic value  , ,x n eE E H  corresponding to each grade is calculated, and the 

standard cloud map is generated by using the normal cloud generator of finite intervals 

according to the cloud characteristic value on each grade of every index. 

Step 3: Input the data to be evaluated into the X-conditional cloud generator to get 

the membership degree ij  of each indicator of the region to be evaluated on each grade, 

through the fuzzy operation of the weight vector and the membership matrix, the com-

prehensive membership degree of the evaluation region for each risk grade is obtained as 

1

n

j i ij
i

K  


  , where j is the jth risk grade (j = 1, 2, ..., 5); 

Step 4: Considering the limitations of the maximum membership principle in risk 

evaluation scenarios, the rank eigenvalues K  are used to quantify the final overall eval-

uation rank, i.e., 
5

5
1

1

j

j
j

j

K
K j

K






. 

4. Case Study 

4.1. Calculation of Weights 

Take Changsha city, Hunan Province as the evaluation area. Changsha City is located 

in the northeast of central Hunan, where there are diverse landscapes and rich vegetation 

in the city, and it’s near the Xiangjiang River and Mount Yuelu. The resident population 

and economic development level of Changsha are the first and largest in the province, and 

there are industrial parks, assembly occupancies, storages, and logistics in the city. With 

the social-economic development and the expansion of the urban scale, the number of 

fires has increased, facing more serious fire hazard problems. According to the urban fire 

risk evaluation index system established in Section 3.2, the index weights are calculated 

by combining the statistical data of China Fire Yearbook 2013–2019, the data public infor-

mation released by the Changsha Government, and the map POIs collected based on 

online maps [29,30]. 

MATLAB R2016a is used as a statistical analysis tool, and ArcGIS is used as a pro-

cessing tool for relevant geographical location information. The indicator data for each 

year from 2013–2019 are shown in Table 2 below, and after normalization, the weights of 

each indicator, information entropy, redundancy, and weight values are calculated by the 

entropy weight method, as shown in Table 3. 

Table 2. Urban fire risk evaluation index values. 

Indicator 

Code 
Indicators 2013 2014 2015 2016 2017 2018 2019 

C1 Fire hazard places 0.154 0.171 0.172 0.193 0.194 0.206 0.209 

C2 
Important popula-

tions distribution 
0.194 0.258 0.366 0.418 0.371 0.382 0.397 

C3 Fire severity 1.813 1.375 1.465 1.253 3.186 2.559 2.440 

C4 Historical fire loss  0.688 2.078 1.870 1.931 1.964 1.837 1.913 

C5 Regional population 609.349 616.952 627.103 645.110 668.138 688.102 708.337 
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C6 Economic status 3.366 3.683 3.996 4.329 4.695 5.079 5.521 

C7 Urbanization level 47.960 49.280 50.890 52.750 54.620 56.020 57.220 

C8 Seasonal influence 54.657  63.345  57.952  58.543  59.988  60.064  59.192  

C9 
Fire stations con-

struction 
0.023 0.029 0.030 0.031 0.032 0.038 0.041 

C10 
Firefighting capabil-

ity 
5.206 4.997 5.749 9.316 10.354 11.418 12.509 

C11 Safety supervision 13.751 105.681 153.324 172.969 105.100 124.225 39.171 

C12 Danger management 0.822 4.824 0.944 2.653 5.364 11.321 14.729 

Table 3. Weights of indicators. 

Indicator Information Entropy Redundant Degree Entropy Weight 

C1 0.877 0.123 0.062 

C2 0.896 0.104 0.052 

C3 0.773 0.227 0.114 

C4 0.665 0.335 0.169 

C5 0.801 0.199 0.100 

C6 0.846 0.154 0.078 

C7 0.840 0.160 0.081 

C8 0.896 0.104 0.053 

C9 0.872 0.128 0.065 

C10 0.833 0.167 0.084 

C11 0.832 0.168 0.084 

C12 0.885 0.115 0.058 

4.2. Determination of the Standard Cloud 

Regarding the “14th Five-Year Development Plan” of firefighting and rescue in Hu-

nan Province, “Changsha New Urbanization Development Plan (2021–2025)” and other 

planning and policy documents, combined with the distribution of major fire hazards and 

key enterprises in Changsha City, the city’s risk level is divided into five levels [29,31]. 

In the fire incident response plan of the region, the response to a fire is classified into 

four levels, i.e., general fire, larger fire, great fire, and extremely great fire, while the above 

four levels are also characterized for fire incidents in China [32]. Considering the relative 

safety state of no fire as level one, this study classifies the fire risk into low risk (Ⅰ), general 

risk (Ⅱ), high risk (Ⅲ), higher risk (Ⅳ), and extremely high risk (Ⅴ) five levels. Since the 

selected indicators and data are different and there is no unified quantitative standard to 

determine their risk level, this paper has tried to use objective data to confirm the classifi-

cation of risk level criteria from two aspects. 

First, the government’s five-year plan will make corresponding plans for the number 

of fire stations and hydrants in the city. The target quantities and the visionary goal of 

2035 are taken as the boundary of the low-risk interval, which is reasonable and feasible 

during a certain period. In addition, expectant values of population density and economic 

development of 2035 planning are available, and using them as interval boundaries can 

roughly measure the relative size of risk. As for the indicators that are difficult to obtain 

the implementation criteria, such as distribution density and safety management, the most 

value in the statistical data is used as the interval boundary. 

On the other hand, after obtaining the interval boundaries, the division of the five 

levels needs to be determined, and the division of even intervals was mostly used in the 

relevant studies [33,34]. But considering that indicators such as Urbanization Level and 

Fire Stations Construction have a weakening effect on the suppression of risk when they 

are close to saturation, the uneven division was used in the interval division of these in-

dicators, as shown in Table 4. 
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Table 4. Grading table of evaluation indexes. 

Indicator 
Risk Level 

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 

C1 0–0.1 0.1–0.4 0.4–0.7 0.7–1 >1 

C2 0–0.1 0.1–0.4 0.4–0.7 0.7–1 >1 

C3 0–0.5 0.5–1 1–1.5 1.5–2 >2 

C4 >2.5 2.5–2 2–1.5 1.5–1 0–1 

C5 <500 500–1000 1000–1500 1500–2000 >2000 

C6 <3.5 3.5–5 5–6.5 6.5–8 >8 

C7 0.8–1 0.8–0.65 0.65–0.5 0.5–0.35 0.35–0 

C8 0.45–0.5 0.5–0.52 0.52–0.55 0.55–0.6 >0.6 

C9 >0.07 0.07–0.06 0.06–0.04 0.04–0.02 0.02–0 

C10 >20 20–15 15–10 10–5 0–5 

C11 >160 160–120 120–80 80–40 0–40 

C12 >10 10–7 7–4 4–1 0–1 

Based on the improved finite interval cloud model, the numerical characteristics of 

the standard cloud for each indicator are calculated as shown in the following Table 5. 

Table 5. Indicators’ numerical characteristics. 

Indicator
Cloud Model Numerical Characteristics  x , ,n eE E H  

Ⅰ Ⅱ Ⅲ Ⅳ Ⅴ 

C1 (0.050,0.042,0.004) (0.250,0.127,0.013) (0.600,0.127,0.013) (0.850,0.127,0.013) (1.150,0.127,0.013) 

C2 (0.050,0.042,0.004) (0.250,0.127,0.013) (0.600,0.127,0.013) (0.850,0.127,0.013) (1.150,0.127,0.013) 

C3 (0.250,0.212,0.021) (0.750,0.212,0.021) (1.250,0.212,0.021) (1.750,0.212,0.021) (2.250,0.212,0.021) 

C4 (2.750,0212,0.021) (2.250,0.212,0.021) (1.750,0.212,0.021) (1.250,0.212,0.021) (0.500,0.425,0.042) 

C5 (250.000,212.314,21.231) (750.000,212.314,21.231) (1250.000,212.314,21.231)(1750.000,212.314,21.231) (2250.000,212.314,21.231) 

C6 (2.750,0.637,0.064) (3.609,0.637,0.064) (4.883,0.637,0.064) (6.157,0.637,0.064) (8.750,0.637,0.064) 

C7 (0.900,0.085,0.008) (0.725,0.064,0.006) (0.575,0.064,0.006) (0.425,0.064,0.006) (0.175,0.149,0.015) 

C8 (0.475,0.021,0.002) (0.510,0.008,0.001) (0.535,0.013,0.001) (0.575,0.021,0.002) (0.625,0.021,0.002) 

C9 (0.075,0.004,0.000) (0.065,0.004,0.000) (0.050,0.008,0.001) (0.030,0.008,0.001) (0.010,0.008,0.001) 

C10 (22.500,2.123,0.212) (17.500,2.123,0.212) (12.500,2.123,0.212) (7.500,2.123,0.212) (2.500,2.123,0.212) 

C11 (180.000,16.985,1.699) (140.000,16.985,1.699) (100.000,16.985,1.699) (60.000,16.985,1.699) (20.000,16.985,1.699) 

C12 (11.500,1.274,0.127) (8.500,1.274,0.127) (5.500,1.274,0.127) (2.500,1.274,0.127) (0.500,0.425,0.042) 

After obtaining the cloud model parameters for each indicator, the cloud model is 

generated by the normal cloud generator, taking the indicators C3 Fire severity (limited 

interval cloud) and C7 Urbanization level (normal cloud) as examples, see Figure 4. 

  

(a) (b) 

Figure 4. (a) Cloud drops graphs of C3 Fire severity belonging to each level; (b) Cloud drops graphs 

of C7 Urbanization level belonging to each level. 
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The abscissa of the graph corresponds to the evaluation quantity values of C3 and C7, 

and the ordinate corresponds to the degree of certainty, or membership, of the cloud drops 

at a certain risk level. According to the value of each indicator of the evaluating area, its 

affiliation degree corresponding to different risk levels can be determined in the figure to 

determine the certainty of the risk of the evaluating area on the indicator. From left to 

right, Figure 4a represents the risk level from Ⅰ to Ⅴ corresponding to the cloud chart. Due 

to the evaluation criteria of C3 on both sides being an open interval, so the affiliation de-

grees are 1 at both ends. Additionally, Figure 4b, from left to right, represents the risk level 

from Ⅴ to Ⅰ, this is because C7 is a negative indicator, with the higher value, the risk turns 

out to be lower. Moreover, C7′s criteria at both ends are closed intervals, so the cloud map 

generated by the traditional positive cloud generator is used, which presents as a normal 

distribution. 

4.3. Risk Evaluation Results and Analysis 

According to the basic data of Changsha city, the index weights, as well as the eval-

uation criteria cloud, were obtained, and the Yuelu district of Changsha city was selected 

as the evaluation sample. The data of its indexes were input into the X-conditional cloud 

generator to work out the membership degree of each indicator corresponding to each 

level in the sample area and construct the membership matrix. 

0 0.022 0.997 0.168 0

0 0 0 0 1

0.003 0.494 0.494 0.003 0

1 0 0 0 0

0 0 0 0 1

0 0 0.026 0.746 0.006
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The weight vector   and membership matrix V  perform a fuzzy operation that 

can receive the comprehensive membership degree  0.248,0.236,0.226,0.113,0.164 . 

By the principle of rank eigenvalue, the calculated rank eigenvalue is 2.7, so the fire risk 

level of the evaluation area Changsha City Yuelu District is a level III greater risk. Com-

bined with the actual situation, this area is rich in educational resources and has sufficient 

medical and healthcare institutions. Important people gathered in these areas, which 

causes a rise in the fire severity. In addition, there are vegetation and forests distributed 

in the area, and the possibility of fire in the dry season is higher. But the fire planning and 

fire hazard remediation management in the area are better, so the fire safety resilience of 

the area is improved to a certain extent, the evaluation results are reasonable and the 

method is feasible. 

5. Discussion and Conclusions 

This study constructed a fire risk evaluation system from the triangular model of 

urban safety resilience and mainly selected 12 representative indicators in three aspects: 

fire hazard, regional characteristics, and fire resilience, which correspond to the disaster 

elements, response subjects, and resilience recovery capacity in the resilience model. To 

ensure more reliable and reasonable evaluation results, the entropy weighting method 

was used to calculate the index weights. Based on the ability and characteristics of cloud 

model theory to solve the transformation of qualitative and quantitative information, this 

study introduces the finite interval cloud model into the urban fire risk evaluation and 

uses the membership degree to determine the risk level of the assessment area, which 
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solves the ambiguity and randomness of the risk evaluation indicators under the safety 

and resilience perspective. Furthermore, the assessment data used in the study are from 

objective reality and survey reports, etc., which enhances the authenticity and reliability 

of the results. The evaluation results can accord with the actual situation, and the pro-

posed assessment model has a certain reference value for the control of regional fire risk 

and the improvement of safety level. 

For other datasets, the model is also applicable. Firstly, the triangle theoretical model 

of urban fire risk evaluation proposed in Section 3.1 and the indicators system established 

in Section 3.2 construct a basic framework for assessing urban risk. In Section 4, this paper 

uses statistical data and map data of Changsha Hunan to calculate the indicator weights 

to assess the level of fire risk in a region over a subsequent period, but the framework is 

scalable and dynamically adaptable. For example, when applied to the assessment of 

other cities, it is not necessary to modify the relevant indicators, but only to update the 

weights according to the statistical data and update the evaluation criteria according to 

the urban planning or national policy requirements, so that the entropy weighting method 

and the cloud model can be applied to assess the fire risk level of other regions in other 

cities. Secondly, it’s the same from a time dimension, when a new statistical yearbook is 

obtained, we add the data of the new year and update the evaluation weights to be able 

to evaluate the fire risk for the following period. Moreover, to test the applicability of the 

model, the weight and membership can be calculated using data from previous years, 

data from recent years as a test, and actual fire conditions as a control group to compare 

whether more fires occur in areas with a higher predicted fire risk. 

Lastly, the above research results can reflect the shortcomings of urban safety resili-

ence construction in terms of fire safety, which can be used to establish and improve the 

resilience and firefighting ability of the city. By effectively optimizing the overall safety 

pattern of the city, this research has provided a direction combining safety resilience and 

risk evaluation, the scientific and reasonable solutions for urban safety management. 
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