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Abstract: This study explores the intricate behaviors of smoke flow, temperature distribution, carbon
monoxide (CO) levels, and visibility dynamics within complex underground spaces during fire
incidents. A key revelation is the profound impact of ventilation speed, with the identification of
a critical range between 2 and 3 m/s that consistently proves to be instrumental in curbing smoke-
related hazards and ensuring the safe evacuation of personnel. Furthermore, this paper underscores
the influence of accelerated longitudinal winds on temperature profiles, particularly under high HRR
conditions, underscoring the importance of accounting for wind effects in comprehensive fire response
strategies. Regarding CO concentration, which is a critical safety concern, this study demonstrates
that higher ventilation speeds effectively reduce hazardous gas levels, thereby fortifying overall safety
measures. The visibility is analyzed, with the findings indicating that elevated ventilation speeds
enhance visibility, albeit with considerations about potential drawbacks on personnel evacuation
due to excessive wind speed. In conclusion, this paper offers a comprehensive understanding of the
pivotal role played by ventilation speed in underground space safety by encompassing smoke control
and temperature management.
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1. Introduction

A complex underground space system represents a distinctive and prevalent type of
tunnel-based transportation. In modern cities, it has gained growing significance due to
its convenience and benefits. Nonetheless, the inherent traits of this system, including its
intricate, elongated, and subterranean structure, present significant challenges in ensuring
fire safety. The outbreak of a fire within a subway system has the potential to escalate into
a catastrophic disaster [1–4].

Remarkably, up to 78.9% of fire-related deaths in these complex underground spaces
can be attributed to the inhalation of hot and toxic smoke rather than direct flames [5,6].
In the context of emergency fire rescue operations within these intricate underground
spaces, incorrect decisions made by conductors frequently exacerbate the outcomes of
exogenous fires. This is often due to a failure to adequately assess the extent of hot
and toxic airflow, as well as the dispersion of harmful smoke [7–9]. In summary, the
recurrent incidents of exogenous fires in these intricate underground environments serve
as significant impediments to the sustainable development of the industry.

As for urban underground spaces, Ingason [10] embarked on a series of experiments
employing a 1/10 scale model of a train compartment. Throughout these tests, a consistent
element was the presence of an open door, while the number of open windows varied.
From the outcomes of these experiments, a predictive model emerged, offering a means to
estimate the heat release rates in regular train compartment fires. Li et al. [11] expanded
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the scope by conducting fire tests within three train compartments, each characterized by
different scaling ratios. During these experiments, each model compartment featured one
door and nine windows on a single side. The findings unveiled a striking similarity in the
fire development patterns of fully developed fires, even across tests with varying scaling
ratios. Ng et al. [12] explored the flame color dynamics within a 1:15 scaled-down model
train. Their study focused on fires within train compartments under restricted ventilation
conditions, achieved by adjusting the number of lateral openings. Xi et al. [13,14] conducted
a study to examine the influence of a side passage on the transition between fuel-controlled
and ventilation-controlled conditions in a corridor-like enclosure fire. Additionally, they
investigated the temperature distribution within the enclosure when sustained flame
ejection occurred through an opening. This collective body of research offers valuable
insights into the complexities of fire behavior and safety considerations within urban
underground spaces.

However, for more complex underground structures, like the “U” structure, studies
are less focused on. Thus, we can gain insights from mining roadway fires. Vauquelin
and Wu [15] made noteworthy observations concerning the relationship between heat
release rates (HRRs) and critical wind speeds during fires. Their findings indicated that
at lower HRRs, the critical wind speed tends to increase with higher HRRs from the fire
source, while this correlation diminishes at higher HRRs. With a focus on both smoke flow
dynamics and personnel evacuation strategies, Wang et al. [16] used the Fire Dynamic
Simulator (FDS) to establish a local ventilation system and control measures for fire smoke
by observing the temperature, visibility, and so on. Wu et al. [17] considered five different
altitudes from 0 to 4000m in an attempt to reveal the distribution of temperature along
the longitudinal centerline of the mine roadway. A correlation to predict the longitudinal
distribution of roof temperature in mine fires at different altitudes was proposed.

When it comes to underground fires, a paramount concern is the comprehensive
comprehension of thermal hazards and smoke propagation. Addressing these formidable
challenges necessitates a holistic approach that takes into account a multitude of factors.
These factors encompass the characteristics of the fire smoke flow and the distribution
of temperatures within forced ventilation systems within underground environments.
Of particular significance are underground fire simulations, which assume pivotal roles
in furnishing proactive insights into strategies for personnel evacuation. This, in turn,
permits the formulation of safer evacuation routes and the establishment of meticulously
coordinated rescue plans. It is essential to underscore the critical importance of conducting
a thorough investigation into the unique attributes of fires within underground spaces.

In this specific study, we utilized the FDS simulation software to explore the intricate
behavior of smoke flow, temperature distribution patterns, levels of carbon monoxide, and
the dynamics of visibility within high-temperature environments found in underground
spaces. Our analysis encompasses diverse scenarios, including varying positions and wind
speeds within both the inlet and return air passages, as well as at the working faces of the
underground environment. Our primary objective is to offer a comprehensive repository
of theoretical insights and practical guidance in the context of underground fires.

2. Numerical Simulation

Numerical simulation has gained extensive popularity in fire research due to its ability
to efficiently manipulate experimental parameters and yield intricate flow field results
beyond the scope of traditional experiments. Among the notable tools in this domain is
the Fire Dynamics Simulator (FDS), a computational fluid dynamics (CFD) model used
to analyze fire-driven fluid flow. The FDS was developed by the National Institute of
Standards and Technology (NIST) and is highly regarded for its practicality.

This CFD software has found widespread application in simulating tunnel fires, a field
where its accuracy has been extensively corroborated by prior research efforts. The FDS
encompasses two primary numerical methods, namely large eddy simulation (LES) and direct
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numerical simulation (DNS), with LES being the chosen method for this specific study. The
reliability of the FDS has been well established in numerous prior investigations [18–25].

The numerical simulations in this paper were calculated using the FDS (6.7.9) in a
high-performance computing cluster.

The governing equation used in the FDS for mass conservation is shown as follows [26]:

∂ρ

∂t
+∇ · ρu =

.
m′′′b (1)

The momentum conservation equation is

∂

∂t
(ρu) +∇ · ρuu +∇p = ρg + fb +∇ · τij (2)

The energy conservation equation is

∂ρhs

∂t
+∇ · (ρhsu) =

Dp
Dt

+
.
q′′′ −∇ · .

q′′ (3)

where ρ is the density; t is the time; u is the velocity vector;
.

m′′′b is the mass production rate;
p is the pressure; g is the gravity vector; fb is the external force vector (excluding gravity);
τij is the viscous stress tensor; hs is the sensible enthalpy;

.
q′′′ is the heat release rate per unit

volume; and
.
q′′ is the heat flux vector.

2.1. Fire Scenarios

The “U”-shaped underground model, depicted in Figure 1, features inlet and return
lanes that are 200 m long, as well as a 100 m middle lane. The cross section of the tunnel
is 4 m × 4 m. The inlet and return air ends are configured as “SUPPLY” and “OPEN”,
respectively. The forced ventilation speeds V are set at 1, 2, and 3 m/s. The external
temperature is maintained at 20 ◦C, while the air density is 1.29 kg/m3, and the ambient
pressure is 1.01325 Pa. The simulation lasts for about 600 s. The data used in the next
analysis are based on the stable stage in the last 100 s.

As shown in Table 1, the fire source is positioned along the centerline of the inlet lane,
at an interval of 40 m, namely X f = 40, 80, 120, and 160 m. The chosen HRRs for the fire
source are 2, 5, and 10 MW. The fuel we used was heptane.

Table 1. Test conditions.

No. HRRs (MW) Ventilation Speeds (m/s) Fire Locations in Middle Lane (m)

1–12 2
1 40, 80, 120, 160
2 40, 80, 120, 160
3 40, 80, 120, 160

13–24 5
1 40, 80, 120, 160
2 40, 80, 120, 160
3 40, 80, 120, 160

25–36 10
1 40, 80, 120, 160
2 40, 80, 120, 160
3 40, 80, 120, 160

To accurately measure the temperature variations, as illustrated in Figure 1, three sets
of thermocouples are strategically placed 0.1 m beneath the ceilings of the inlet air, cut, and
return lanes. These thermocouples are positioned at 1 m intervals. Additionally, 12 carbon
monoxide and visibility measurement devices are evenly distributed across the three lanes,
with a separation of 0.5 m within each group [27–30].
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Figure 1. Model schematic.

2.2. Grid Independence Analysis

The selection of the grid size significantly influences the outcomes of the simulation,
as highlighted in the FDS User’s Guide [26]; hence, D*/16–D*/4 should be between 4 and
16, where D* can be determined as follows:

D∗ =

( .
Q

ρ∞CpT∞
√

g

) 2
5

(4)

This paper selects the grid size as 0.25 m × 0.25 m × 0.25 m, which is brought into
Equation (4). Table 2 presents the calculation results of D* and D*/D for different HRRs,
indicating that the chosen size in this simulation was appropriate.

Table 2. The calculation results of D* and D*/D.

HRR (MW) D* D*/D

2 1.26544 5.06177
5 1.82565 7.30262
10 2.20326 8.81306

3. Results and Interpretation
3.1. Smoke Spread Characteristics

In Figure 2, the illustration depicts the length of smoke flow at HRR = 5 MW and
ventilation velocities (V) ranging from 1 to 3 m/s, considering two different fire locations
at X f = 40 m and 120 m. At V = 1 m/s, it is evident that the smoke consistently flows
backward, leading to the accumulation of toxic and hot gases in the upstream section.
This exacerbates air quality issues and poses a significant obstacle to personnel evacuation.
Under the conditions of X f = 120 m and V = 1 m/s, forced ventilation appears to partially
mitigate the backflow of smoke. However, it cannot completely prevent this phenomenon
at this ventilation speed. When the ventilation speed is increased to the range of 1 to 2 m/s,
the backlayering of smoke diminishes. This indicates that the upstream air becomes cleaner,
providing a viable escape route for people in this direction.
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Figure 2. Smoke flow characteristics under 5 MW and V = 1–3 m/s.

It is noteworthy that the critical ventilation speed, where the backflow is effectively
mitigated, falls within the range of 2 to 3 m/s. This observation holds true regardless
of the specific fire location, suggesting that this range of ventilation speeds is crucial for
effective smoke control and personnel safety. These findings underscore the importance of
maintaining adequate ventilation rates to ensure a safe escape path and enhance the overall
air quality during fire emergencies in underground spaces.

Foremost, it is evident that the fire’s location has a negligible impact on the smoke flow.
Thus, the primary focus of this section is the relationship between the Heat Release Rate
(HRR) and ventilation speed (V). Using X f = 80 m as an illustrative example, as shown in
Figure 3, a clear trend emerges where the backlayering increases as the HRR rises, and it is
particularly noticeable at V = 1 m/s. This phenomenon can be explained by the heightened
horizontal inertial forces resulting from increased smoke production during combustion.

An intriguing observation is that, at a ventilation speed of V = 2 m/s, the smoke
predominantly advances forward, regardless of the specific HRR. This suggests that this
ventilation speed effectively mitigates smoke backflow issues. It implies that such a
ventilation rate could efficiently address smoke backflow incidents originating from fires
initiated by belts in the inlet lane, ensuring the safe rescue of personnel from the upstream
direction. This finding holds significant implications for devising effective ventilation
strategies in underground environments during fire emergencies.
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Figure 3. Smoke flow characteristics with X f = 80 m.

3.2. Temperature Distribution

As discussed in the previous section, the combustion of fire within the inlet lane
produces a substantial amount of hot smoke that travels downstream, posing a significant
thermal hazard to personnel in the middle lane or return lane. Therefore, it is essential to
thoroughly investigate the temperature distribution in underground structures, considering
factors such as the Heat Release Rate (HRR), ventilation speed, and fire location.

Figures 4 and 5 provide insights into the temperature distributions concerning
X f = 40 m and 160 m. It becomes evident that the highest temperature points are directly
above the fire source. As highlighted earlier, the extent of smoke backlayering diminishes
as the ventilation speed (V) increases. When V = 1 m/s, the maximum temperature reaches
approximately 600 ◦C. However, with higher ventilation rates, the maximum temperature
progressively decreases.

This phenomenon can be attributed to the tilting angles of the fire plume, influenced
by the increasing longitudinal inertia force. Consequently, the flame propagation length
extends, and the hottest point shifts downstream [11]. Understanding these dynamics is
crucial for devising effective fire safety strategies within underground environments.

The downstream temperature distribution significantly influences the safety of per-
sonnel within the tunnel, making it imperative to focus on this aspect. Upon a closer
examination of the downstream temperature trends, it becomes evident that the tem-
peratures within the inlet lane, middle lane, and return lane predominantly follow an
exponential decay pattern. Despite distinct corners at the junctions between these zones,
they exert a minimal influence on the overall temperature trends.

A comparison between the conditions of X f = 40 m and X f = 160 m reveals that the
temperatures in the middle lane are generally higher for the latter scenario. Specifically,
when the HRR reaches 10 MW, the average temperatures exceed 100 ◦C, posing a significant
risk of skin and respiratory tract burns for pedestrians in the middle lane. Consequently,
ensuring personnel safety requires proactive measures to prevent large-scale fires from
occurring in close proximity to the middle lane.

In contrast, temperatures within the return lane, across all scenarios, do not exceed
100 ◦C, providing a safer environment for pedestrians in that area.
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In our subsequent analysis, we chose to utilize the maximum excess temperature as
our quantitative parameter. As illustrated in Figure 6, it is evident that the maximum excess
temperature decreases as the ventilation speed increases. This indicates that the ventilation
speed (V) exerts a more significant influence on the maximum temperature, aligning
with the conclusions discussed earlier [11,31–33], which emphasized the importance of
accelerated longitudinal winds.

It is noteworthy that the maximum temperature rise shows relatively minor variations
with different fire locations. This contrasts sharply with the smoke temperature distribution
discussed previously. Therefore, in the context of underground fire conditions, the influence
of the fire location on the maximum temperature is considered negligible.
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On the other hand, when considering the Heat Release Rate (HRR), it is crucial to
highlight that the maximum excess temperature reaches up to 650 K. With intensifying
wind speeds, particularly under the condition of HRR = 10 MW, the temperature gradually
decreases to approximately 300 K. This decrease is notably more significant when compared
to scenarios involving 2 MW or 5 MW. Hence, we can preliminarily conclude that the impact
of the wind speed on the maximum temperature rise, especially under high HRR conditions,
is clearly evident.
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Based on the analysis of the plume entrainment physics, Li et al. [11,34] derived a
model, as shown in Equation (5).

∆Tmax =


.

Q
ur1/3 H5/3

d
V′ > 0.19

17.5
.

Q
2/3

H5/3
d

V′ 6 0.19
(5)

V′ =
V
V∗

(6)

V∗ =

( .
Qcg

rρacpTa

)1/3

(7)

where V is the longitudinal ventilation speed (m/s), r is the radius of the fire (m), Hd is
the effective tunnel height (m),

.
Qc is the convective heat release rate (kW), g is the gravity

acceleration (m/s2), ρa is the ambient density (kg/ m3), and cp is the thermal capacity of
air (kJ/(kg·K)).

By combining Equation (8) and our test results, we established a prediction formula to
correlate the maximum excess temperature with the ventilation speed as follows:

∆Tmax =


0.088

.
Q

Vr1/3 H5/3
d

V′ > 0.19

7.78
.

Q
2/3

H5/3
d

V′ 6 0.19
(8)
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The comparison between the maximum excess temperature derived from our simula-
tion results and the predictions generated by Equation (8) is depicted in Figure 7. Overall,
the agreement between the two is considered to be generally acceptable.
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3.3. CO Density and Visibility

Due to the continuous downstream flow of smoke, hazardous gases accumulate
in the middle and return lanes. The concentration of carbon monoxide (CO) in these
areas can exceed safe levels, posing a significant threat to trapped personnel who may
lose consciousness before being able to escape. Additionally, the presence of soot particles
transported by the smoke flow significantly reduces visibility in the working area, hindering
the safe evacuation of underground workers.

Under the most adverse conditions, as illustrated in Figure 8 (HRR = 10 MW,
X f = 40 m), it is evident that the CO mass fraction generally decreases with the increasing
ventilation speed. Particularly noteworthy is the uniformity of CO densities across all
lanes, especially at V = 2 m/s and 3 m/s. It is essential to observe that within each lane,
the CO density in the first half of the lane exceeds that in the second half. For example,
in the middle lane, the CO mass fraction decreases to approximately 0.0003 at X = 280 m,
contrasting with the value of 0.0006 at X = 220 m. Consequently, it can be inferred that
the CO density decreases with higher ventilation rates, and in cases of relatively low ven-
tilation speeds, such as 1 m/s, the CO concentrations rapidly diminish toward the end
of the roadway. These observations highlight the critical role of the ventilation speed in
mitigating hazardous CO levels and emphasize the importance of optimizing ventilation
strategies to enhance the safety of underground personnel during fire events.

Regarding visibility, Figure 9 illustrates conditions when HRR = 10 MW and X f = 40 m.
In the inlet lane, it is evident that as the backlayering length decreases, the visibility remains
relatively unaffected by smoke when V = 3 m/s. However, in all other scenarios, the
visibility is significantly compromised, consistently dropping below 1 m due to smoke
obscuration.
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In both the middle and return lanes, the visibility consistently falls below 1 m across
all ventilation velocities ranging from 1 to 3 m/s. Interestingly, the return lane experiences
a slight reduction in visibility compared to the middle lane. Figure 9c demonstrates that
with slower ventilation, such as V = 1 m/s, smoke stagnates at the end of the channel
(X = 475 m). Conversely, the smoke is more dispersed at the end of the opening, resulting
in better visibility at lower heights. Moreover, except for the specific case of V = 1 m/s at
X = 475 m, the visibility remains relatively stable at different heights without significant
variations.

Therefore, it can be concluded that as the ventilation speed increases, the visibility
gradually improves, reaching approximately 0.7 m when V = 3 m/s. However, it is crucial
to consider that an excessive wind speed could hinder the movement of personnel during
their escape. Consequently, this factor should be taken into account when determining the
optimal ventilation speed, ensuring a delicate balance between improved visibility and
personnel mobility in emergency situations.

4. Conclusions

Through a meticulous analysis and thorough investigation, this paper delved into
the intricate dynamics of underground fires, illuminating the crucial factors that influence
safety and emergency response strategies within complex underground spaces. The key
findings of this study are summarized as follows:

1. This study pinpointed the critical role of ventilation speed in mitigating the risks
associated with smoke backflow and temperature control. The identification of a
specific ventilation speed range, from 2 to 3 m/s, represents a significant contribution
to fire safety. This range ensures efficient smoke management and facilitates personnel
evacuation in scenarios ranging from 2 MW to 10 MW.

2. The research emphasized the impacts of accelerated longitudinal winds on tempera-
ture profiles, especially in high Heat Release Rate (HRR) scenarios. Understanding
wind effects is crucial to devise effective fire response strategies. Notably, in cases
where X f = 160 m, temperatures in the middle lane were consistently higher. For
instance, when the HRR reached 10 MW, the average temperatures exceeded 100 ◦C,
posing a significant threat to pedestrians in the middle lane.

3. This paper addressed the pressing issue of the CO concentration, highlighting the
dangers associated with downstream gas accumulation. Higher ventilation speeds
were found to be effective in reducing the CO levels and in enhancing the overall
safety measures. The CO concentrations remained consistent across heights when
V = 2 or 3 m/s, underscoring the importance of an optimal ventilation speed.

4. This study examined visibility, revealing that higher ventilation speeds improve visi-
bility. However, the potential impact of excessive wind speed on personnel evacuation
warrants careful consideration. In the middle and return lanes, the visibility steadily
rose with the increasing wind speed, reaching approximately 0.7 m at V = 3 m/s,
indicating the need for a balanced approach to ventilation.

In summary, this paper advances our understanding of underground fire dynamics
and highlights the pivotal role of ventilation speed in ensuring personnel safety. The study’s
findings, which are applicable to complex structures with multiple turnings, indicate
similarities in the temperature and smoke characteristics to those observed in tunnels.
Moreover, the research underscores the ongoing significance of the ventilation speed in
mitigating heat hazards, managing CO levels, and improving visibility. These insights
serve as a foundational framework for refining fire safety protocols in urban underground
complex structures, ultimately enhancing the security and well-being of personnel during
emergency operations.
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27. Drożdżol, K. Zapewnienie bezpieczeństwa w systemach odprowadzania spalin w budownictwie mieszkaniowym. Bezpieczeństwo
Tech. Pożarnicza 2016, 41, 67–73. [CrossRef]

28. Sedda, A.F.; Rossi, G. Death scene evaluation in a case of fatal accidental carbon monoxide toxicity. Forensic Sci. Int. 2006, 164,
164–167. [CrossRef]
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