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Abstract: Accurate estimation of fuels is essential for wildland fire simulations as well as decision-
making related to land management. Numerous research efforts have leveraged remote sensing and 
machine learning for classifying land cover and mapping forest vegetation species. In most cases 
that focused on surface fuel mapping, the spatial scale of interest was smaller than a few hundred 
square kilometers; thus, many small-scale site-specific models had to be created to cover the 
landscape at the national scale. The present work aims to develop a large-scale surface fuel 
identification model using a custom deep learning framework that can ingest multimodal data. 
Specifically, we use deep learning to extract information from multispectral signatures, high-
resolution imagery, and biophysical climate and terrain data in a way that facilitates their end-to-
end training on labeled data. A multi-layer neural network is used with spectral and biophysical 
data, and a convolutional neural network backbone is used to extract the visual features from high-
resolution imagery. A Monte Carlo dropout mechanism was also devised to create a stochastic 
ensemble of models that can capture classification uncertainties while boosting the prediction 
performance. To train the system as a proof-of-concept, fuel pseudo-labels were created by a 
random geospatial sampling of existing fuel maps across California. Application results on 
independent test sets showed promising fuel identification performance with an overall accuracy 
ranging from 55% to 75%, depending on the level of granularity of the included fuel types. As 
expected, including the rare—and possibly less consequential—fuel types reduced the accuracy. On 
the other hand, the addition of high-resolution imagery improved classification performance at all 
levels. 

Keywords: wildland fire; fuel mapping; remote sensing; artificial intelligence; machine learning; 
deep learning 
 

1. Introduction 
Statistics show an unprecedented increase in the size, intensity, and effects of wildfire 

events relative to historical records [1,2]. In 2018, the deadliest fire in California history, 
the Camp Fire, resulted in 85 casualties and destroyed nearly 14,000 homes and more than 
500 commercial structures [2]. Exacerbated by climate change, extreme wildfires are 
projected by the United Nations Environment Program to further increase globally on the 
order of 30% by 2050 and 50% by the end of the century [3]. Wildfires are continuing to 
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grow into a substantial threat to the well-being of communities and infrastructure despite 
technological and theoretical advancements in fire science. The unprecedented size and 
complexity of this problem call for multi-disciplinary and data-informed research on 
wildfire risk management (assessment, mitigation, and response). 

Efficient wildfire risk management relies on accurate wildfire spread simulations. 
Such simulations can substantially improve the effectiveness of pre-event mitigation, as 
well as evacuation, rescue, and fire suppression efforts [4,5]. A key input to wildfire 
simulations is robust estimates of fuels that carry wildfires. Fuels are mainly categorized 
into the three layers of ground (litter, duff, and coarse woody debris), surface (grass, forb, 
shrubs, large logs), and canopy fuels (trees and snags) [6]. Although surface fuels are the 
primary drivers of the initiation and spread of forest fires, research in this area has 
matured slowly with the Anderson 13-category standard fire models [7], which served as 
the primary input for point-based and spread simulations until the inclusion of the 40 
Scott and Burgan standard fire behavior models introduced in 2005 [8]. Surface fuel 
characterization methods were developed as generalizations, which did not capture the 
full range of temporal variability and spatial non-conformity that are inherent in surface 
fuel beds [6]. Therefore, input data into modern fire behavior models bear uncertainties 
in describing the dynamic processes that are missed in traditional fuel inventories [9]. A 
review of the state of the art in surface fuel mapping research indicates that most of the 
past research efforts were focused on site-specific semi-manual expert systems or 
traditional machine learning methods (e.g., decision trees and random forests) at regional 
scales. These systems have limited capability in leveraging big data analytics, which can 
be exploited to learn from spatial and spectral continuities and provide consistency of 
vegetation and fuels across a given landscape. As a result, such systems are difficult to 
generalize to large problem domains. 

At the national scale, the LANDFIRE program has created comprehensive and 
consistent geospatial fuel products that incorporate remote sensing with machine 
learning, expert-driven rulesets, and quality control [10]. Although these products have 
created a valuable foundation for fire spread simulation efforts based on years of 
collective experience and domain expertise, large-scale modeling techniques are needed 
that deliver near-real-time on-demand fuel mapping based on georeferenced fuel data 
and do not rely on experience-driven expert rulesets and localized vegetation models [11]. 
Such models could improve the frequency and reduce the latency of fuel data, which are 
currently at a multi-year level. Furthermore, new techniques could allow for a 
comprehensive and systematic accuracy assessment using independent validation 
datasets, which are currently unavailable for LANDFIRE fuel maps. 

To build on the success of the LANDFIRE products as a baseline and improve their 
capabilities, this paper describes a deep-learning-based framework that ingests 
multimodal—i.e., hyperspectral satellite, high-resolution aerial image, and biophysical 
climate and terrain—data. This framework relies on a deep network of layers of learnable 
weights that are trained using large amounts of georeferenced labeled data that guide the 
formation of the data extraction pipeline. 

Background. Most past efforts to map surface fuels for wildfire spread simulations 
utilize fire behavior fuel models, which are abstract categorizations of fuels that are used as 
input in fire spread simulations. The most widely adopted model in the United States was 
developed by Scott and Burgan, which has 40 fuel categories [8]. Most of the past work on 
fuel identification and mapping focused on classifying the pixels of a georeferenced map 
into one of the fire behavior fuel model categories. A review of the fuel identification and 
mapping literature shows a variety of approaches leveraging remote sensing and 
biophysical data. Table 1 summarizes the major studies on surface fuel identification and 
mapping. We note here that our paper focuses only on surface fuels. Therefore, the term 
fuel will be used hereafter to refer to surface fuels only. 

The studies listed in Table 1 mostly use spectral signatures from satellite or airborne 
imagers, lidar data, biophysical data, or a combination thereof to identify and map fuels. 
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In most cases, the area of interest is less than a few hundred square kilometers, and the 
labeled training data comprise only small numbers of points. This means that the resulting 
fuel identification models are localized and site-specific. The closest work to large-scale 
fuel identification is that of Pickel et al. [12], wherein the utility of an Artificial Neural 
Network model for fuel mapping was explored. They used a three-layer neural network 
to estimate 9 fuel types based on the Canadian Fire Behavior Prediction System for a 200 × 200 km2 area in British Columbia, using a vector of 24 spectral, terrain, and climate 
inputs. For the target fuel labels, their work used a sample of pixels from the Canadian 
fuel product. The results of the study demonstrated that an overall accuracy of 60–70% 
could be achieved after regrouping the less-frequent fuel types. 

Table 1. Summary of surface fuel mapping literature: comparison of training scale and applicability. 

Inputs Region of Interest Training Set Target Fuel Model Reference 

Spectral indices, 
topography, climate 

40,000-km2 area in 
British Columbia, 
Canada 

Sample of 450,000 
pixels from the 
Canadian Fuel Layer 

Canadian Forest Fire 
Behavior System 

[12] 

Lidar and AVIRIS data  
395-km2 area of the 
2014 King Fire, 
California, USA 

N/A Anderson 13 fuel model [13] 

ASTER satellite data 
212-km2 area in the 
Canary Islands, 
Spain 

Sample of pixels from 
existing fuel map 

Scott and Burgan 40 fuel 
model 

[14] 

Airborne laser 
scanning and Indian 
Satellite data 

Two areas of 165 
km2 and 487-km2 in 
Sicily, Italy 

5028 field plots NFFL fuel model [15] 

Lidar data 
410 km2 national 
park in Spain 128 field plots  Prometheus fuel model [16] 

ASTER imagery 
64-km2 region in the 
south of Italy 

17 field plots (500 
pixels) 

Modified Prometheus fuel 
model [17] 

Lidar data and bands 
of NAIP imagery 

99.5 km2 of northern 
Sierra Nevada, 
California 

N/A Scott and Burgan 40 fuel 
model 

[18] 

Lidar and Airborne 
Thematic Mapper data 

2.3 km2 of a national 
park in Spain 360 field plots Prometheus fuel model [19] 

Lidar and Quickbird 
data 

13-km2 area in 
eastern Texas, USA 

27 polygons (2160 
pixels) Anderson 13 fuel model [20] 

ALS data, Landsat-8 
data, and Digital 
Terrain Model 

3678-km2 area in the 
Canary Islands, 
Spain 

2548 points NFFL and Canary Islands 
Fuel Classification model 

[21] 

Landsat imagery and 
Digital Elevation 
Model 

410-km2 national 
park in Spain 

Sample from 102 field 
plots 

Modified Prometheus fuel 
model [22] 

Lidar data and 
WorldView-2 imagery 

15-km2 island in the 
Canary Islands, 
Spain 

40 field plots Prometheus fuel model [23] 

Airborne Laser Scanner 
and Sentinel 2 data 

2023-km2 forest in 
Spain 

136 field plots Prometheus fuel model [24] 

USFS Integrated 
Resource Inventory 
data 

715-km2 area in 
Boulder, Colorado 196 field plots 

Scott and Burgan 40 fuel 
model [25] 
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ASTER imagery 250-km2 area in 
Idaho 

107 field plots NFFL fuel model [26] 

Quickbird, Landsat-
TM, and EO-1 
Hyperion imagery 

60-km2 area in 
Greece N/A Own-developed six 

classes [27] 

N/A: Not using supervised learning. USFS: United States Forest Service. NFFL: Northern Forest Fire 
Laboratory.Table 1 also includes several research studies that have used lidar data, with or without 
spectral signatures, as inputs to fuel identification models. Stavros et al. [13] used height information 
from lidar together with AVIRIS data to build a heuristic fuel map with inconclusive fuel 
identification performance. Huesca et al. [16] used lidar data to compare Spectral Mixture Analysis, 
Spectral Angle Mapper, and Multiple Endmember Spectral Mixture Analysis mapping methods for 
fuel mapping in a national forest in Spain. Mutlu et al. [20] showed that fusing lidar data resulted 
in fuel identification improvement compared with using Quickbird multispectral imagery alone. 
Jakubowski et al. [18] estimated the fuel map for a small region in the Sierra Nevada using lidar 
data and National Agricultural Imagery Program (NAIP) imagery, and a variety of traditional 
machine learning algorithms, and concluded that although the methods predicted general fuel 
categories accurately, specific fuel type prediction accuracy was poor. Garcia et al. [19] reported 
high fuel identification accuracy using lidar and spectral data with Support Vector Machines and 
decision rules and attributed the cases of confusion to low lidar penetration to understory 
vegetation. These studies indicate that, while the inclusion of lidar data has shown promise, their 
limited spatial availability has restricted their applicability to small scales. Therefore, until frequent 
high-resolution lidar surveys become available at the national scale, this data modality might not 
be a useful input for large-scale mapping efforts. 

The review of the literature in Table 1 also shows that, while different sources of 
imagery have been used to extract multispectral information at the points of interest, high-
resolution images have not been used yet as an independent input to identify fuels. In the 
cases where high-resolution aerial or satellite optical images (e.g., NAIP and Quickbird 
imagery) have been used ([18,23,27]), only RGB pixel values were collected as scalar 
inputs similar to other spectral or biophysical features. In Mutlu et al. [20]—while bands 
of 2.5-m resolution Quickbird images were used to create composite images with lidar-
generated bands of height bins, variance, and canopy cover—per-pixel classification using 
decision rules essentially resulted in the treatment of pixels in isolation, rather than within 
the landscape context. Therefore, an investigation of the application of high-resolution 
images as distinct inputs for fuel identification is lacking and would be useful. 

The literature review also reveals that none of the previous approaches provide a 
measure of fuel identification uncertainty. Such uncertainty is well-recognized to exist 
within any identification task and can be a result of a variety of sources, including 
randomness in the data, models, and sensors, as well as environmental noise. Knowledge 
of the uncertainty in the identified fuels is important as it provides a means to account for 
wildfire simulation uncertainties, which can be helpful in risk assessment and 
uncertainty-aware decision-making [28]. Furthermore, knowledge of the confidence with 
which fuels are predicted can be a useful tool for model diagnostics and quality control. 
In other words, increased uncertainty in the identification can point to underlying 
problems in the data and, thus, to methods that can be used to improve their accuracy. 
Specifically, the active learning framework in machine learning aims to improve model 
performance while reducing the costs associated with large-scale data labeling by actively 
querying ground truth labels for data points with the highest uncertainty. Providing fuel 
identification uncertainties would enable the use of active learning to improve fuel 
identification efforts in the future. 

Research Significance. To overcome the current limitations in fuel mapping using 
remote sensing, this paper leverages emerging deep learning technology to examine the 
feasibility of creating surface fuel maps at a much larger scale than the existing fuel 
mapping capabilities, while quantifying fuel map uncertainty. To that end, we use a data 
fusion scheme to integrate spectral and biophysical features with high-resolution imagery 
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and identify surface fuels using a single end-to-end model for the State of California. To 
train the model, fuel pseudo-labels are generated using a geospatial sampling of the 
LANDFIRE fuel maps. This information is then coupled with multimodal input data 
sourced from various data repositories and geospatial data products, including 
multispectral satellite data (bands of Landsat surface reflectance), spectral indices (e.g., 
Normalized Difference Vegetation Index (NDVI)), topography and terrain data (from the 
U.S. Geological Survey (USGS) Digital Elevation Model), and high-resolution aerial 
imagery from the NAIP. The proposed approach presents the following technical 
contributions and benefits with respect to the existing literature: 
1. Creating fuel identification models that are applicable at large spatial scales (e.g., 

state and national levels) while integrating spectral and biophysical information with 
high-resolution imagery and providing a measure of model uncertainty; 

2. Creating a method for anomaly detection in the existing surface fuel mapping 
systems (specifically the LANDFIRE products) by comparing the predicted fuels 
with the existing fuel labels and using the discrepancies as a starting point for quality 
control; 

3. Providing a means to interpolate fuels for the intermediate years when fuel maps are 
not available within the LANDFIRE database. 
A detailed analysis of the effect of the individual components of the model, the 

proposed stochastic ensemble approach, and the size of the dataset utilized for model 
training is presented in the discussions. It should be noted that the use of pseudo-labels 
sampled from the LANDFIRE products is to demonstrate the proof-of-concept and 
examine the feasibility of developing large-scale fuel identification models. However, the 
proposed framework is readily applicable to large collections of field data from national 
data collection campaigns, such as the Forest Inventory and Analysis (FIA) program of 
the United States Forest Service, which is not publicly available at this time [29]. 

2. Materials and Methods 
Proposed System. This paper investigates the use of deep learning for large-scale 

surface fuel mapping. Figure 1 provides a schematic of the proposed identification model 
where two types of neural networks are used to extract information from different 
modalities of input data in a way that facilitates their fusion and end-to-end training on 
labeled data. For tabular data—such as biophysical metadata (e.g., terrain and climate 
features), seasonal spectral values (e.g., bands of Landsat multispectral imagery), and 
statistics of spectral indices (e.g., NDVI), a multi-layer artificial neural network (ANN) 
consisting of multiple fully connected neural layers is used. For image-based contextual 
data (i.e., high-resolution imagery), a convolutional neural network (CNN) is used, which 
leverages a deep hierarchy of stacked convolutional filters that constitute layers of 
increasingly meaningful visual representations. The number, arrangement, and 
characteristics of these layers can be designed for each specific task. Alternatively, a 
variety of state-of-the-art CNN architectures exist that can be utilized as backbones and 
outfitted with custom dense output layers. Examples of these architectures include 
VGGNet [30], ResNet [31], DenseNet [32], Inception [33], and InceptionResNet [34]. These 
architectures have been used in several remote sensing applications with different degrees 
of success [35], and the selection of the optimal architecture is known to be dependent on 
the characteristics of the specific task at hand. In this work, an array of architectures is 
trained and compared with each other to maximize fuel identification performance. To 
speed up and improve the learning process, a learning mode called transfer learning can 
be used, wherein the extracted features in state-of-the-art CNN architectures that have 
been pre-trained on generic large-scale computer vision datasets are repurposed and fine-
tuned to the existing task. This is built upon the widely known observation that the 
intermediate visual features extracted in visual recognition tasks are not entirely task-
specific, except for the final classification layer [36,37]. Even in cases with a large distance 
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between the source and target tasks, transferring features from networks pre-trained on 
large datasets is better than random initialization [36]. This has been shown to be 
applicable to various remote sensing problems involving RGB imagery [38–40]. In remote 
sensing applications involving spatial data other than RGB imagery (e.g., multi/hyper-
spectral data, lidar, and radar images), the number and nature of input bands are usually 
not consistent with such pre-trained networks. However, in the proposed approach, the 
application of the CNN backbone on high-resolution RGB imagery allows for the use of 
transfer learning. As a result, the weights of the CNN backbone are initialized from those 
pre-trained on the generic computer vision ImageNet dataset [41], which are then fine-
tuned using the high-resolution fuel imagery herein. 

At the conclusion of each neural network branch, the computed features are 
concatenated before the final prediction layer to fuse the multimodal data. The optimal 
share of the branches in the data fusion will be determined through training in terms of 
the weights of the prediction layers. This end-to-end architecture is shown in Figure 1, 
which is built upon the established notion that different modalities of sensing the same 
subject usually provide complementary information, enabling deep learning methods to 
produce more reliable predictions. Details on the network and data fusion design are 
presented in a later section. 

 
Figure 1. Proposed deep learning-based surface fuel identification framework (definition of spectral 
indices is presented in the data extraction section). 

Training the same machine learning model on different sets of observations from the 
same population has been shown to result in a degree of variance in the resulting models 
[42]. Furthermore, aside from the CNN backbone that is initialized from pre-trained 
weights according to transfer learning, all other neural network layers are randomly 
initialized, resulting in slightly different models, some of which may not provide optimal 
fuel identification results. To improve the accuracy and robustness of the model in 
response to variations in observation subsets and training randomness, and to provide a 
measure of model uncertainty, a stochastic ensemble of models was created, which is 
depicted in Figure 2. 
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Figure 2. Stochastic neural network ensemble with inference-time Monte Carlo dropout. 

In the proposed model, the dataset is first randomly split into multiple subsets for 
training and validation, following the widely used k-fold cross-validation scheme. A 
separate randomly initialized model is trained on each of the training subsamples to 
capture the variance from the randomness in the observations. Subsequently, each of these 
k models is further randomized in inference mode using a process called Monte Carlo 
dropout [43]. Dropout refers to a regularization technique in neural networks that was 
originally proposed to combat overfitting by applying a binary mask drawn from a 
Bernoulli distribution, which has the effect of randomly dropping some of the nodes in 
the network during training [44]. This, in turn, is known to prevent complex co-adaptation 
between nodes and can result in improved robustness of trained models [44]. 

Monte Carlo dropout [43] has been proposed as a mechanism specific to neural 
networks that aims to quantify machine learning model uncertainties and improve their 
robustness. In this process, dropout layers embedded before every dense layer in the 
network are activated at testing time, and the model is applied m times on each 
observation resulting in m different neural network models where a fraction of the nodes 
are deactivated at random, hence creating a stochastic ensemble of many slightly 
perturbed models. Gal and Ghahramani [43] demonstrated that using the mentioned 
dropout scheme at the testing time provides an approximation of Bayesian inference over 
the neural network weights that is computationally efficient. This technique has been 
successfully utilized to derive model uncertainty in visual scene understanding [45], 
medical imaging [46], robotics, and autonomous driving [47]. However, aside from a few 
recent applications in road segmentation from synthetic aperture radar [48], ocean 
hydrographic profiles [49], lunar crater detection [50], and urban image segmentation [51], 
its applications in remote sensing and especially in wildfires have been limited. 

To account for the variations from observation subsets and training randomness by 
means of the stochastic model ensemble proposed in this work, an overall array of 𝑘 × 𝑚 
softmax scores are created for each data point. Lastly, the average of the softmax scores is 
used to arrive at the final fuel identification, and the variance of the probability scores 
provides a measure of model uncertainty. Figure 2 depicts this process and its components 
schematically. In this figure, the arrows at the conclusion of the process denote the 
softmax scores from each one of the individual models acting on each pixel’s inputs, 
whose average and variance determine the fuel type classification and its uncertainty, 
respectively. 

Area of Study. To investigate the feasibility of creating a large-scale fuel 
identification model using deep learning, the state of California was selected as the area 
of study for data extraction and model training. To train the system, fuel labels were 
generated by a random geospatial sampling of the 2016 LANDFIRE Scott and Burgan 40 
fuel model. An initial sample of 40,000 points was generated to provide a large training 
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and validation dataset to test the feasibility of training large-scale deep learning models. 
However, smaller subsets of data were also later created to study the effects of the number 
of training samples on the performance of the model. This dataset is then divided into 
training and validation subsets for cross-validation as previously described. Figure 3a 
depicts the spatial distribution of the collected training samples. To create a means for 
evaluating the developed models, a random test set was also independently generated. 
To avoid the proximity and correlation of training and testing samples that could affect 
the generalizability of the testing results, a minimum distance of 1 mile was enforced 
between the training and testing samples. This eliminates the possibility of very similar 
points ending up in both the training and testing sets, which can lead to overly optimistic 
results. An initial sample of 5000 points was selected for testing (Figure 3b). Fuel type 
labels in Figure 3 are based on the Scott and Burgan fuel models [8], as presented in Table 
2. 

  

(a) (b) 

Figure 3. Distribution of sample points used for data extraction for (a) training and (b) testing. Note 
that a minimum distance of 1 mile is enforced between the training and testing points. The codes in 
the legend are fuel types according to the Scott and Burgan 40 fuel models, as described in Table 2. 

Table 2. Fuel type description based on the Scott and Burgan fuel models adapted from [8]. 

Fuel Type Fuel Description 

GR1 

Grass: Nearly pure grass 
and/or forb type. 

The grass is short, patchy, and possibly heavily grazed. The spread rate is 
moderate; flame length is low. 

GR2 
Moderately coarse continuous grass with an average depth of about 1 foot. 

Spread rate is high; flame length is moderate. 

GR3 
Very coarse grass, with an average depth of about 2 feet. Spread rate is high; 

flame length is moderate. 

GS1 Grass-Shrub: Mixture of 
grass and shrub, up to 
about 50 percent shrub 

coverage. 

Shrubs are about 1 foot high with a low grass load. The spread rate is 
moderate; flame length is low. 

GS2 
Shrubs are 1 to 3 feet high, with moderate grass load. The spread rate is high; 

flame length is moderate. 

SH1 
Shrub: Shrubs cover at least 

50 percent of the site; the 
Low shrub fuel load, fuel bed depth of about 1 foot; some grass may be 

present. The spread rate is very low; flame length is very low. 
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SH2 grass is sparse to 
nonexistent. 

Moderate fuel load (higher than SH1), depth is about 1 foot, no grass fuel 
present. The spread rate is low; flame length is low. 

SH5 
Heavy shrub load, depth 4 to 6 feet. The spread rate is very high; flame 

length is very high. 

SH7 
Very heavy shrub load, depth 4 to 6 feet. The spread rate is lower than SH5, 
but the flame length is similar. The spread rate is high; flame length is very 

high. 

TU1 

Timber-Understory: Grass 
or shrubs mixed with litter 

from the forest canopy. 

Fuel bed is low-load grass and/or shrub with litter. The spread rate is low; 
flame length is low. 

TU2 
The fuel bed is a moderate litter load with a shrub component. The spread 

rate is moderate; flame length is low. 

TU3 
The fuel bed is a moderate litter load with grass and shrub components. The 

spread rate is high; flame length is moderate. 

TU5 
The fuel bed is a high-load conifer litter with shrub understory. The spread 

rate is moderate; flame length is moderate. 

TL1 

Timber Litter: Dead and 
down woody fuel (litter) 

beneath the forest canopy. 

Light to moderate load, fuels 1 to 2 inches deep. The spread rate is very low; 
flame length is very low. 

TL2 Low load, compact. The spread rate is very low; flame length is very low. 
TL3 Moderate load conifer litter. The spread rate is very low; flame length is low. 

TL4 Moderate load, including small-diameter downed logs. The spread rate is 
low; flame length is low. 

TL5 High load conifer litter; light slash or mortality fuel. The spread rate is low; 
flame length is low. 

TL6 Moderate load, less compact. The spread rate is moderate; flame length is 
low. 

TL7 Heavy load, including larger-diameter downed logs. The spread rate is low; 
flame length is low. 

TL8 Moderate load and compactness may include a small amount of herbaceous 
load. The spread rate is moderate; flame length is low. 

TL9 Very high load, fluffy. Spread rate moderate; flame length moderate. 

NB1 Non-burnable: Insufficient 
wildland fuel to carry 

wildland fire under any 
condition. 

Urban or suburban development; insufficient wildland fuel to carry wildland 
fire. 

NB3 Agricultural field, maintained in non-burnable condition. 
NB9 Bare ground. 

Data Extraction. For each data point in the extracted sample, an array of input 
features was extracted. Table 3 summarizes the input features used in the modeling, 
which was informed by the fuel mapping literature reviewed in the background section. 
Multispectral data are the most widely used data for wildfire fuel modeling, with the 
Landsat mission being one of the primary sources of open data for these applications [52]. 
The atmospherically corrected and orthorectified Landsat-8 Operational Land Imager and 
Thermal Infrared Sensor (OLI/TIRS) surface reflectance data were used at 30-m resolution. 
A seasonal composite of Landsat OLI/TIRS data was computed for each sample location 
using the medoid compositing criterion [53]. This criterion minimizes the sum of 
Euclidean distances in the multispectral space to all other observations over the time 
period of interest (i.e., seasons). This method selects seasonal representative values while 
preserving the relationships between the bands and has been shown to produce 
radiometrically consistent composites [54]. The quality assessment (QA) band codes were 
utilized to mask pixels contaminated with cloud and cloud shadow. 
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Table 3. Geospatial datasets used for deriving predictors and class variables. 

Data Category Source Dataset Derived Data 

Spectral 

Landsat Operational Land Imager 
(OLI)/Thermal Infrared Sensor 
(TIRS) seasonal surface reflectance 
values 

Band 2 (blue), band 3 (green), band 4 (red), band 5 (near 
infrared), band 6, 7 (shortwave infrared 1, 2), band 10, 11 
(brightness temperature) 

Landsat annual spectral index 
statistics (see Table 4 for definitions) 

Annual median, minimum, maximum, and range of {NDVI, 
EVI, SAVI, MSAVI, NDWI, VARI, TCB, TCG, TCW, NBR} 

Biophysical 
USGS Digital Elevation Model 
(DEM) with 1/3 arc-second 
resolution [55] 

Elevation (m), computed slope (deg.) and aspect (deg.), multi-
scale topographic position index (mTPI) 

 
PRISM historical climate normal 
[56] 

Mean temperature (°C), mean maximum and minimum 
temperatures (°C), precipitation (mm), mean dew point 
temperature (°C), minimum and maximum vapor pressure 
deficit (hPa), horizontal, sloped, and clear sky solar radiation 
(MJ m−2 day−1) 

Imagery 
National Agricultural Imagery 
Program (NAIP), 1-m resolution 
[57] 

Three-channel (RGB) image centered at the point of interest  

Surface Fuels  

LANDFIRE 2016 map of standard 
surface fire behavior fuel models 
[10] (based on Scott and Burgan 40 
fuel models) 

Surface fuel types 

In addition to the seasonal spectral values, annual statistics of well-established 
spectral indices were also computed using the Landsat data as shown in Table 4. The 
annual median, minimum, maximum, and range of each of the spectral indices were 
computed for each point at 30-m resolution. Biophysical characteristics of each point of 
interest, including terrain properties and climate normal, were also extracted. Elevation 
data were collected from the 1/3 arc-second National Elevation Dataset (NED) by the 
USGS [55], from which slope and aspect were calculated and added to the input data. In 
addition, NED-derived multi-scale topographic position index (mTPI) calculated as the 
elevation difference from the mean elevation within multiple neighborhoods was 
retrieved as a differentiator of ridge and valley landforms [58]. Climate normal values, 
including temperature, precipitation, dew point, vapor pressure deficit, and horizontal, 
sloped, and clear sky solar radiation, were extracted from the Parameter-Elevation 
Regressions on Independent Slopes Model (PRISM) dataset from Oregon State University 
[56]. 
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Table 4. Spectral indices used as training features. 

Index Formula Application Reference 
NDVI (Normalized 

Difference Vegetation 
Index) 

𝑁𝐼𝑅 − 𝑅𝑁𝐼𝑅 + 𝑅 Sensitive to vegetation 
greenness 

[59] 

EVI (Enhanced Vegetation 
Index) 1 

𝐺 𝑁𝐼𝑅 − 𝑅𝑁𝐼𝑅 + (𝐶1 ∗ 𝑅) − (𝐶2 ∗ 𝐵) + 𝐿 (1 + 𝐿) Sensitive to vegetation 
greenness with enhancement [60] 

SAVI (Soil-adjusted 
Vegetation Index) 2 (1 + 𝐿) 𝑁𝐼𝑅 − 𝑅𝑁𝐼𝑅 + 𝑅 + 𝐿 Sensitive to vegetation in 

presence of soil brightness [61] 

MSAVI (Modified Soil-
adjusted Vegetation 

Index) 

2 ∗ 𝑁𝐼𝑅 + 1 − ඥ(2 ∗ 𝑁𝐼𝑅 + 1)ଶ − 8 ∗ (𝑁𝐼𝑅 − 𝑅))2  Sensitive to vegetation in 
presence of bare soil 

[62] 

NDMI (Normalized 
Difference Moisture 

Index) 

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅1𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1 Sensitive to vegetation 
moisture 

[63] 

TCB (Tasseled Cap 
Brightness) 3 

𝑏ଵ ∗ 𝐵 + 𝑏ଶ ∗ 𝑅 + 𝑏ଷ ∗ 𝐺 + 𝑏ସ ∗ 𝑁𝐼𝑅 + 𝑏ହ ∗ 𝑆𝑊𝐼𝑅1+ 𝑏଺𝑆𝑊𝐼𝑅2 Sensitive to vegetation 
brightness [64] 

TCG (Tasseled Cap 
Greenness) 4 

𝑔ଵ ∗ 𝐵 + 𝑔ଶ ∗ 𝑟𝑅 + 𝑔ଷ ∗ 𝐺 + 𝑔ସ ∗ 𝑁𝐼𝑅 + 𝑔ହ ∗ 𝑆𝑊𝐼𝑅1+ 𝑔଺𝑆𝑊𝐼𝑅2 Sensitive to vegetation 
greenness [64] 

TSW (Tasseled Cap 
Wetness) 5 

𝑤ଵ ∗ 𝐵 + 𝑤ଶ ∗ 𝑅 + 𝑤ଷ ∗ 𝐺 + 𝑤ସ ∗ 𝑁𝐼𝑅 + 𝑤ହ ∗ 𝑆𝑊𝐼𝑅1+ 𝑤଺𝑆𝑊𝐼𝑅2 Sensitive to vegetation 
moisture [64] 

VARI (Visible 
Atmospherically Resistant 

Index) 

𝐺 − 𝑅𝐺 + 𝑅 − 𝐵 Sensitive to vegetation while 
atmospherically resistant  

[65] 

NBR (Normalized Burn 
Ratio) 

𝑁𝐼𝑅 − 𝑆𝑊𝐼𝑅2𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅2 Sensitive to fire-induced 
disturbances [66] 

R: red, G: green, B: blue, NIR: near-infrared, SWIR: shortwave infrared. 1 C1 = 6, C2 = 7.5, and L = 1 
[67]. 2 L = 0.5 [68,69]. 3 b1 = 0.2043, b2 = 0.4158, b3 = 0.5524, b4 = 0.5741, b5 = 0.3124, b6 = 0.2303 [69]. 4 g1 = 
−0.1603, g2 = 0.2819, g3 = −0.4934, g4 = 0.7940, g5 = −0.0002, g6 = −0.1446 [69]. 5 w1 = 0.0315, w2 = 0.2021, 
w3 = 0.3102, w4 = 0.1594, w5 = −0.6806, w6 = −0.6109 [69]. 

Aerial imagery from the NAIP [57] was used. This program of the US Department of 
Agriculture’s Farm Service Agency has collected high-resolution aerial imagery during 
the agricultural growing seasons for the conterminous United States nearly every two 
years since 2002 [57]. A 1-m resolution color image centered at each sample location 
(120×120-m) was collected for 2016 representing the most recent release of LANDFIRE’s 
comprehensive fuel remap. In cases where an image was not found for 2016, the closest 
image within a one-year window was retrieved. Figure 4 depicts sample NAIP images for 
fuel types under investigation in this study. Of note, Figure 4 shows that some of the fuel 
types can be difficult to differentiate even for the human eye due to their close visual 
similarity at the scale under study (e.g., GR1, GR2, and GS1). This depicts the difficulty of 
the classification task and can foreshadow potential areas of misclassification even by 
powerful machine learning algorithms. The definitions of the fuel type labels in Figure 4 
are based on the Scott and Burgan fuel models [8], and their characteristic differences are 
presented in Table 2. 
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GR1 GR2 GS1 GS2 SH2 SH5 SH7 TU5 

Grass Grass-Shrub Shrub 
Timber-

Understory 
    

        

TL3 TL4 TL6 TL8 TL9 
NB1 

(Urban/Developed) 
NB3 

(Agricultural) 
NB9 (Bare 
Ground) 

Timber Litter Non-Burnable 

Figure 4. Sample National Agricultural Imagery Program (NAIP) images for fuel types larger than 
1% of total pixels in California. Fuel types are based on the Scott and Burgan 40 fuel models 
described in Table 2. 

To train the model, ground truth labels describing the fuels found at each location 
are required. However, large-scale datasets obtained by field surveys that could be used 
for this purpose are not publicly available (e.g., the Forest Inventory and Analysis (FIA) 
Database by the United States Forest Service) and fuel model assignments may not be 
available as part of data collection. To demonstrate the proof of concept and feasibility of 
training such models, pseudo-labels using an existing fuel map were used in this work. 
To this end, pseudo-labels for the points of interest were retrieved by randomly sampling 
fuel pixels from the 2016 LANDFIRE map of standard surface fire behavior fuel models 
based on Scott and Burgan fuel models. As a result of the random sampling, the 
distribution of the extracted labels is a function of the frequency of different fuel types 
across California. Figure 5 depicts a histogram of fuel types for the pixels within the 2016 
LANDFIRE fuel map and shows that several fuel types are not widely represented in the 
fuel map within the area of study. This is important because fuel types with a small 
frequency of occurrence are known to be difficult for models to learn as a result of the lack 
of representative data and the resulting imbalance between the classes. On the other hand, 
mis-predicting a very small number of isolated pixels has a less pronounced effect on the 
overall fire spread than making errors in the prediction of large areas of dominant fuel 
types. As a result, identifying the most common fuel types in the study area provides a 
more important contribution to the effectiveness of the resulting fire spread simulations. 
Future sensitivity analyses to quantify the effect of individual fuel types—especially rare 
and small categories—on fire spread modeling are needed to evaluate these effects. To 
investigate the effects of class size on the fuel identification performance of the model, 
Table 5 lists the fuel types larger than different minimum sizes and their cumulative 
coverages. For example, with a minimum class size of 4%, the model will include 8 classes 
that cover 78.1% of the pixels of the study area. Alternatively, by aggregating the classes 
of the same fuel category that are smaller than the minimum class size, models with full 
coverage of all pixels can be created. 
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Figure 5. Distribution of fuel types in the 2016 LANDFIRE map within California (only fuel types 
with 0.1% or more are shown). See Table 2 for fuel type descriptions. 

Table 5. List and cumulative coverage of fuel types larger than different minimum class sizes. See 
Table 2 for fuel type descriptions. 

Minimum Class 
Size (% *) 

Number of 
Classes 

Cumulative Pixels 
Covered (% *) Classes 

1% 17 96.5 
TL9 (1.2), TL4 (1.5), SH5 (1.5), TL3 (1.5), TL8 (1.5), SH7 (2.0), SH2 

(2.4), TL6 (3.1), GS1 (3.7), NB3 (4.4), NB1 (4.9), NB8 (4.9), GR1 
(9.8), TU5 (10.1), NB9 (10.9), GS2 (14.5), GR2 (18.6) 

2% 12 89.3 
SH7 (2.0), SH2 (2.4), TL6 (3.1), GS1 (3.7), NB3 (4.4), NB1 (4.9), 

NB8 (4.9), GR1 (9.8), TU5 (10.1), NB9 (10.9), GS2 (14.5), GR2 (18.6) 

3% 10 84.9 TL6 (3.1), GS1 (3.7), NB3 (4.4), NB1 (4.9), NB8 (4.9), GR1 (9.8), 
TU5 (10.1), NB9 (10.9), GS2 (14.5), GR2 (18.6) 

4% 8 78.1 NB3 (4.4), NB1 (4.9), NB8 (4.9), GR1 (9.8), TU5 (10.1), NB9 (10.9), 
GS2 (14.5), GR2 (18.6) 

5% 5 63.9 GR1 (9.8), TU5 (10.1), NB9 (10.9), GS2 (14.5), GR2 (18.6) 
* % of total pixel population. 

Model Development and Evaluation. This section presents the details of the overall 
deep learning framework and its design choices previously presented in Figures 2 and 3. 
Extensive testing was carried out to design the optimal architecture for the proposed 
model via cross-validation. Pretrained CNN architectures—including VGGNet [30], 
ResNet [31], DenseNet [32], Inception [33], and InceptionResNet [34]—were tested as the 
backbone to extract the visual features from the NAIP imagery, and the best accuracy 
results were achieved using the InceptionResNet_v2 backbone; hence, this architecture 
was used throughout the rest of the analyses. InceptionResNet_v2 is a 64-layer CNN 
architecture based on the Inception family of architectures that employs residual 
connections similar to those in the ResNet variants. The standard implementation of 
InceptionResNet_v2 available in the Keras library was used in this work, and further 
information about this architecture can be found in [34]. Input image size was selected to 
be 128 × 128 pixels, where each pixel represents 1 m on the ground. Data augmentation 
in the form of random horizontal and vertical flipping and random rotation was applied 
to the images during training to increase the robustness of the training. Any 
transformation that could visually change the scene, such as rescaling, recoloring, or non-
affine transformations, were not applied, and the original image was maintained during 
testing. The output of the InceptionResNet_v2 backbone was passed through an average 
pooling layer that reduces the last convolutional feature map by calculating the average 
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of the feature maps. A dense layer with 128 nodes followed by a dropout layer was added 
to the end of the CNN branch before concatenation with the multilayer ANN outputs. 

A series of DNN hidden layers and node arrangements ranging from 2 to 6 layers 
and 64 to 256 nodes in increments of 64 were tested to select the configuration that 
provides the highest accuracy on the validation sets. A substantial increase in the number 
of layers or nodes did not result in appreciable performance gains. The final configuration 
of the DNN was determined to include three dense hidden layers each with 128 nodes. 
Finally, the outputs of the two branches are concatenated with each other and fed to two 
hidden layers of 128 nodes followed by a softmax classifier (see Figure 1). Softmax is an 
operator which transforms the outputs from the last layer of a neural network into class 
probabilities, from which the final classification is decided [70]. Equation (1) shows the 
softmax operator, where 𝑆௝(𝑥) is the probability of an observation belonging to class j, and 
n_Class is equal to the number of fuel types under consideration. 𝑆௝(𝑥) = 𝑒௫ೕ∑௡_஼௟௔௦௦௟ୀଵ 𝑒௫೗ (1)

A dropout layer with a dropping probability of 0.5 was used after each hidden layer 
throughout the network to implement the Monte Carlo dropout scheme, as shown in 
Figure 2. Furthermore, a Rectified Linear Unit (ReLU) activation function in the form of 𝑅𝑒(𝑥) = (0, 𝑥)  was used to provide nonlinearity in the neural network that aids the 
learning of complex patterns. The resulting network was then trained using the Stochastic 
Gradient Descent (SGD) algorithm [70]. In this process, following every forward pass 
through the network, training loss is estimated via a cross-entropy loss function. This 
function is shown in Equation (2), where 𝑦௜ and 𝑦ො௜ represent the i-th label and predictions, 
respectively, and N denotes the size of the training set. The estimated loss in each training 
epoch is then used in the back-propagation process that updates the unknown parameters 
(i.e., weights) of the network on small subsets of training data (i.e., mini-batches). In each 
epoch, the gradients of loss, L, are calculated with respect to the weights, w, (డ௅డ௪), and a 
fraction (𝜂, called learning rate) of the gradient is added to the weights from the previous 
step (𝑤௜ିଵ) (Equations (3) and (4)). To improve the convergence, a term called momentum 
(𝛼) is added to the update. Finally, another regularization mechanism called weight decay 
(𝜆) is also used to discourage overfitting by imposing smaller weights [70]. This process 
is iteratively repeated until convergence. 𝐿(𝑦௜, 𝑦ො௜) = − 1𝑁 ෍ே

௜ 𝑦௜𝑙𝑜𝑔 (𝑦ො௜) (2)

∆𝑤௜ = 𝛼∆𝑤௜ିଵ + 𝜂 𝜕𝐿𝜕𝑤  + 𝜆𝜂𝑤௜ିଵ (3)𝑤௜ = 𝑤௜ିଵ + ∆𝑤௜ (4)

Training of the models was carried out for a maximum of 300 epochs while an early 
stopping criterion was applied to stop the training if validation accuracy did not improve 
for 30 consecutive epochs. A minibatch of 100, momentum of 0.9, weight decay of 0.0001, 
and learning rate of 10−3 were used to start training, and the learning rate was reduced by 
1/10 after every 15 epochs, following He et al. [31]. Further trial-and-error with these 
hyperparameters did not provide appreciable accuracy improvements. 

The performance of the model was evaluated using well-established classification 
metrics, including global accuracy, precision, recall, f-score, and Cohen’s Kappa statistic. 
Global accuracy (Acc) measures the ratio of total correct predictions over the entire data 
points. Recall (Rec) is the ratio of correct predictions of each fuel type to all predictions of 
that fuel type. Precision (Pre) is the ratio of correct predictions of each fuel type to all 
existing labels in that class. F1 score is a widely used metric that is the harmonic mean of 
precision and recall. Precision, recall, and F1 were computed per class, and both their 
macro-average (regardless of the size of each class) and their weighted average were 
calculated. To quantify the agreement between the fuel maps developed through the 
proposed method with those of LANDFIRE, Cohen’s Kappa statistic was used as a well-
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established agreement metric in the literature that measures the agreement between 
predicted and observed labels while accounting for agreement by chance. 

The implementation of the deep learning procedures in this paper was carried out 
using the Keras neural network Application Programming Interface (API) with the 
TensorFlow deep learning platform as the backend. These platforms provide an array of 
tools compatible with the Python programming language for designing, developing, and 
training neural networks [71]. Training of the models was deployed on an NVIDIA Tesla 
V100 GPU node with 112 GB of RAM. 

3. Results 
Using the proposed methodology, the models were trained for surface fuel 

identification. Figure 6 depicts the evolution of training and validation accuracy as well 
as loss during the training of the model. In this figure, solid lines show the mean of the 
accuracy and loss for the ensemble, and the shaded band provides the 95% confidence 
interval. As can be seen in this figure, the model demonstrates stable behavior with the 
convergence of accuracy and loss to a plateau. Furthermore, the small gap between the 
training and validation curves in each case demonstrates the proper training of the model 
with minimal effects of overfitting. Table 6 summarizes the overall accuracy of the model 
trained using different minimum class sizes ranging from 1–5%. These models were first 
trained on original unfiltered fuel labels obtained from LANDFIRE 2016 fuel maps, as 
previously described. The accuracy of the model ranged from 51.74% to 69.59% based on 
the minimum class size without aggregating the classes smaller than the threshold. The 
reduction in accuracy with the inclusion of the smaller classes is to be expected, as the 
model will have less information to learn about the smaller classes. Furthermore, 
aggregating the small classes with the most similar fuels also results in an accuracy 
reduction on the order of 10%, which is associated with insufficient information about the 
small classes as well as possible discrepancies between the aggregated classes. For a closer 
examination of the performance of the system, Figure 7 presents the confusion matrices 
for the model with a minimum class size of 4%. This case was selected for demonstration 
as it provides a reasonable accuracy of nearly 70% while covering nearly 80% of the fuel 
pixels in California. 

 
Figure 6. Evolution of training and validation accuracy and loss. C.I.: confidence interval. 
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Table 6. Testing accuracy of the model trained both on original unfiltered labels and labels filtered 
with the National Land Cover Database (NLCD). 

Minimum Class Size (% of 
Total Pixel Population) 

Acc (Small Classes Not Aggregated) Acc (Small Classes Aggregated) 

Unfiltered Labels  
Labels Filtered with 

NLCD Unfiltered Labels 
Labels Filtered with 

NLCD 
1% 51.74 55.62 51.01 52.95 
2% 54.08 61.66 52.50 54.94 
3% 59.89 64.58 51.17 53.65 
4% 67.11 74.31 56.69 59.32 
5% 69.59 73.87 57.02 58.17 

 

  
(a) (b) 

  
(c) (d) 

Figure 7. Testing confusion matrix matrices for models with a minimum class size of 4%: (a) 
unfiltered fuel labels with no small class aggregation, (b) filtered labels with no small class 
aggregation, (c) unfiltered labels with small class aggregation, and (d) filtered labels with small class 
aggregation. Fuel types are described in Table 2. 

Confusion matrices shown in Figure 7 demonstrate a concentration of the predictions 
along the diagonal, which shows desirable behavior and noticeable agreement between 
the predicted fuel labels and the corresponding true labels. To further examine the sources 
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of confusion, in Figure 7a, six cases of misclassification are marked for further visual 
examination, as presented in Figure 8. In Figure 8, samples of images pertaining to each 
fuel type that were mistaken for a different fuel type are presented. In each case, the 
assumed “ground truth” labels show noticeable discrepancies with the contents of the 
images. For example, Case 2 includes images that are visually consistent with agricultural 
land cover while they have been labeled as “GR2,” and Case 5 shows mostly non-urban 
land cover that has been labeled as “urban.” This demonstrates that the labels suffer from 
a degree of impurity, which can be associated with the fact that these labels are not a direct 
result of field surveys by fuel experts but are instead sampled from derivative fuel maps, 
potentially with a level of inherent inaccuracies. Note that agricultural and urban land 
covers are mapped via external sources ([72,73]) in LANDFIRE [74]. To demonstrate the 
effect of this label impurity, the models were re-trained after filtering the labels against 
the National Land Cover Database (NLCD) land cover map for 2016 [73]. Because the 
NLCD maps do not have fuel information, any burnable fuel pixels that had a non-
burnable land cover label were filtered out, and vice versa. These land cover types include 
developed land (open space and low- to high-intensity development), barren land (rock, 
clay, and sand), and cultivated crops. This resulted in the removal of 16.3% of the pixels 
from the training dataset. The results of this filtering are shown in Figure 7b,d, where the 
severity of the off-diagonal elements has visibly decreased. This resulted in an accuracy 
improvement of the individual classes by more than 10% on average across all classes and 
a global accuracy improvement of 7.2% (from 67.11% to 74.31% in Table 6). This 
demonstrates an important opportunity for the improvement of fuel maps by using the 
proposed method to detect the discrepancies that can highlight potential label impurities. 

   
Case 1: GR1 predicted as NB9 (bare ground) Case 2: GR2 predicted as NB3 (agricultural) Case 3: NB9 (bare ground) predicted as GS2 

   
Case 4: NB1 (urban) predicted as GR2 Case 5: NB1 (urban) predicted as GS2 Case 6: NB9 (bare ground) predicted as GR1 

Figure 8. Diagnostic examination of prediction results with original unfiltered LANDFIRE labels. 
Cases are selected from Figure 7. 

Figure 9 shows six of the biggest off-diagonal confusion elements highlighted in 
Figure 7b after filtering the labels with the NLCD land cover maps. As can be seen, these 
cases are mostly concentrated adjacent to the diagonal, which implies that the model’s 
mistakes are mostly among the most similar fuel types. In Figure 9, each column shows 
the two fuel types that have been mistaken for each other. Visual inspection of the two 
cases in each column shows that the differences between these classes are sometimes 
subtle and can be difficult to differentiate even for human annotators. 
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Case 7: GR2 predicted as GR1 Case 8: GS2 predicted as GR2 Case 9: TU5 predicted as GS2 

   
Case 10: GR1 predicted as GR2 Case 11: GR2 predicted as GS2 Case 12: GS2 predicted as TU5 

Figure 9. Diagnostic examination of prediction results with the labels filtered with NLCD land 
cover. Cases are selected from Figure 7. 

Based on the results presented in this section, the evidence suggests that the 
proposed model is relatively successful at identifying the surface fuel types in the test set 
given an assumed degree of impurity associated with the labels used for training. The 
level of fuel identification accuracy is dependent on the desired degree of granularity with 
smaller minimum class sizes, resulting in learning difficulty with less information to 
support the extracted patterns. Moreover, based on the confusion matrices in Figure 7b, 
the non-burnable urban land cover (NB3) is the easiest to detect (class accuracy of 95.3%), 
which is to be expected, as this class has the most discernible features even to the 
untrained eye. On the other hand, the grass-shrub class (GS2) is the hardest to detect (class 
accuracy of 66.1%), which is associated with its close similarity to the grass fuel types. 

To further visualize the performance of the model outside the testing set and in 
mapping, Figures 10 and 11 present samples of fuel maps generated by the proposed 
model together with the corresponding uncertainty maps created as previously described 
using the average and variance of the model probabilities. As can be seen in Figure 10, the 
qualitative comparison of the predicted maps with LANDFIRE counterparts shows 
noticeable overall agreement, consistent with the Cohen’s Kappa values of 0.854, 0.477, 
and 0.475 for the three images from left to right, respectively. Figure 11 shows a sample 
of results with relatively large discrepancies between the predictions and the target labels, 
with Cohen’s Kappa values of 0.046, 0.016, and 0.321. Examination of the first column in 
this figure shows that a large portion of the GR1 and GR2 area in the target map indeed 
seems to be visually consistent with the predicted NB3 (agricultural). This may be 
pointing to a potential discrepancy in the target map (i.e., LANDFIRE) that could be used 
for map correction or improvement. Note that LANDFIRE uses external mapping data for 
agricultural lands [72]. The second column in this figure shows that the model replaced 
the area covered by TL6 in the label map with TU5. In this case, the corresponding 
uncertainty map shows that the model has some awareness of the potentially erroneous 
prediction that could be accounted for in the resulting decisions. Finally, the third column 
shows a similar case where, despite the overall relative agreement between the maps, the 
predictions seem to have missed areas of NB9 (bare ground), TL6, and GR1. Similarly to 
the previous case, the corresponding uncertainty map may be leveraged to highlight the 
areas where the model has lower confidence in its predictions. 
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Figure 10. Sample fuel mapping results with small discrepancies with the LANDFIRE fuel map. 
Fuel types are described in Table 2. 



Fire 2023, 6, 36 20 of 27 
 

 

 
Figure 11. Sample mapping results with relatively large discrepancies with LANDFIRE maps. Fuel 
types are described in Table 2. 

4. Discussion 
Table 7 summarizes the contribution of the different components of the model by 

listing the per-class and overall F1 scores. As shown in Table 7, in most cases, models 
made from individual components have the lowest performance, and the fusion of 
complementary components results in improvements with respect to individual 
components. Among the individual components, NAIP imagery has the highest overall 
performance, followed by spectral values. Although the detection of some classes (e.g., 
NB3, NB1) is substantially easier with imagery than spectral values, others (e.g., NB8, 
NB9) are easier to differentiate using spectral values. This is associated with how 
discernible these classes are using their spectral or visual signatures (e.g., agricultural 
lands may be harder to miss using their unique farm patterns than their spectral 
differences compared with grasslands). Furthermore, although biophysical data show 
weak correlations with non-vegetation classes (e.g., NB1, NB8, NB9), they provide the 
highest performance in the grassland classes. Of note, the addition of imagery data always 
results in performance improvement. This can be seen by comparing every model (single 
or multi-component) with its counterpart after the inclusion of imagery data. By 
comparing the full model with the one that includes all non-imagery data types (SV + SI + 
BP), all classes except NB8 (water) show accuracy improvement. This lack of improvement 
for NB8 can be attributed to the apparent visual similarity of some surface water image 
patches to simple grassland landscapes. Finally, the full model that includes the fusion of 
all components results in the highest detection performance, both across most individual 
classes and overall. This demonstrates the benefit of data fusion in improving the fuel 
identification performance of the system. 
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Table 7. Performance of different combinations of input components of the model (numbers in the 
table are F1 scores; values in bold indicate the best result in each category). Fuel types are described 
in Table 2. M-Avg. and W-Avg. refer to macro- and weighted-average, respectively. 

Fuel 
Class BP SV IM SI BP + SI SV + IM SI + IM SI + SV SV + BP BP + IM BP + SI 

+ IM 
SV + SI 

+ IM 
BP + SI 

+ SV 
BP + SV 

+ IM 
BP + SI + 
SV + IM 

GR1 67.4 65.5 67.1 64.4 72.4 67.7 67.4 66.8 70.4 71.3 73.6 68.8 72.7 72.8 74.1 
GR2 61.9 62.7 65.2 55.5 67.6 66.1 59.2 59.9 66.7 67.2 68.3 65.9 67.1 69.9 70.7 
GS2 57.2 65.6 63.2 62.1 65.0 66.4 64.9 64.6 65.7 65.4 67.0 66.6 67.1 67.9 68.1 
TU5 73.2 84.4 82.6 82.4 84.0 85.7 84.5 83.9 84.2 83.4 85.1 85.5 84.7 85.2 86.0 
NB1 45.4 57.5 75.8 50.5 64.1 76.4 72.3 56.2 67.9 74.2 74.3 75.3 68.4 76.9 77.9 
NB3 67.2 70.9 90.4 60.8 78.5 90.4 88.5 75.8 81.8 91.7 90.5 89.7 83.3 90.7 90.3 
NB8 40.7 77.4 63.3 66.7 71.2 76.9 72.7 72.4 72.7 67.7 78.7 74.6 78.7 77.6 77.4 
NB9 42.6 70.1 56.5 70.1 73.0 72.4 72.7 69.1 67.1 64.3 74.5 72.2 71.5 71.1 75.6 

M-Avg. 57.0 69.3 70.5 64.1 72.0 75.3 72.8 68.6 72.1 73.2 76.5 74.8 74.3 76.5 77.4 
W-Avg. 62.0 68.3 69.2 63.9 70.8 71.6 68.6 67.3 70.7 71.2 72.9 71.6 72.0 73.6 74.3 

SV: spectral values, IM: NAIP imagery, SI: spectral indices, BP: biophysical data. 

Table 8 compares the performance of the Monte Carlo dropout ensemble with the 
sub-sample ensemble (without the dropout) and the best individual model. Both 
ensemble models have higher performances than the best individual model, confirming 
that the generation of the random ensembles improves predictive performance. Monte 
Carlo dropout has a slightly higher performance than the sub-sample ensemble in 
addition to enabling the quantification of fuel identification uncertainty. In Table 8, 
precision (Pre) and recall (Rec) denote the ratio of correct predictions from each fuel type 
to all predictions of that fuel type, and to the population of that fuel type, respectively, 
while the F1 score refers to the harmonic mean of precision and recall. 

Table 8. Effect of stochastic ensemble modeling (values in bold indicate the best result in each 
category). Fuel classes are described in Table 2. M-Avg. and W-Avg. refer to macro- and weighted-
average, respectively. 

Fuel Class 
Best Single Model Sub-Sample Ensemble MC-Dropout Ensemble 

Pre Rec F1 Pre Rec F1 Pre Rec F1 
GR1 71.8 65.9 68.7 71.7 74.5 73.1 71.9 76.6 74.1 
GR2 65.3 72.7 68.8 68.2 70.7 69.5 68.7 72.8 70.7 
GS2 67.6 63.7 65.6 68.8 68.3 68.6 70.2 66.1 68.1 
TU5 87.3 80.8 83.9 86.0 85.6 85.8 86.3 85.6 86.0 
NB1 75.4 73.7 74.5 80.2 72.9 76.4 83.6 72.9 77.9 
NB3 81.4 98.1 89.0 88.4 92.5 90.4 85.7 95.3 90.3 
NB8 71.9 67.6 69.7 88.9 70.6 78.7 85.7 70.6 77.4 
NB9 65.0 71.2 68.0 90.2 63.0 74.2 76.8 72.6 75.6 
M-Avg. (Acc) 71.6 73.8 77.4 
W-Avg. (Acc) 71.6 73.9 74.3 

To study the effect of the size of the training set, the proposed model was trained 
with different fractions of the overall training set population while maintaining the 
relative size of the classes. Figure 12 summarizes the accuracy of the model as well as its 
training time for different fractions of the training set size. Based on the figure, increasing 
the number of data points usually increases the accuracy, but at the cost of increased 
training time. For example, cutting the training set size in half results in an average of 
2.2% and a maximum of 7.2% reduction in per-class accuracies while decreasing the 
training time from 4.13 to 1.64 h (2.5 times reduction). However, it should be noted that 
this is a one-time increase during training and that the size of the training set does not 
affect the computational complexity of the testing and model application if the same 
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model architecture is being used with different training set populations. We also note that 
the reported training times are based on model deployment on an NVIDIA Tesla V100 
GPU node with 112 GB of RAM. The results of this analysis demonstrate that, to create 
useful large-scale fuel identification models, datasets consisting of tens of thousands of 
fuel plots may not be required, as the model with 1/10 of the largest data size still achieves 
an overall accuracy within nearly 5 percent of that with 40,000 observations (Figure 12). 
The proposed method can also be augmented with semi-supervised learning techniques, 
such as label propagation, which has been previously used in the remote sensing context 
to remedy the shortage of ground truth data [75], [76]. 

 
Figure 12. Effect of the size of the training set on accuracy performance and computation time. 

Finally, to investigate whether the quality of the training set could be improved by 
avoiding sampling from isolated noisy pixels, a filter was added to the sampling such that 
only the points with similar fuels within their neighborhood of radius r were selected as 
training samples. This filter essentially ensures that only the pixels belonging to a 
relatively homogeneous and continuous body of similar fuel will be sampled, thus 
reducing the potential noise from the random sampling strategy used. Three different 
values of r equal to 50, 100, and 150 m were tested. Although some of the individual classes 
showed small improvements, the overall accuracy of the model slightly decreased with 
the increase in the radius. This could be attributed to the fact that increasing r resulted in 
a slight decrease in samples taken from smaller and naturally less prevalent fuel types, 
thus limiting any potential improvement from the increased sample homogeneity. More 
generally, enforcing homogeneity by selecting pure sample sites and filtering the minority 
classes can result in missed opportunities for the identification of natural discontinuities 
for fuel breaks and other forest management actions. However, the use of survey-based 
ground truth fuel labels from national data collection campaigns (e.g., FIA database), and 
large-scale satellite-based lidar measurements (e.g., the Global Ecosystem Dynamics 
Investigation -GEDI- mission) for canopy fuel modeling can address such limitations by 
providing high-confidence labels and can be studied in future works. 

5. Conclusions 
Most past wildfire surface fuel mapping studies proposed models trained for and 

applicable to small areas of interest. In contrast, this paper discussed a model for creating 
large-scale wildfire surface fuel mapping models that can be applied at regional (e.g., 
state) scales. The proposed model takes advantage of deep learning to create a predictive 
model that can fuse information from spectral, biophysical, and high-resolution imagery. 
The model also features a stochastic ensemble approach using the Monte Carlo dropout 
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technique, which both improves the performance of the model and produces a measure 
of model uncertainty for the predicted fuels. 

The proposed system was applied to a dataset that was compiled using a random 
sample of the 2016 LANDFIRE surface fuel product based on the Scott and Burgan 40 fuel 
models for the state of California as the target fuel labels. The results demonstrated the 
feasibility of the proposed approach that yielded approximately 55% to 75% accuracy, 
depending on the desired smallest fuel type size to be included in the model. A 
considerable portion of the error is attributed to the close visual similarity of some of the 
fuel types at the scales under study, as evidenced by the difficulty of differentiating them 
even through human examination. In this regard, the proposed model can thus be used 
to reveal areas of potential discrepancies and high uncertainty in existing fuel maps and 
to interpolate fuel distributions for points of interest in time. Although the effect of 
minimum class size included in the model on the fuel identification accuracy was studied 
and showed an anticipated decrease in the model’s performance when including very 
small classes, its cascading effect on the performance of the resulting fire spread 
simulations was outside the scope of this study and is deferred to a future study that could 
compare the predicted fire spread parameters with different fuel identification models. 

Analysis of the properties of the proposed system revealed that the fusion of different 
types of data improves identification accuracy compared to using each data source 
individually. Specifically, the addition of high-resolution imagery from the NAIP 
program to any of the models from individual or combined data sources always improved 
their fuel identification performance. Furthermore, the proposed stochastic model 
ensemble generation approach resulted in improved performance with respect to 
individual models while allowing for the generation of model uncertainty estimates that 
could be propagated throughout resulting fire spread simulations. This can in turn enable 
uncertainty-aware scenario-based decision-making and model updating. A study of the 
effect of the size of the training set on the performance of the model revealed an increase 
in accuracy with an increase in the training set size. Namely, cutting the training set in 
half resulted in a maximum reduction of 7.2% and an average reduction of 2.2% in per-
class performance, while cutting the training time by 2.5 times. This implies that the model 
has the capacity to benefit from an increased training set (i.e., more data), considering that 
the training of even the largest model was relatively manageable given the hardware used 
in this study (overall training of the ensemble model took approximately 4 h). 

This proof-of-concept study used a random geospatial sampling of existing 
LANDFIRE fuel products to extract target labels for training. However, the proposed 
approach is generic and can be applied to collections of field data resulting from in situ 
fuel plots. Although the reviewed literature has successfully used small collections of field 
plots from site-specific campaigns to create fuel identification models, large-scale state- or 
nationwide fuel identification models can be created using the proposed approach and 
national data collection campaigns such as the Forest Inventory and Analysis (FIA) 
program of the United States Forest Service. Furthermore—with fire behavior fuel models 
being classification systems that use simplifying assumptions that limit their capability to 
capture the full variation of fuels—the development of quantitative, physics-based fuel 
models that more accurately characterize the combustible biomass would be beneficial. 
The success of the proposed approach in creating large-scale models that can describe 
fuels illuminates a promising pathway for creating such models, given access to in situ 
biomass measurement data from national programs. This approach could be used to 
create the real-time on-demand capability for updating fuel maps. Finally, an underlying 
limitation of the proposed approach is the limited ability of the optical remote sensing 
data sources (Landsat multispectral and NAIP imagery) to capture information about the 
understory layers covered by dense canopies, or to provide information about the height 
of the understory vegetation. Similarly to most of the previous works in the literature, this 
work attempted to leverage latent and indirect relationships between understory 
conditions and those from the uppermost canopy layers that are more readily discernible 
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in optical remote sensing data. However, unlike some of the recent work in vegetation 
and fuel mapping, the use of lidar data was not possible due to the lack of consistent state-
wide coverage for the given period of time. With the future introduction of large-scale yet 
high-resolution lidar sensors, the proposed approach could be extended to allow for the 
fusion of the resulting spatial data into the fuel identification model. 
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