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Abstract: Fire accidents cause alarming damage. They result in the loss of human lives, damage to
property, and significant financial losses. Early fire ignition detection systems, particularly smoke
detection systems, play a crucial role in enabling effective firefighting efforts. In this paper, a novel DL
(Deep Learning) method, namely BoucaNet, is introduced for recognizing smoke on satellite images
while addressing the associated challenging limitations. BoucaNet combines the strengths of the deep
CNN EfficientNet v2 and the vision transformer EfficientFormer v2 for identifying smoke, cloud,
haze, dust, land, and seaside classes. Extensive results demonstrate that BoucaNet achieved high
performance, with an accuracy of 93.67%, an F1-score of 93.64%, and an inference time of 0.16 seconds
compared with baseline methods. BoucaNet also showed a robust ability to overcome challenges,
including complex backgrounds; detecting small smoke zones; handling varying smoke features such
as size, shape, and color; and handling visual similarities between smoke, clouds, dust, and haze.

Keywords: smoke recognition; BoucaNet; satellite images; deep learning

1. Introduction

Fires cause severe damage to economies, properties, ecosystems, and human lives.
They destroy properties, homes, and resources, leading to considerable financial losses,
and contribute to ecological imbalances. For example, since 1990, wildfires have destroyed
an average of 2.5 million hectares per year in Canada [1]. In addition, over the past decade,
the cost of firefighting in Canada ranged between $800 million and $1.5 billion a year [1].
Since January 2023, 260,000 hectares have already burned in the European Union [2].
Researchers have focused on developing fire ignition and early detection systems to reduce
this alarming statistic and improve firefighting capabilities [3,4]. Both smoke and fire
detection systems are used to provide comprehensive early warning and fire protection.
Fire detection systems are used to detect the presence of flames, while smoke detection
systems are adopted to identify the first signs of smoke, even before flames are visible.

Recently, smoke recognition methods made significant progress by exploiting visible
features captured by vision sensors [5]. Additionally, classical machine learning methods,
such as dynamic texture and optical flow, were employed to manually extract smoke
features from images or videos. These extracted features were then used to identify
the presence of smoke using various classifiers, such as SVM (Support Vector Machine),
Random Forest, and AdaBoost. These approaches showed interesting efficiency, but were
related to false alarms and the identification of relevant features that accurately represented
the smoke recognition problem [5].

Deep learning models were successfully employed in many fields and industries [6,7].
More specifically, they were used for fire ignition detection due to their ability to learn to
automatically extract smoke features from large amounts of data. They provide diverse
and informative feature maps, which are often better than manually generated features in
terms of performance and robustness [8,9]. More recently, satellite remote sensing images
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were adopted for this task, representing a great opportunity thanks to the advantages of
satellite remote sensing, including timeliness and large coverage areas [10,11].

High false-alarm rates are still present due to background complexity; the variability of
smoke regarding its size, intensity, and shape; and the presence of smoke-like objects, such
as haze, dust, and clouds. These objects often have very similar textures, colors, shapes, and
spectral features to smoke, leading to false results in detecting smoke. Therefore, this paper
presents a novel ensemble learning method, namely BoucaNet, for recognizing smoke
on remote sensing satellite images, addressing these challenging limitations. BoucaNet
employed a vision transformer, EfficientFormer v2 [12], and a deep CNN (Convolutional
Neural Network), EfficientNet v2 [13], to extract smoke features from satellite images. It
was trained and evaluated using a satellite dataset, USTC_SmokeRS [14], which comprises
six classes (smoke, cloud, haze, dust, seaside, and land). This paper presents three main
contributions:

1. A novel DL method, BoucaNet, is introduced to detect the presence of smoke in
satellite images, thereby improving the performance of DL-based smoke classification
methods.

2. BoucaNet demonstrated a robust ability to handle challenging situations such as
background complexity and dynamism; detecting small smoke areas; varying char-
acteristics of smoke regarding its air concentration, flow pattern, intensity, shape,
and color; and handling its visual similarity to haze, dust, and clouds. This ability
reduces false alarms, making BoucaNet a reliable solution for smoke remote sensing
applications with high accuracy.

3. An optimized architecture is proposed in this study, achieving fast inference time,
which is an important aspect in developing an early smoke-detection system.

The remainder of this paper is structured as follows: Section 2 presents state-of-the-art
methods for smoke recognition using DL approaches. Section 3 introduces the proposed method,
BoucaNet, and provides details about the satellite dataset, USTC_SmokeRS. Section 4 reports
and discusses the experimental results of BoucaNet. Section 5 concludes the paper.

2. Related Works

Over the years, numerous DL methods were developed to improve the performance of
smoke classification in different fields of application, as presented in Table 1. Among them,
Tao et al. [15] suggested a simple CNN to recognize smoke in ground images, addressing
challenging limitations such as varying smoke colors, shapes, and textures. The proposed
CNN is a modified AlexNet [16] by changing the order of the max pooling layers and
normalization layers, which follow the first and second convolutional layers. The modified
AlexNet was trained and evaluated using the Yuan dataset (5695 smoke images and 18,522
non-smoke images) [17], resulting an accuracy of 96.88%. Yin et al. [18] proposed a new
deep normalization CNN, namely DNCNN, to improve smoke detection performance.
DNCNN incorporates batch normalization into convolutional layers to deal with overfitting
and gradient dispersion. Data augmentation techniques (vertical flipping, rotation, and
horizontal flipping) were also used to address the challenges of imbalanced data between
smoke and non-smoke images (5695 smoke images and 18,522 non-smoke images [17]).
Test results showed that DNCNN achieved an impressive performance with an accuracy
of 98.08%, surpassing popular CNNs such as AlexNet, ZF-Net [19], and VGG-16 [20].
Khan et al. [21] studied three CNN models (AlexNet, VGG-16, and GoogleNet [22]) to
identify smoke in a normal and foggy IoT environment. Experimental tests were performed
using a very large dataset, comprising 18,532 smoke images, 17,474 non-smoke images,
17,474 non-smoke images with fog, and 18,532 smoke images with fog. VGG-16 obtained the
higher performance with an accuracy of 97.72% compared with AlexNet, GoogleNet, and
published fire models, demonstrating its ability to detect smoke in a foggy environment.

Peng and Wand [23] proposed a video smoke detection method to recognize smoke in
complex environments. First, a GMM (Gaussian Mixture Model) [24] was employed as an
image processing method to extract the suspected smoke areas from images collected from
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surveillance cameras. Then, the SqueezeNet model [25] was adopted to detect the presence
of smoke. Using a large dataset (25,000 smoke images and 25,000 non-smoke images), this
proposed method showed a high performance with an accuracy of 97.12% and a high prediction
time compared with existing wildfire models such as AlexNet, ShuffleNet [26], Xception [27],
and MobileNet [28]. Gu et al. [29] developed a DCNN (Deep Dual-Channel Neural Network)
as a smoke recognition method. The DCNN is composed of two deep subnet channels, SBNN
(Selective-based Batch Normalization Network) and SCNN (Skip Connection-based Neural
Network). SBNN comprises six convolutional layers, four normalization layers, three max
pooling layers, and three fully connected layers. SCNN includes eleven convolutional layers,
seven normalization layers, three max pooling layers, and one global average pooling layer.
DCNN was trained on large public learning data [17], comprising 5695 smoke images and 18,522
non-smoke images, and data augmentation techniques (rotation of 90, 180, and 270 degrees).
It achieved an accuracy of 99.5%, higher than hand-crafted methods and state-of-the-art DL
methods such as DNCNN [18], AlexNet, VGG, GoogLeNet, Xception, ResNet, etc.

Zhang et al. [30] presented a DL method, called DC-CNN (Dual-Channel Convolu-
tional Neural Network), for detecting smoke. DC-CNN is composed of two channels. The
first channel employs a pretrained AlexNet in extracting smoke features. The second chan-
nel is a simple CNN architecture, consisting of four convolutional layers, a pooling layer,
and two fully connected layers for generating more advanced characteristics. Extensive
studies were conducted using learning data, including 9794 smoke and 9794 non-smoke
images, to handle the challenges related to smoke features, such as transparency properties,
homogeneity, and visual similarity to clouds, steam, haze, and fog. DC-CNN obtained the
highest accuracy of 99.33% compared with baseline DL models such as LeNet, AlexNet,
VGG-16, and DNCNN [18]. Jia et al. [31] designed a new method for detecting smoke in
videos. Firstly, GMM-based domain knowledge of smoke was adopted to segment the
suspected areas of smoke. Then, three pretrained deep learning models (AlexNet, Inception
v3, and ResNet50 [32]) were used to recognize smoke. ResNet50 with GMM performed
best, with an F1-score of 99.32% compared with the other models using 138 smoke videos
as testing data. He et al. [33] proposed a DL method for smoke detection in a foggy en-
vironment. This method combines the VGG-16 method as a backbone to extract smoke
features and an attention method, which consists of channel attention and spatial attention
to improve the detection of small smoke areas. It was also trained and evaluated using
33,666 images (8342 smoke images, 8522 smoke with fog images, 8401 non-smoke images,
and 8401 non-smoke with fog images). It achieved an F1-score of 99.97%, outperforming
the AlexNet, VGG-16, and SqueezeNet methods.

Zhang et al. [34] developed an end-to-end CNN method to identify smoke. Two CNNs
(spatial stream and temporal stream), each comprising five convolutional layers, three
max pooling layers, and an attention module to suppress noise, and which extract salient
features from temporal and spatial feature maps and improve detection performance, were
adopted to extract the spatial and temporal features of smoke. This method achieved
an accuracy of 96.8%, better than state-of-the-art methods using 116 fire videos and 89
non-fire videos. Cheng et al. [35] presented a deep convulational network, namely PACNN,
to improve the robustness of smoke recognition tasks. PACNN is a deep CNN with a
PAAModule (Pixel Aware Attention Module), which integrates into the residual structure
via element-wise addition and skip connection on two feature maps. Testing results showed
that PACNN reached a high accuracy of 98.91% compared with popular CNNs (AlexNet,
Inception v4, ResNet34, SEResNet34, DenseNet-121, and DNCNN) and vision transformers
(ViT, Swin-T, and DeiT-Ti) using the Yuan dataset.

Tao and Duan [36] introduced a video smoke recognition method, AFSNet, to address
slow-moving smoke challenges. AFSNet is composed of three main modules: AFSM
(Adaptative Frame Selection Module) for extracting multi-scale spatial and spatiotemporal
features; FEM (Feature Extraction Module) for incorporating a context attention module,
an enhanced dilated convolution module, and a spatiotemporal feature attention module
to minimize the loss of detailed information; and RM (Recognition Module) for detecting
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smoke presence. AFSNet was trained on two large datasets, SRSet (14,100 smoke images
and 15,380 non-smoke images) and RISE (12,567 videos). It achieved impressive F1-scores
of 96.57% and 91.00% using the SRSet and RISE datasets, respectively, surpassing classical
machine learning methods and existing deep learning models. Cheng et al. [37] proposed
a novel vision transformer, called CViTNet (Convolution-enhanced Vision Transformer
Network), for identifying smoke. CViTNet consists of three stages (s1, s2, and s3). The first
stage, s1, comprises a convolutional stem and a ViT transformer encoder. Each of the s1 and
s2 stages includes a ViT transformer encoder [38] and a convolutional token embedding,
which was proposed to improve the multiscale feature representation of tokenization. Using
the Yuan dataset, CViTNet achieved a high accuracy of 99.20% compared with existing
CNNs (AlexNet, ResNet, SEResNet, DenseNet, DNCNN, etc.) and vision transformer
methods (ViT-B, DeiT-S, conViT-Ti, Swin-T, etc.) [37].

In the study conducted by Mohammed [39], a pretrained InceptionResNet v2 model [40]
was employed for the detection of forest smoke and fires. Mohammed utilized a dataset
comprising aerial and ground images (1102 fire images and 1102 smoke images). Data
augmentation methods, including scaling and horizontal/vertical flipping, were applied
during the training phase. Testing results showed that InceptionResNet v2 achieved an
impressive accuracy of 99.09%. Chen et al. [41] studied the effectiveness of five DL methods
(LeNet5, VGG-16, ResNet18, MobileNet v2 [42], and Xception) for wildland smoke/fire
recognition on aerial images. These models were trained using a large dataset comprising a
total of 53,451 images, which were divided into three categories: 25,434 fire/smoke images,
14,317 fire/no-smoke images, and 13,700 no-fire/no-smoke images. VGG-16 obtained an
accuracy of 99.91%, surpassing MobileNet v2, ResNet18, LeNet5, Xception, and a tradi-
tional machine learning method (Logistic Regression) by 0.56%, 1.52%, 4.58%, 5.35%, and
9.54%.

Dilshad et al. [43] proposed a fire detection model, E-FireNet, to recognize fires in a
surveillance environment. E-FireNet is a modified VGG-16 by deleting block 5 and adjust-
ing the convolutional layers of block 4. The experimental setup was performed using data
augmentation techniques (horizontal flipping, rotation, and scaling). E-FireNet achieved
an accuracy 98% better than that of the pretrained MobileNet v1, VGG-19, EfficientNet-B0,
VGG-16, and NASNetMobile v1 models using the SV-Fire dataset (1500 images) [43]. Yar et
al. [44] developed a modified YOLO v5 method for detecting and locating fires in smart
cities. A total of 1957 images, comprising indoor fires (118 images), building fires (723
images), and vehicle fires (1116 images), were used to train and evaluate the proposed
model, achieving an F1-score of 84%.

Priya and Vani [45] introduced a CNN based on Inception v3 architecture [46] for
the recognition of forest smoke/fires using satellite images. Their study utilized a dataset
consisting of 534 satellite images, with 239 fire images and 295 no-fire images, for both
training and testing purposes. Their proposed method achieved an accuracy of 98%.
Ba et al. [14] also proposed a DL method, namely SmokeNet, to address the challenge
of recognizing smoke on satellite data, including varying smoke features such as colors,
shapes, and spectral overlaps. SmokeNet is a CNN model with channel-wise and spatial
attention. A novel satellite dataset, namely USTC_SmokeRS, comprising 6225 satellite
images divided into six classes (smoke, cloud, haze, dust, seaside, and land), was used in
the training and testing phases. SmokeNet showed high performance with an accuracy of
92.75%.

As described in Table 1, deep learning methods performed better in recognizing
smoke. However, several challenging limitations persist, including the complexity and
dynamics of the background; the visual similarity between smoke, clouds, dust, and haze;
the varying characteristics of smoke regarding its air concentration, flow pattern, and color;
and detecting small smoke zones.
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Table 1. Deep learning models for smoke recognition.

Ref. Methodology Object Detected Dataset Image Type Results (%)

[41] VGG-16 Smoke/Flame FLAME2: 53,451 images Aerial Accuracy = 99.91
[39] InceptionResNet v2 Smoke/Flame Private: 1102 fire images and 1102 smoke im-

ages
Aerial
Ground

Accuracy = 99.90

[15] Modified AlexNet Smoke Yuan dataset: 5695 smoke images and 18,522
non-smoke images

Ground Accuracy = 96.88

[18] DNCNN Smoke Yuan dataset: 5695 smoke images and 18,522
non-smoke images

Ground Accuracy = 98.08

[21] VGG-16 Smoke Private: 18,532 smoke images, 17,474 non-
smoke images, 17,474 non-smoke images with
fog, and 18,532 smoke images with fog

Ground Accuracy = 97.72

[23] GMM and SqueezeNet Smoke Private: 25,000 smoke images and 25,000 non-
smoke images

Ground Accuracy = 97.12

[29] DCNN Smoke Yuan dataset: 5695 smoke images and 18,522
non-smoke images

Ground Accuracy = 99.50

[30] DC-CNN Smoke Private: 9794 smoke and 9794 non-smoke im-
ages

Ground Accuracy = 99.33

[31] GMM and ResNet50 Smoke VisiFire: 138 smoke video and PascalVoc2012:
17,708 images

Ground F1-score = 99.32

[33] VGG-16 and attention
module

Smoke Private: 33,666 images (560 videos): 8342 smoke
images, 8522 smoke with fog images, 8401 non-
smoke images, and 8401 non-smoke with fog
images

Ground F1-score = 99.97

[34] CNN with attention Smoke Private: 116 fire videos and 89 non-fire videos Ground Accuracy = 96.80
[35] PACNN Smoke Yuan dataset: 5695 smoke images and 18,522

non-smoke images
Ground Accuracy = 98.91

[36] AFSNet Smoke RSet: 29,480 images (14,100 smoke images and
15,380 non-smoke images)
RISE: 12,567 videos

Ground F1-score = 96.57

F1-score = 91.00
[37] CViTNet Smoke Yuan dataset: 5695 smoke images and 18,522

non-smoke images
Ground Accuracy = 99.20

[43] E-FireNet Flame SV-Fire dataset: 1500 images Ground Accuracy = 98.00
[44] Modified YOLO v5 Flame Private: 723 building fire images, 118 indoor

electric fire images, and 1116 vehicle fire images
Ground F1-score = 84.00

[45] CNN based on Inception
v3

Smoke/Flame Private: 534 images (239 fire images and 295
no-fire images)

Satellite Accuracy = 98.00

[14] SmokeNet Smoke USTC_SmokeRS: 6225 satellite images Satellite Accuracy = 92.75

3. Materials and Methods

In this section, the proposed DL method, BoucaNet, designed for the recognition of
smoke using satellite images, is introduced. Subsequently, an overview of the dataset
employed to train and test the BoucaNet model is provided. Finally, the evaluation metrics
(F1-score, accuracy, and inference time) used in this paper are presented.

3.1. Proposed Method for smoke Classification

In this paper, a new ensemble learning approach, namely BoucaNet, is introduced for
recognizing smoke in satellite images and for addressing challenging limitations, includ-
ing background complexity and dynamics due to the presence of dynamically changing
backgrounds in input satellite images; visual similarities of smoke with clouds, dust, and
haze; and varying features of smoke regarding its shape, form, color, flow pattern, and
texture. BoucaNet combines the deep CNN EfficientNet v2 (EfficientNetV2M) [13] and
the vision transformer EfficientFormer v2 (EfficientFormerV2L) [12]. EfficientNet v2 [13]
is a new family of CNN. It is proposed to address the training limitation of EfficientNet
models [47], showing a better parameter efficiency and faster learning speed compared
with these models. It adopts an improved progressive learning method, which adap-
tively adjusts regularization techniques such as data augmentation techniques and dropout
methods along with input image size. EfficientNet v2 achieves a high performance with
top-1 accuracy of 87.3% using ImageNet21K dataset [48], surpassing the popular vision
transformers (ViT, DeiT, and T2T-Vit) and existing CNNs (EfficientNet, RegNetY, ResNetSt,
NFNet, BotNet, etc.) [13]. EfficientFormer v2 was developed by Li et al. [12] to improve the
size and latency of vision transformers while maintaining high performance. This model is
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an updated version of the EfficientFormer model, integrating a fine-grained joint search
method, which optimizes the speed and size of the model, simultaneously. Using the
ImageNet-1K dataset [49] as the learning data, it achieves an impressive top-1 accuracy of
83.5% and a low latency of 0.9 ms on iPhone 12 (iOS 16), outperforming existing competitive
CNN methods (MobileNet v2, EfficientNet, ResNet, etc.) and vision transformer models
(Mobile ViT, EdgeVit, LeViT, DeiT, T2T-ViT, Swin-Tiny, CSwin, etc.) [12].

To employ EfficientNet v2 and EfficientFormer v2 models in the specific task of smoke
recognition, their classification layers (last layers), originally developed for different clas-
sification tasks, are removed. As depicted in Figure 1, the preprocessing steps start with
resizing the input satellite images to 224 × 224 pixels. Next, four data augmentation
techniques, including rotation, shearing, shifting, and zooming, are utilized to diversify
learning data, improve the potential of BoucaNet to generalize different real-world sce-
narios, and ovoid overfitting. Then, the input satellite images and the generated images
are simultaneously fed into the EfficientNet v2 and EfficientFormer v2 models to extract
complex contextual features, comprising both smoke plume patterns and background
contextual information, and provide a comprehensive representation of various smoke
scenarios. After concatenating the two feature maps generated by the EfficientNet v2 and
EfficientFormer v2 models, the Gaussian dropout regularization technique with a rate of
0.3 is employed. This method adds random noise from a Gaussian distribution to the
input satellite data, improving BoucaNet’s generalization ability and avoiding overfitting.
Finally, a Softmax function generates a probability score ranging from 0 to 1, determining
the appropriate class, such as smoke, cloud, haze, dust, seaside, or land, for the input
satellite images.

Figure 1. The proposed architecture of BoucaNet. P1, P2, P3, P4, P5, and P6 correspond to the
predicted probabilities of the input image belonging to the smoke, cloud, haze, dust, land, or seaside
class.

3.2. Datasets

Many large fire datasets are made available to help researchers in benchmarking and
comparing DL techniques dealing with the same problem. However, this is not the case
for smoke recognition problems, especially when using satellite data, thus making the
evaluation of these DL methods a little challenging.

To train and test the proposed smoke recognition method, BoucaNet, the available
satellite data, USTC_SmokeRS [14], is utilized. This dataset is collected using MODIS
(Moderate Resolution Imaging Spectroradiometer) and represents numerous smoke scenes
through satellite remote sensing. It is selected from a remote sensing platform in Hefei,
China, and the Level-1 and Atmosphere Archive & Distribution System (LAADS) Dis-
tributed Active Archive Center (DAAC) situated at the Goddard Space Flight Center in
Greenbelt, Maryland, USA. The USTC_SmokeRS dataset comprises a total of 6225 satellite
images with dimensions of 256 × 256 pixels and a spatial resolution of 1 km. It comprises
six classes:

• Smoke (1016 satellite images) as the target class for wildfire detection.
• Dust (1009 satellite images) and haze (1002 satellite images) as negative classes to

smoke, which share similar features (texture and spectral) with smoke.
• Cloud (1164 satellite images) as the most common class in satellite images, with similar

color, shape, and spectral characteristics to smoke.
• Land (1027 satellite images) and seaside (1007 satellite images) as background classes

for fire smoke scenes.
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Figures 2 and 3 depict a USTC_SmokeRS dataset example.

Figure 2. USTC_SmokeRS dataset example from top to bottom: smoke images, dust images, and land
images.

Figure 3. USTC_SmokeRS dataset example from top to bottom: cloud images, haze images, and
seaside images.
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3.3. Evaluation Metrics

In this work, three metrics (accuracy, F1-score, and inference time) are used to evaluate
the proposed ensemble learning approach, BoucaNet. The accuracy and F1-score metrics
are determined using the true positive rate (TP), false positive rate (FP), true negative rate
(TN), and false negative rate (FN).

• Accuracy is the proportion of accurate predictions relative to the total number of
predictions, as shown in Equation (1).

Accuracy =
TP + TN

TP + FP + TN + FN
(1)

• F1-score integrates precision and recall metrics to calculate the performance of the
proposed model, as presented in Equation (2).

F1 − score =
2∗TP

2∗TP + FN + FP
(2)

• The inference time is the average time taken by BoucaNet to identify and recognize
the presence of smoke in an input satellite image during the test step.

4. Results and Discussion

The proposed DL model, BoucaNet, was developed using Python and TensorFlow ver-
sion 2.11 [50]. For training and testing this model, a machine equipped with an NVIDIA
GeForce RTX 2080Ti GPU, an Intel(R) Xeon(R) CPU (E5-2620 v4), and 64GB of RAM was
utilized.

BoucaNet was trained using the USTC_SmokeRS satellite dataset. This dataset allowed
BoucaNet to learn on various classes and scenarios, thereby enabling it to learn and
recognize various aspects of smoke in satellite images. It comprises a total of 6225 satellite
images, divided into six distinct classes. These images were split into three sets as shown
in Table 2:

• Training set: a total of 4181 images were used, including 782, 678, 673, 690, 676, and 682
satellite images for the cloud, dust, haze, land, seaside, and smoke classes, respectively.

• Validation set: a total of 796 images were utilized, including 149 images for cloud, 129
images for dust, 128 images for haze, 131 images for land, 129 images for seaside, and
130 images for smoke.

• Testing set: a total of 1248 images were selected for evaluation. This test set is
composed of 233 images for cloud, 202 images for dust, 201 images haze, 206 images
for land, 202 images for seaside, and 204 images for smoke.

Table 2. Dataset subsets.

Data Cloud Dust Haze Land Seaside Smoke Total

Training set 782 678 673 690 676 682 4181
Validation set 149 129 128 131 129 130 796
Testing set 233 202 201 206 202 204 1248

During the training process, various hyperparameters were selected to optimize the
learning of BoucaNet, including a learning rate of 0.001, the Adam optimizer, a total of 150
training epochs, and a batch size of eight. Additionally, the categorical cross-entropy loss
function (see Equation (3)) was employed.

Cross − entropy = −
A

∑
i=1

zi log (p) (3)

where z is the binary indicator, A is the number of classes (six classes, including smoke,
cloud, haze, dust, land, and seaside), and p is the predicted probability.
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The experimental setup utilized input satellite images with a size of 224 × 224 pixels. To
improve BoucaNet’s performance and avoid overfitting, four data augmentation techniques,
such as shear, rotation, shift, and zoom, were employed, enabling BoucaNet to handle a
wide range of real-world scenarios. Additionally, the GPU was used to facilitate model
training and calculate the inference time.

The evaluation of BoucaNet includes several key aspects. Firstly, its performance
was analyzed in terms of F1-score, accuracy, and inference time with the method, namely
CT-Fire, which combines EfficientFormer v2 [14] and RegNetY [51] models as the backbone,
RegNetY-16GF [51], the vision transformer EfficientFormer v2 [12], and SmokeNet [14]
as the state-of-the-art smoke detection method. Next, the obtained F1-scores of these
models for each class, namely smoke, cloud, dust, haze, land, and seaside, were presented.
Then, the resulting confusion matrix generated by BoucaNet was illustrated and discussed.
Finally, visual results of the input images predicted by these models were presented.

Testing results (loss, F1-score, accuracy, and inference time) of the proposed BoucaNet,
CT-Fire, RegNetY-16GF, and EfficientFormer v2 are reported in Table 3. RegNetY-16GF
and EfficientFormer v2 were selected due to their excellent performance in classifying
objects. CT-Fire is an ensemble learning method, which combines EfficientFormer v2 and
RegNetY-16GF to extract features. Then, the Gaussian drop regularization method and
the softmax function were used to recognize the presence of smoke. BoucaNet showed a
high performance during testing, achieving a loss of 0.2184, an accuracy of 93.67%, and an
F1-score of 93.64%. This performance was obtained thanks to the diversity of feature maps
extracted by EfficientNet v2 and EfficientFormer v2 models, including details, complexity,
and local and global feature (colors, shapes, textures, etc.) for the smoke, cloud, haze,
seaside, land, and dust classes, thus enabling BoucaNet to distinguish between smoke and
complex backgrounds and identify small areas of smoke. In terms of F1-score, BoucaNet
outperformed CT-Fire, RegNetY-16GF, and EfficientFormer by 2.75%, 1.38%, and 1.50%,
respectively. This proposed model also performed better than the state-of-the-art method
SmokeNet, which achieved an accuracy of 92.75% using the USTC_SmokeRS dataset [14].
It demonstrated its potential to address and overcome challenging limitations related to
recognizing smoke in satellite images. These challenges include complex backgrounds,
comprising various land covers and geographical features, which can make it difficult to
accurately identify smoke in input satellite images. Additionally, BoucaNet handled the
varying and dynamic nature of smoke in terms of its shape, color, intensity, and flow pattern
features, as well as the visual similarities of smoke, including color, shape, and spectral
characteristics, which are often shared with clouds, dust, and haze. On the other hand,
BoucaNet achieved an efficient processing speed with an inference time of 0.16 seconds,
slightly surpassing the inference times of EfficientFormer v2, CT-Fire, and RegNetY-16GF.
This inference time showed BoucaNet’s suitability for real-time processing of satellite
images for smoke recognition while maintaining high performance.

Table 3. Comparative analysis of BoucaNet and other models on USTC_SmokeRS dataset.

Models Loss Accuracy (%) F1-Score (%) Inference Time (s)

CT-Fire 0.2611 90.95 90.89 0.10
RegNetY-16GF 0.2668 92.31 92.26 0.04
EfficientFormer v2 0.2643 92.23 92.14 0.07
SmokeNet [14] – 92.75 – –
BoucaNet 0.2184 93.67 93.64 0.16

Table 4 illustrates the comparative analysis of BoucaNet, RegNetY-16GF, CT-Fire, and
EfficientFormer v2 for recognizing smoke, cloud, haze, dust, land, and seaside classes. Bou-
caNet achieved superior results with an F1-score of 95.58%, 91.00%, 90.82%, 95.01%, 98.76%,
and 90.36% for recognizing cloud, dust, haze, land, seaside, and smoke classes, respectively,
compared with CT-Fire, RegNetY-16GF, and EfficientFormer v2. It demonstrated its ability
to accurately differentiate between cloud, smoke, haze, dust, land, and seaside features,
thereby proving its capability to overcome challenges related to background complexity
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and visual similarities, including color, shape, and spectral characteristics, between smoke
and other classes (cloud, dust, and haze).

Table 4. Comparative analysis of BoucaNet and other DL methods for smoke, cloud, haze, dust, land,
and seaside classes.

Models F1-Score (%)
Cloud Dust Haze Land Seaside Smoke

CT-Fire 94.14 86.49 86.89 91.86 96.53 88.94
RegNetY-
16GF 95.34 88.61 87.32 95.47 97.80 88.84

EfficientFormer
v2 94.58 88.56 87.03 94.76 97.80 89.66

BoucaNet 95.58 91.00 90.82 95.01 98.76 90.36

Figure 4 depicts a confusion matrix of BoucaNet for the six classes (smoke, dust, cloud,
haze, seaside, and land) using the testing set. The results obtained provide a comprehensive
view of BoucaNet’s performance in recognizing these classes and overcoming challenges.
BoucaNet performed well in distinguishing between features of the smoke (178 instances),
cloud (227 instances), dust (187 instances), haze (178 instances), land (200 instances), and
seaside (199 instances) classes. These results demonstrate the robustness of BoucaNet
in identifying smoke in varying environmental conditions and complex backgrounds,
despite the overlap in visual features between smoke, clouds, dust, and haze. However,
it misclassified a small number of smoke instances as clouds (eight instances), dust (six
instances), haze (five instances), land (six instances), and seaside (one instance). These
misclassifications can be attributed to the complex nature of smoke, which shares visual
characteristics (color, shape, spectral texture, etc.) with other classes.

Figure 4. Confusion matrix of BoucaNet on USTC_SmokeRS data test set.
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Similar to its quantitative performance, BoucaNet performed well in predicting and
identifying the presence of smoke, clouds, dust, haze, land, and seaside in input satellite
images with high confidence scores (see Figures 5–10). For instance, it correctly predicted
a smoke image as smoke with a confidence score of 0.99 (as shown in Figure 5c), a cloud
instance as cloud with a confidence score of 0.98 (as depicted in Figure 6a), a dust instance
as dust with a confidence score of 0.88 (see Figure 7c), and a haze instance as haze with
a confidence score of 0.99 (as shown in Figure 8c). Additionally, CT-Fire made incorrect
predictions, such as classifying clouds as dust with a confidence score of 0.99 (see Figure 6b)
and haze as land with a confidence score of 0.93 (as shown in Figure 8b). RegNetY-16GF also
misclassified haze as land with a confidence score of 0.63 (see Figure 8b). EfficientFormer
also performed poorly in detecting land as haze with a confidence score of 0.94 (as depicted
in Figure 9b).

In conclusion, BoucaNet performed well in recognizing smoke in satellite images
compared with baseline models (EfficientFormer v2, RegNetY-16GF, CT-Fire, and Smo-
keNet). Notably, it demonstrated its potential to address challenging limitations, including
complex backgrounds; the dynamic nature of smoke in terms of its shape, intensity, and
color; detecting small areas of smoke; and distinguishing visual similarities in terms of
color, shape, and spectral characteristics between smoke and other elements, including
clouds, dust, and haze. Additionally, BoucaNet achieved an interesting inference time.

(a) Ground truth: Smoke
Predictions:
CT-Fire: Smoke (score: 0.99)
RegNetY-16GF: Smoke (score: 0.96)
EfficientFormer v2: Smoke (score: 0.99)
BoucaNet: Smoke (score: 0.99)

(b) Ground truth: Smoke
Predictions:
CT-Fire: Smoke (score: 0.99)
RegNetY-16GF: Smoke (score: 0.96)
EfficientFormer v2: Smoke (score: 0.99)
BoucaNet: Smoke (score: 0.99)

(c) Ground truth: Smoke
Predictions:
CT-Fire: Smoke (score: 0.99)
RegNetY-16GF: Smoke (score: 0.96)
EfficientFormer v2: Smoke (score: 0.99)
BoucaNet: Smoke (score: 0.99)

Figure 5. Smoke classification results of the proposed models.
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(a) Ground truth: Cloud
Predictions:
CT-Fire: Cloud (score: 0.97)
RegNetY-16GF: Cloud (score: 0.98)
EfficientFormer v2: Cloud (score: 0.97)
BoucaNet: Cloud (score: 0.98)

(b) Ground truth: Cloud
Predictions:
CT-Fire: Dust (score: 0.99)
RegNetY-16GF: Cloud (score: 0.93)
EfficientFormer v2: Cloud (score: 0.95)
BoucaNet: Cloud (score: 0.96)

(c) Ground truth: Cloud
Predictions:
CT-Fire: Cloud (score: 0.99)
RegNetY-16GF: Cloud (score: 0.98)
EfficientFormer v2: Cloud (score: 0.99)
BoucaNet: Cloud (score: 0.99)

Figure 6. Cloud classification results of the proposed models.

(a) Ground truth: Dust
Predictions:
CT-Fire: Dust (score: 0.96)
RegNetY-16GF: Dust (score: 0.90)
EfficientFormer v2: Dust (score: 0.88)
BoucaNet: Dust (score: 0.87)

(b) Ground truth: Dust
Predictions:
CT-Fire: Dust (score: 0.81)
RegNetY-16GF: Dust (score: 0.93)
EfficientFormer v2: Dust (score: 0.99)
BoucaNet: Dust (score: 0.99)

(c) Ground truth: Dust
Predictions:
CT-Fire: Dust (score: 0.92)
RegNetY-16GF: Dust (score: 0.82)
EfficientFormer v2: Dust (score: 0.84)
BoucaNet: Dust (score: 0.88)

Figure 7. Dust classification results of the proposed models.
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(a) Ground truth: Haze
Predictions:
CT-Fire: Haze (score: 0.99)
RegNetY-16GF: Haze (score: 0.92)
EfficientFormer v2: Haze (score: 0.52)
BoucaNet: Haze (score: 0.99)

(b) Ground truth: Haze
Predictions:
CT-Fire: Land (score: 0.93)
RegNetY-16GF: Land (score: 0.63)
EfficientFormer v2: Haze (score: 0.50)
BoucaNet: Haze (score: 0.88)

(c) Ground truth: Haze
Predictions:
CT-Fire: Haze (score: 0.99)
RegNetY-16GF: Haze (score: 0.94)
EfficientFormer v2: Haze (score: 0.97)
BoucaNet: Haze (score: 0.99)

Figure 8. Haze classification results of the proposed models.

(a) Ground truth: Land
Predictions:
CT-Fire: Land (score: 0.99)
RegNetY-16GF: Land (score: 0.98)
EfficientFormer v2: Land (score: 0.97)
BoucaNet: Land (score: 0.99)

(b) Ground truth: Land
Predictions:
CT-Fire: Land (score: 0.86)
RegNetY-16GF: Land (score: 0.95)
EfficientFormer v2: Haze (score: 0.94)
BoucaNet: Land (score: 0.55)

(c) Ground truth: Land
Predictions:
CT-Fire: Land (score: 0.99)
RegNetY-16GF: Land (score: 0.97)
EfficientFormer v2: Land (score: 0.99)
BoucaNet: Land (score: 0.99)

Figure 9. Land classification results of the proposed models.



Fire 2023, 6, 455 14 of 17

(a) Ground truth: Seaside
Predictions:
CT-Fire: Seaside (score: 0.99)
RegNetY-16GF: Seaside (score: 0.99)
EfficientFormer v2: Seaside (score: 0.99)
BoucaNet: Seaside (score: 0.99)

(b) Ground truth: Seaside
Predictions:
CT-Fire: Seaside (score: 0.98)
RegNetY-16GF: Seaside (score: 0.99)
EfficientFormer v2: Seaside (score: 0.99)
BoucaNet: Seaside (score: 0.99)

(c) Ground truth: Seaside
Predictions:
CT-Fire: Seaside (score: 0.87)
RegNetY-16GF: Seaside (score: 0.98)
EfficientFormer v2: Seaside (score: 0.99)
BoucaNet: Seaside (score: 0.99)

Figure 10. Seaside classification results of the proposed models.

5. Conclusions

In this paper, a novel ensemble learning method, namely BoucaNet, was presented for
recognizing smoke in satellite images while addressing the associated challenges. BoucaNet
combines the strengths of EfficientNet v2 and EfficientFormer v2 to extract rich and diverse
feature maps for smoke, cloud, haze, dust, land, and seaside classes. It demonstrated
a high performance, with an accuracy of 93.67% and an F1-score of 93.64%, using the
USTC_SmokeRS dataset, which consists of 6225 satellite images. Furthermore, BoucaNet
outperformed existing deep learning models for object classification, specifically Efficient-
Former v2 and RegNetY-16GF, as well as state-of-the-art methods, including SmokeNet. It
also showed an interesting processing speed, with an inference time of 0.16 s. Additionally,
BoucaNet demonstrated its potential as a robust solution to the challenges of recognizing
smoke in satellite images, including complex backgrounds; the dynamic nature of smoke,
which can present variations in shape, intensity, and color; detecting small areas of smoke;
and visual similarities between smoke and other elements, such as clouds, dust, and haze.

As future work, the evaluation of BoucaNet is planned for detecting smoke and fires
using large scale satellite and/or aerial images in both forest and urban environments.
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Abbreviations

The following abbreviations are used in this manuscript:
DL Deep Learning.
SVM Support Vector Machine.
CNN Convolutional Neural Network.
GMM Gaussian Mixture Model.
RM Recognition Module.
AFSM Adaptative Frame Selection Module.
FEM Feature Extraction Module.
SBNN Selective-based Batch Normalization Network.
SCNN Skip Connection-based Neural Network.
CViTNet Convolution-enhanced Vision Transformer Network.
DC-CNN Dual-Channel Convolutional Neural Network.
PAAModule Pixel Aware Attention Module.
MODIS Moderate Resolution Imaging Spectroradiometer.
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