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Abstract: Accurate fuel mapping is crucial for effectively determining wildfire risk and implementing
management strategies. The primary challenge in fuel type mapping lies in the need to develop
accurate and efficient methods for identifying and categorizing the various combustible materials
present in an area, often on a large scale. In response to this need, this paper presents a compre-
hensive approach that combines remote sensing data and Convolutional Neural Network (CNN) to
discriminate between fire behavior fuel models. In particular, a CNN-based classification approach
that leverages Sentinel-2 imagery is exploited to accurately classify fuel types into seven prelimi-
nary main classes (broadleaf, conifers, shrubs, grass, bare soil, urban areas, and water bodies). To
further refine the fuel mapping results, subclasses were generated from the seven principles by using
biomass and bioclimatic maps. These additional maps provide complementary information about
vegetation density and climatic conditions, respectively. By incorporating this information, we align
our fuel type classification with the widely used Standard Scott and Burgan (2005) fuel classification
system. The results are highly promising, showcasing excellent CNN training performance with all
three metrics—accuracy, recall, and F1 score—achieving an impressive 0.99%. Notably, the network
exhibits exceptional accuracy in a test case conducted in the southern region of Sardinia, successfully
identifying Burnable classes in previously unseen pixels: broadleaf at 0.99%, conifer at 0.79%, shrub
at 0.76%, and grass at 0.84%. The proposed approach presents a valuable tool for enhancing fire
management, contributing to more effective wildfire prevention and mitigation efforts. Thus, this
tool could be leveraged by fire management agencies, policymakers, and researchers to improve the
determination of wildfire risk and management.

Keywords: fire management; fuel mapping; Sentinel 2; CNN classification; Scott and Burgan fuel
classification system

1. Introduction

Accurate and updated information on fuel types and distribution is essential for
effective wildfire management [1–3], ecosystem planning [4], and natural resource manage-
ment [5,6]. Fuel maps, which provide detailed spatial information about vegetation fuel
characteristics, play a crucial role in these domains. Traditionally, fuel mapping has relied
on ground-based field surveys and visual interpretation of aerial imagery. However, these
methods are time-consuming, costly, and limited in coverage. In recent years, remote sens-
ing technology has brought about significant advancements in addressing these limitations.
Multispectral and hyperspectral imagery, capable of capturing a wide range of spectral
information from the Earth’s surface, have emerged as powerful tools to enhance fuel map-
ping and related endeavors. Indeed, this spectral information can be used to discriminate
between different fuel types based on their unique spectral signatures [7–9]. Additionally,
machine learning algorithms, particularly those based on deep learning techniques, have
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demonstrated exceptional capabilities in extracting complex patterns and relationships
from large-scale remote sensing datasets. The combination of remote sensing and machine
learning offers numerous advantages for classification tasks providing valuable ancillary
information about Earth’s surface proprieties [10–13]. It enables the generation of fuel
maps over large areas in a timely and cost-effective manner, surpassing the limitations
of traditional field-based surveys. For instance, I. Chrysafis et al. [14] achieved enhanced
accuracy in fuel type classification by developing random forest classification models. Their
approach involved combining data from both passive and active sensors sourced from the
Sentinel family of satellites, in conjunction with topographic variables. This methodology
was applied to map fuel types in northeastern Greece. Additionally, Ensley-Field et al. [15]
developed a fuel model that considers the fuel load from the previous year and utilizes
productivity estimates derived from early spring remotely sensed data to predict fuel load
at specific locations. D’Este et al. [16] conducted a study on the estimation of fine dead fuel
load. They utilized field data, multi-source remote sensing data, and machine learning
techniques (Random Forest (RF) and Support Vector Machine (SVM)) to support decision-
making and regional wildfire risk management. The results showed that Random Forest
performed better in their analysis. Again, the study of Santos et al. [17] aims to improve the
vegetation representation of the fuel load and moisture content in Southern Portugal. Field
samples and satellite data from Sentinel-2 were used with the RF classifier for analysis.
In recent years, Aragoneses E. and Chuvieco E. [18] developed a methodology for fuel
mapping using Sentinel-3 images, vegetation continuity, and biomass data. They compared
the SVM and RF algorithms and found that SVM performed better in their cases. In [19],
R.U. Shaik et al. employed an automatic semi-supervised SVM approach to distinguish
between 18 different types of wildfire fuel using PRISMA hyperspectral imagery, resulting
in an overall accuracy of 87%. The study proposed by Maniatis Y. et al. [20] developed a fire
risk estimation model by using an SVM algorithm, validated by wildfires in 2020 and 2021.
Again, an SVM-based method is exploited by Garcia M. et al. [21] to classify fuel types
by using multispectral data and vertical information provided by the LiDAR, reaching
an overall accuracy of around 88%. In the work of Alipour M. et al. [22], a combined
approach of CNN and deep neural network is developed to provide accurate large-scale
fuel estimation. The study specifically explores the utilization of Convolutional Neural Net-
works for fuel mapping. Furthermore, it is worth noting that CNNs have shown promising
results in the context of wildfire detection [23–32] and vegetation mapping [33]. Thus,
the promising results achieved through the integration of remote sensing and machine
learning techniques provide strong motivation for continued exploration and advancement
in the field of fuel mapping. In this paper, the area of interest is Sardinia, which has gained
notoriety for the frequent prevalence of wildfires. Over the preceding decade, this island
has witnessed an annual average of 1008 fire incidents, constituting a significant 20% of
the overall national tally [34]. Several studies have already been conducted to generate
fuel maps in Sardinia; in [35], Bajocco et al. created a phenological fuel map for fire-prone
Sardinia using MODIS NDVI data from 2000 to 2012. It segments vegetation based on
seasonality, clusters phenological units, and assesses their fire risk. The findings suggest
that satellite data can accurately predict fire risk, offering a basis for fire distribution models
and biogeographic studies. Again, in [36], Oliveria et al. develop a framework to assess
wildfire vulnerability in Mediterranean Europe, using data such as population density,
fuel types, and protected areas to create multidimensional maps. It was applied in various
regions, with validation showing over 72% accuracy. In [37], Salis et al. assess fine-scale
wildfire hazard and exposure. Using the Minimum Travel Time algorithm and historical
data, the study identifies hot-spot areas and enhances regional understanding of wildfire
dynamics. In [38], Aragonese et al. introduce a European fuel classification system with
85 types in six categories, crucial for fire risk management. It explains the mapping process
at a 1 km resolution, achieving an 88% accuracy for primary fuel types.

In this paper, a novel method that combines remote sensing data and CNNs to discrim-
inate between fire behavior fuel models is presented. Specifically, we leverage Sentinel-2
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imagery and a CNN-based classification approach to accurately classify fuel types into
seven preliminary main classes: conifers, broadleaf, shrubs, grass, bare soil, urban areas,
and water bodies. By training the CNN on a large dataset of annotated Sentinel-2 imagery,
the model can learn complex patterns and relationships between spectral signatures and
fuel types. This enables precise discrimination between different fuel types, facilitating
more effective wildfire risk assessment and management. To refine the fuel mapping results,
further subclasses from the seven main classes are generated using Above-Ground Biomass
(AGB) and Bioclimatic (BC) maps. These additional maps provide valuable information
about vegetation density and moisture conditions, respectively. By incorporating this
information, the fuel type classification is aligned with the widely used Standard Scott
and Burgan fuel classification system [39]. This refinement step allows for a more detailed
and comprehensive assessment of fuel types, enhancing the accuracy and effectiveness
of fire detection and management efforts. The proposed approach has the potential to
support fire management agencies, policymakers, and researchers in their endeavors to
enhance fire prevention and mitigation, ultimately minimizing the impact of wildfires
on ecosystems and human populations. The latest advancements in fuel map generation
have been the focus of this research, demonstrating the effectiveness of CNN-based deep
learning techniques in generating precise fuel maps.

This paper is organized as follows. In Section 2, the dataset is described in terms of
areas of interest, multispectral Sentinel-2 imagery, ancillary maps (ABG and BC), and the
Standard Scott and Burgan fuel classification system. A description of the methodology is
provided in Section 3, where the CNN-based fuel map classification is described. The results
of the training of performance and accuracy are reported in Section 4, while Section 5 deals
with the discussion of the numerical findings. Finally, concluding remarks are provided in
Section 6.

2. Dataset Definition

This section includes a comprehensive exploration of the designated area of interest,
an introduction of the Sentinel-2 multispectral data, an in-depth analysis of the AGB and
BC maps, and a presentation of the Standard Scott and Burgan fuel type.

2.1. Area of Interest

As shown in Figure 1, the focus of this study centers around Sardinia, an island
positioned in the southern region of Italy and recognized as the second-largest landmass in
the Mediterranean Sea. The area is characterized by gusty winds, intermittently wet winters,
and scorching, sun-drenched summers. The temperature fluctuations are noteworthy,
ranging from 10 °C during the winter months of January and February to a balmy 24–25 °C
during the summer period encompassing July and August [40]. To assess the fuel map
under high-risk fire probability conditions and during periods of significantly increased
fuel load, a satellite image captured by the Sentinel-2 on 17 July 2022, during the summer
season, was selected for analysis. The particular area selected and situated east of Cagliari
consists of an expansive forested landscape that traverses undulating terrain, reaching
altitudes of approximately 800 m, encompassing a total land area of 32 km2.

The CNN training dataset was obtained through a visual inspection of the pseudo-
color image derived from the Sentinel-2 image of the region of interest. The selection
of each class was carried out manually with the assistance of the four land cover maps
shown in Figure 2. This set of four maps was employed as ground truth, each distinctly
representing specific classes: (a) Land Cover (LC) 2021, provided by ISPRA (“Istituto
Superiore per la Protezione e la Ricerca Ambientale”), represents the bio-physical cov-
erage of the Earth’s surface, including the Broadleaf, Conifer, Shrub, and Grass classes
(https://www.isprambiente.gov.it/it, accessed on 10 September 2023); (b) ESA World
Cover (WC) 2021 identifies seven classes representing different land surface types, in-
cluding Tree Cover, Shrubland, Grassland, and Cropland (https://worldcover2021.esa.int,
accessed on 10 September 2023); (c) the Forest Type product (FTY) is a part of the European

https://www.isprambiente.gov.it/it
https://worldcover2021.esa.int
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Environment Agency (EEA) Copernicus Land Monitoring Service, and it provides a forest
classification with three thematic classes: non-tree areas, broadleaved forest, and conif-
erous forest (https://land.copernicus.eu/pan-european/high-resolution-layers/forests/
forest-type-1/status-maps/forest-type-2018, accessed on 10 September 2023); (d) Grass-
land (GRA) 2018 is also developed under the EEA Copernicus Land Monitoring Ser-
vice, and it offers a basic land cover classification with two thematic classes: grass and
no grass (https://land.copernicus.eu/pan-european/high-resolution-layers/grassland/
status-maps/grassland-2018, accessed on 10 September 2023). Through meticulous cross-
referencing and diligent visual inspections of these maps, the training dataset was carefully
selected. The resulting dataset is reported in Table 1, which shows the number of labeled
pixels for each class.

Table 1. Number of labeled reference pixels for CNN training dataset.

Broadleaf Conifer Shrub Grass Bare Soil Urban Water

18,093 2890 2924 1242 112 14,309 91,452

38.90°

38.80°

38.70°

4.30° 4.40° 4.50°

Figure 1. Geolocation of area of interest (south of Sardinia).

One can observe that the higher frequency of the Water class compared to the others
can be attributed to its ease of identification and widespread presence within the examined
image. These favorable conditions facilitated the labeling process by allowing for a larger
number of instances to be accurately labeled. Conversely, the remaining classes exhibited
increasingly intricate discrimination challenges. Despite their substantial representations
in the image, a more extensive and demanding exploration was required, resulting in
smaller characteristic classes. This problem was particularly pronounced for the Bare
Grounds and Grass classes, where the combination of a limited amount of samples and
the inherent complexity of reducing their noise led to a deliberate preference for a smaller

https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/forest-type-2018
https://land.copernicus.eu/pan-european/high-resolution-layers/forests/forest-type-1/status-maps/forest-type-2018
https://land.copernicus.eu/pan-european/high-resolution-layers/grassland/status-maps/grassland-2018
https://land.copernicus.eu/pan-european/high-resolution-layers/grassland/status-maps/grassland-2018
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sample set. These specific classes often showed a propensity to coexist with other land
cover categories within the study area. For example, the class “Grass” was often associated
with shrubs and agricultural fields, necessitating the identification of well-manicured
gardens, although such cases proved relatively rare. In contrast, the class “Bare soil”
showed a limited presence within the study region and, when identified, often showed
contamination by grass or shrubs. In summary, the identification and isolation of these
classes posed a significant challenge because of their recurrent overlaps with other land
cover categories within the geographic boundaries of our study. However, these samples
remained unequivocally representative of the reference class despite their small numbers.

(a) (b)

(c) (d)
Figure 2. Reference maps used both to collect the dataset for training and to evaluate the performance
of the trained CNN. (a) Land Cover provided by ISPRA; (b) World Cover provided by ESA; (c) Forest
Type provided by Copernicus Project; (d) Grass Cover provided by Copernicus Project.

2.2. Sentinel Data

This section provides a description of the Sentinel multispectral data used for training
and validating the CNN model. In our study, spectral images from Sentinel-2 acquired
on 17 July 2022 were utilized as the primary dataset for training the CNN. The Sentinel-
2 satellite sensor captures images in multiple spectral bands, which provide valuable
information about Earth’s surface. The Sentinel-2 mission, launched by the European
Space Agency (ESA), aims to provide global and systematic observations of the Earth’s
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land and coastal areas. It consists of two identical satellites, Sentinel-2A and Sentinel-2B,
which together cover the entire Earth’s landmass every 5 days. The satellites acquire
high-resolution imagery in 13 spectral bands with spatial resolutions of 10, 20, and 60 m,
enabling the monitoring of land cover, vegetation dynamics, and environmental changes.
For our analysis, all of the sensor bands were resized to a spatial resolution of 10 m.
To further improve classification, vegetation indices were calculated from the Sentinel-2
bands and added to the spectrum dataset: the Normalized Difference Vegetation Index
(NDVI), Enhanced Vegetation Index (EVI), and Normalized Difference Water Index (NDWI),
which are reported in Table 2. These are widely used to assess vegetation health and
density [41–45].

Table 2. Index referred to Sentinel-2.

Index Description

NDVI =
B08 − B04
B08 + B04

Range between −1 (non-vegetated surfaces
such as bare soil or water) and +1 (high density

of healthy vegetation)

EVI =
2.5 · (B08 − B04)

B08 + 6 · B04 − 7.5 · B02 + 1.0

Range between −1 (non-vegetated surfaces or
stressed vegetation) and +1 (high density and

healthier vegetation)

NDWI =
B03 − B08
B03 + B08

Range between −1 (non-water surfaces) and +1
(high likelihood of water presence)

2.3. Ancillary Maps

This section provides a detailed overview and description of how the AGB and BC
ancillary maps are carried out, highlighting their crucial contribution to enhancing the
classification process. Indeed, our preliminary land cover classification relies on a limited
number of classes, which may not capture the fine-scale variability within a given region.
Thus, to address this limitation, an approach that utilizes additional data layers is exploited,
specifically AGB and BC maps, to generate a more detailed subclassification scheme from a
primary land cover classification obtained through CNN. Then, the final subclassification
is aligned with the widely accepted Scott and Burgan fuel classification system.

• The Above-Ground Biomass Map represents the total mass of living vegetation per
unit area, typically expressed in metric tons per hectare (unit: tons/ha). The AGB
map used in this study was obtained from the European Space Agency’s (ESA’s)
Climate Change Initiative (CCI) program [46], which is an ESA project to provide
long-term, high-quality climate data records to support climate change research and
related applications (the AGB map can be downloaded for free at this link: https:
//data.ceda.ac.uk/neodc/esacci/biomass/data/agb/maps, accessed on 25 May 2023).
The AGB map of ESA exhibits a continuous range of values; however, in this work,
the biomass values are normalized as percentages relative to the maximum value.
Subsequently, the AGB map is divided into three macrogroups based on the following
percentage thresholds: the first group includes all values below 40%, the second
group encompasses values between 40% and 70%, and the third group includes
values exceeding 70%. This is performed to facilitate analysis and align with the Scott
and Burgan fuel type classification. Indeed, this approach allowed us to establish a
direct correlation between the biomass percentages and the Scott and Burgan fuel type
classification, specifically the distinction between low, medium, and high forest density.
Furthermore, due to the initial resolution of the raster being 100 m, it was imperative to
rescale the map to a finer resolution of 10 m. This resampling process was performed
using QGIS software, ensuring the preservation of relevant spatial information and
maintaining data integrity throughout the analysis. The post-processed AGB map is

https://data.ceda.ac.uk/neodc/esacci/biomass/data/agb/maps
https://data.ceda.ac.uk/neodc/esacci/biomass/data/agb/maps
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shown on the left side of Figure 3, where the three main classes mentioned above are
reported. As expected from the RGB image in Figure 1, a predominant representation
of classes below the 70 percent threshold is observed, indicating a dense vegetation
cover exclusively in the most remote regions of the study area, specifically the peaks
located within the inner mountains. On the contrary, the remaining portion of the
region of interest predominantly consists of agricultural fields, grasses, or sparsely
forested areas. This finding emphasizes the crucial importance of incorporating the use
of this map, as it clearly reveals the pronounced disparity in land cover composition
and illuminates the unique ecological features present in the study area.

• The Climate Map is derived from the BC map of Sardinia that was developed through
a collaboration among several institutions:

– ARPAS—the Regional Agency for Environmental Protection of Sardinia (Agen-
zia Regionale per la Protezione dell’Ambiente della Sardegna)—Meteoclimatic
Department, Sassari: ARPAS is the regional agency responsible for environmen-
tal protection in Sardinia. Their Meteoclimatic Department contributed to data
collection.

– University of Sassari, Department of Natural and Territorial Sciences, Sassari:
the Department of Natural and Territorial Sciences at the University of Sassari
provided scientific expertise and knowledge in the field of environmental sciences.

– University of Basilicata, School of Agricultural, Forestry, Food, and Environmen-
tal Sciences, Potenza: The University of Basilicata contributed with their expertise
in the fields of agricultural, forestry, food, and environmental sciences.

Through the synergy among these institutions, it was possible to create the BC map of
Sardinia, an important tool for understanding and studying the climates and biodiver-
sity of the island [47]. The BC map represents the final stage of processing, achieved
through the overlay of multiple layers such as Macrobioclimates, Phytoclimatic Plans,
Ombrothermal Index, and Continentality Index. This intricate overlay generates
a new layer that encompasses diverse combinations of bioclimatic values for each
polygon. The resulting BC map comprises 43 classes of Isobioclimates, reflecting the
detailed classification approach employed to capture the intricate characteristics of
Sardinia’s terrain. These 43 classes span a range of climate levels, encompassing dry,
subhumid, humid, and hyperhumid conditions. Therefore, our focus lies on the subset
of classes among the 43 available, specifically those that belong to one of the four
predefined categories. By focusing on these, we generate a simplified map comprising
two distinct macrogroups, categorized as follows: (1) “Dry”, encompassing all the dry
classes, and (2) “Humid”, encompassing the remaining classes (subhumid, humid,
and hyperhumid). The climate map carried out with this approach is reported on the
right side of Figure 3.

By considering all the possible combinations between the two maps, six distinct classes
are obtained, as illustrated in Figure 4. These classes are categorized as follows: dry-low,
dry-medium, dry-high, humid-low, humid-medium, and humid-high. The integration
of these distinct classes provides a comprehensive representation of the varying levels of
dryness and density vegetation across the studied area. The resulting ancillary map is
called the Biomass Dryness map (BD).
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Figure 3. Ancillary maps: (on left side) the Above-Ground Biomass derived from ESACCI biomass
map and (on the right side) the climatic zone map derived from the Sardinia Bioclimatic map; see text.

Figure 4. Combination of Above-Ground Biomass and Dryness Map into 6 classes. Where the terms:
“Low”, “Med” and “High” stand for low, medium and high density. The resulting ancillary map is
called the Biomass Dryness map (BD).

2.4. Scott and Burgan Fuel Model

The standard fire behavior fuel models (SFBFMs) developed by Scott and Burgan [39]
provide a systematic and standardized approach to characterizing vegetation and fuel
properties, allowing fire analysts to assess and predict fire behavior under different fuel
conditions. The SFBFM system serves as a critical tool in fire management decision-
making processes. The SFBFM comprises a structured set of 45 distinct fuel models, out
of which 5 are non-burnable types, namely Urban, Snow/Ice, Agricultural, Open Water,
and Bare Ground. The remaining fuel models within the system are burnable and represent
various vegetation and fuel characteristics. These models are carefully designed to capture
the diverse range of fuel properties encountered in different fire-prone environments.
The SFBFM system provides a comprehensive representation of fuel characteristics by
considering factors such as fuel loadings, fuel particle sizes, and moisture content. Each
fuel model is assigned a unique numeric code and accompanied by a descriptive name,
facilitating standardized communication and data exchange among fire management
professionals; a schematic description is reported in Table 3.
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Table 3. Scott and Burgan fuel model scheme.

Index Description Index Description

GR1 Short, Sparse, Dry Climate Grass SH8 High Load, Humid Climate Shrub

GR2 Low Load, Dry Climate Grass SH9 Very High Load, Humid Climate Shrub

GR3 Low Load, Very Coarse, Humid Climate Grass TU1 Low Load Dry Climate Timber–Grass–Shrub

GR4 Moderate Load, Dry Climate Grass TU2 Moderate Load, Humid Climate Timber–Shrub

GR5 Low Load, Humid Climate Grass TU3 Moderate Load, Humid Climate Timber–Grass–Shrub

GR6 Moderate Load, Humid Climate Grass TU4 Dwarf Conifer With Understory

GR7 High Load, Dry Climate Grass TU5 Very High Load, Dry Climate Timber–Shrub

GR8 High Load, Very Coarse, Humid Climate Grass TL1 Low Load Compact Conifer Litter

GR9 Very High Load, Humid Climate Grass TL2 Low Load Broadleaf Litter

GS1 Low Load, Dry Climate Grass–Shrub TL3 Moderate Load Conifer Litter

GS2 Moderate Load, Dry Climate Grass–Shrub TL4 Small Downed logs

GS3 Moderate Load, Humid Climate Grass–Shrub TL5 High Load Conifer Litter

GS4 High Load, Humid Climate Grass–Shrub TL6 Moderate Load Broadleaf Litter

SH1 Low Load Dry Climate Shrub TL7 Large Downed Logs

SH2 Moderate Load Dry Climate Shrub TL8 Long-Needle Litter

SH3 Moderate Load, Humid Climate Shrub TL9 Very High Load Broadleaf Litter

SH4 Low Load, Humid Climate Timber–Shrub SB1 Low Load Activity Fuel

SH5 High Load, Dry Climate Shrub SB2 Moderate Load Activity Fuel or Low Load Blowdown

SH6 Low Load, Humid Climate Shrub SB3 High Load Activity Fuel or Moderate Load Blowdown

SH7 Very High Load, Dry Climate Shrub SB4 High Load Blowdown

3. Method

The presented approach involves a two-step process. Firstly, a CNN-based classifica-
tion is exploited to generate a primary land cover classification. This initial classification
scheme provides a broad characterization of the different land cover classes (reported in
Table 1) and exploits the Sentinel-2 multispectral images. Subsequently, the BD map is
integrated to refine the primary classification adapting them according to the classification
of fuel types defined by Scott and Burgan.

3.1. CNN Architecture

CNNs can be categorized into three main types: one-dimensional (1D), two-
dimensional (2D), and three-dimensional (3D) CNNs. The numerical designation cor-
responds to the kernel’s dimensions and complexity, which increase progressively. The 1D-
CNN, while lacking spatial context, is particularly well suited for tasks involving the
analysis of optical spectra or multitemporal data [48]. Therefore, the choice of 1D-CNNs for
this specific application is driven by their simplicity and suitability for spectrum analysis.

The refinement of the model’s design and hyperparameters involved an iterative
process, including trial-and-error techniques. This systematic refinement aimed to strike
a balance between complexity and efficiency while closely monitoring the results on the
validation dataset. Specifically, the inclusion of two hidden layers yielded the best results
in terms of accuracy and complexity. This choice represents a trade-off that offers the
optimal accuracy improvement, as adding a third layer did not significantly enhance
performance but substantially increased complexity. Conversely, using a single layer leads
to lower performance. Therefore, employing two layers appeared to be the most suitable
configuration for our specific case. The same principle applies to the selection of two fully
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connected layers. After careful consideration, it was determined that incorporating two
fully connected layers provided the best balance between model complexity and accuracy.

The primary objective of this systematic refinement was to achieve an optimal bal-
ance between model complexity and computational efficiency. Continuous monitoring of
the validation dataset results was a key part of this process. This fine-tuning led to the
derivation of the CNN structure depicted in Figure 5. The CNN’s input consists of an array
with a predetermined length of 16 elements, encompassing the 13 bands of the Sentinel-2
image as well as the 3 indices provided in Table 2. The first hidden layer of the model is
a convolutional layer with 224 filters and kernel size 3. The output of this layer is passed
through a max pooling layer that reduces the dimension of the feature map by a factor of 2.
The second layer of the model is another convolutional layer with 112 filters and kernel
size 3. Again, the output of this layer is passed through a max pooling layer that reduces
the dimension of the feature map by a factor of 2. The pooled feature map is flattened
in a vector of length 336 and passed through two fully connected layers. The first fully
connected layer has 224 units, and the second fully connected layer consists of 128 units.
Finally, the output is passed through a softmax activation function with 7 classes to produce
the predicted class probabilities.

Figure 5. Scheme of proposed CNN.

After each convolutional or fully connected layer, the Rectified Linear Unit (ReLU)
activation function is performed. This is a common so-called regularization technique
that refers to techniques used to prevent overfitting, where the network becomes too
specialized in the training data and performs poorly on new data. ReLU introduces non-
linearity by returning zero for negative input values, which helps mitigate overfitting by
promoting sparsity in neuron activation [33]. Another common regularization technique is
dropout, which involves randomly deactivating a fraction of neurons during each training
step, effectively reducing the network’s reliance on specific neurons or connections [49].
By also applying dropout to the fully connected layers, the neural network becomes more
resilient and better at handling unseen data, contributing to improved performance in
various machine learning tasks. The model was trained using the Adam optimizer and
the categorical cross-entropy loss function, with a maximum of 200 epochs and an automatic
early stopping criterion based on a patience parameter of 30 epochs.
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It is important to note that after performing the land cover classification using CNN,
the classes Bare Soil, Urban, and Water are not taken into account when generating the fuel
type map, as they fall directly into the non-burnable category. Therefore, from this point
on, only the other classes will be considered in the methodology.

3.2. CNN-Based Unmixing

The final layer of the CNN employs a softmax activation function with seven classes,
generating predicted class probabilities. This methodology exploits the inherent proba-
bilistic features of CNN results to effectively deal with pixel confusion in scenarios where
multiple classes coexist. Specifically, pixel confusion mainly results from pixels that include
mixed features. For instance, when a pixel contains both grass and shrubs, the CNN output
may exhibit a 50/50 balanced probability distribution. Importantly, this distribution reflects
the presence of both classes rather than being an error in the CNN prediction. Leveraging
this concept, multiple class assignments can be intelligently carried out from CNN predic-
tion. In particular, the main objective is to identify the classes related to the GS and TU
fuel models of the Scott and Burgan fuel model, specifically targeting the Grass–Shrub,
Timber–Shrub, and Timber–Grass–Shrub classes (in this work, the term “Timber” includes
both the Broadleaf and Coniferous classes).

In the practical implementation, following the prediction of the probability for each
pixel within the area of interest, a subsequent pixel-level analysis is conducted. The follow-
ing steps describe the algorithm that is performed for each pixel prediction:

1. If the highest probability is above 60%, assign the pixel to the correspondent class.
2. If the highest probability is below 60%, the second highest probability is above 20%,

and the third highest probability is below 20%, assign the pixel to the two classes
corresponding to the first two highest probabilities.

3. If the highest probability is below 60%, and both the second and the third highest
probabilities are above 20%, assign the pixel to the three classes corresponding to the
first three highest probabilities.

4. If the highest probability is below 60% and all other probabilities are below 20%,
assign the pixel only to the highest probabilities.

The classes obtained after applying CNN-based classification and unmixing are as
follows: Broadleaf, Conifer, Shrub, Grass, Grass–Shrub, Timber–Shrub (Broadleaf–Shrub
and Conifer–Shrub), and Timber–Shrub–Grass (Broadleaf–Shrub–Grass and Conifer–Shrub-
Grass).

3.3. CNN Test on Sardinia

While the training and validation phases were conducted using the dataset obtained
through visual inspection (see Table 1), the testing process involved the entire image.
During the testing process, the entire image was utilized, while predictions were compared
and tested against external source maps, recognized as ground truth, to assess the model’s
reliability in classifying pixels beyond the original dataset. This was achieved by leveraging
the four reference maps depicted in Figure 2.

3.4. Fuel Map Adaptation

To enhance the level of detail in the fuel map, a cross-referencing process was con-
ducted between the land cover classification obtained through the previously described
procedure and the BD map. This process resulted in a total of 42 classes, i.e., the initial 7
classes from the classification were combined with the 6 classes from the BD map. Subse-
quently, these 42 classes were associated with the corresponding fuel models from the Scott
and Burgan system, as reported in Table 4.
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Table 4. Adaptation of the fuel types to the Scott and Burgan system, with the symbols BL, CF, SH,
GR, GS, TS, and TSG representing Broadleaf, Conifer, Shrub, Grass, Grass–Shrub, Timber–Shrub,
and Timber–Shrub–Grass classes, respectively.

Dry-Low Dry-Med Dry-High Hum-Low Hum-Med Hum-High

BL TL2 TL6 TL9 TL2 TL6 TL9

CF TL1 TL3 TL5 TL1 TL3 TL5

SH SH2 SH5 SH7 SH6 SH3 SH9

GR GR2 GR4 GR7 GR5 GR6 GR9

GS GS1 GS2 SH7 GS3 GS4 SH8

TS TU1 TU1 TU5 SH4 TU2 TU2

TSG TU1 TU1 TU5 SH4 TU3 TU3

4. Results

This section presents the performances of the CNN model in terms of training accuracy,
test accuracy, and comparisons with RF and SVM, as well as the final classification of the
fuel map aligned with the Scott and Burgan fuel model.

4.1. Performances of CNN Classification

The training and validating phases utilized the dataset derived from visual inspection,
while the test involved the entire image and cross-referencing with external source maps
as ground truth, ensuring a robust assessment of the model’s performance. Moreover,
a comparison is conducted with RF and SVM to underscore the potential of the CNN-based
fuel map generator.

4.1.1. Model Accuracy

In the practical implementation, the dataset reported in Table 1 was divided into train
and validation subsets, with split ratios of 70% and 30%, respectively. The CNN model
was implemented in Python using TensorFlow [50] on a personal computer equipped with
12 GB of RAM, an Intel Core i7-12700H 2.70 GHz CPU from the 12th Generation, and an
NVIDIA GeForce RTX 3080 Ti GPU with 16 GB of dedicated RAM (manufactured by Intel
and NVIDIA Corporation, Santa Clara, CA, USA). The results from the CNN model’s
training, with precision (0.99), recall (0.99), and F1 (0.99) scores, indicate an exceptionally
high level of performance. This demonstrates that the network has been trained effectively
to accurately identify pixels. In Figure 6, one can appreciate the segmentation results over
the region of interest on the left side, and the confusion matrix on the right side. One can
notice that the Not Burnable classes (Bare Soil, Urban, and Water) are perfectly recognized,
while a slight degree of confusion is observed among the other classes due to increasing
spectral similarity.

4.1.2. CNN Test and Comparative Analysis with RF and SVM

The CNN’s segmentation of the entire area of interest (shown on the left side of
Figure 6) is cross-referenced with the four ground truth maps (shown in Figure 2) to
evaluate the CNN model’s ability to accurately classify previously unseen pixels. The same
evaluation is applied to both the RF and SVM models for the purpose of comparing the
performances. This method enabled a thorough evaluation of the CNN’s performance
across diverse class categories, offering valuable insights into its generalization capabilities
and adaptability on previously unobserved pixels.
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Figure 6. Segmentation and confusion matrix results.

The RF model was implemented using the “RandomForestRegressor” function from
the “catboost” library in Python [51]. The model was set with 500 boosting iterations and
a maximum tree depth of five to avoid overfitting. The ’MultiRMSE’ loss function was
employed for optimization, and a learning rate of 0.1 was utilized to control the step size
during training. The computations were performed on a GPU, and early stopping with
500 rounds was applied to prevent overfitting.

The SVM model was implemented using the “SVC” function from the “scikit-learn”
library in Python [52]. For the classification task, the radial basis function (“rbf”) was
chosen as the kernel function. To ensure repeatability, a random seed of 0 (randomstate = 0)
was set. Additionally, the model was configured to provide class probabilities using the
probability parameter set to True. A gamma value of 100 was employed for model tuning,
which influences the flexibility of the decision boundary.

The results presented in Table 5 show the training performances of all three models in
terms of accuracy, recall, and F1 scores. The results suggest that all three models exhibit
similar training performances, showing only minor variations.

Table 5. Comparison in terms of accuracy, recall, and F1 scores.

Accuracy Recall F1 Score

CNN 0.99% 0.99% 0.99%
RF 0.99% 0.99% 0.98%

SVM 0.99% 0.98% 0.98%

In Table 6, the test accuracy of each of the Burnable classes (Broadleaf, Conifer, Shrub,
and Grass) is reported for all three models. The results, once again, demonstrate relatively
similar performances among the models. Notably, all of the models achieve the impressive
accuracy of 99% for the Broadleaf class, indicating exceptional ability to accurately classify
the majority of pixels belonging to this category. However, the CNN model demonstrates a
notable advantage, particularly in the classification of Coniferous land cover. The CNN
model achieves an accuracy of 0.78%, while RF and SVM achieve accuracies of 0.70% and
0.60%, respectively.

Similar observations can be made for the Grass class, although the differences are less
pronounced. In this case, the CNN model outperforms the others with an accuracy of 84%,
while RF and SVM achieve accuracies of 81% and 79%, respectively.

Thus, despite the similarities in overall performance, the advantage of the CNN model
in classifying Coniferous and Grass regions highlights its potential as a more adept solution
for tasks that require discerning subtle and complex patterns in land cover data. These
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findings further emphasize the CNN’s proficiency in image analysis and applicability in
remote sensing.

Table 6. Comparison in terms of accuracy for Broadleaf, Conifer, Shrub and Grass classes.

Broadleaf Conifer Shrub Grass

CNN 0.99% 0.79% 0.76% 0.84%
RF 0.99% 0.70% 0.77% 0.81%

SVM 0.99% 0.60% 0.78% 0.79%

4.2. Fuel Map Generation

By utilizing a CNN-based classification approach with Sentinel-2 imagery, the fuel
types are precisely categorized into seven primary classes. Subsequently, subclasses are
derived by integrating the BD map, which effectively aligns the classification with the
Scott and Burgan fuel system. Considering the high accuracy observed in the proposed
classification, the resulting fuel map is expected to exhibit similar levels of accuracy. This
map, reported in Figure 7, is a product of the integration and cross-referencing of these
complementary maps, ensuring a robust and reliable classification outcome.

Figure 7. Fuel map adaptation to Scott and Burgan.
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5. Discussion

This research was driven by the need to advance land cover classification method-
ologies, fuel mapping techniques, and remote sensing applications. In response to this
demand, the research introduces a CNN-based fuel map generator utilizing Sentinel-2A
satellite images.

The presented results provide valuable insights into the performance and potential
applications of the CNN model for land cover classification and fuel map generation.
The CNN model demonstrates exceptional accuracy (0.99%), recall (0.99%), and F1 scores
(0.99%), indicating its proficiency in accurately identifying pixels. One can notice that
the Not Burnable classes (Bare Soil, Urban, and Water) are accurately recognized by the
model, as these classes possess distinct spectral patterns that facilitate reliable identifica-
tion. However, there is a slight degree of confusion observed among the other classes,
mainly attributed to the increasing spectral similarity, which makes accurate classification
more challenging. It is worth mentioning an intriguing observation, although somewhat
unrelated to the main focus, where the model successfully classifies some vessels located
off the East Coast as “urban”, even when they were barely visible to the naked eye. This
demonstration of the model’s overall capability and accuracy is noteworthy and piques
further interest in its potential applications. This ability is also exhibited by the RF and
SVM classifiers, highlighting the robustness and potential of NN models in advancing land
cover mapping.

In the testing phase, the CNN model’s robustness is evaluated by comparing its
predictions against external source maps as ground truth. The testing results demonstrate
high accuracy, particularly in distinguishing the Broadleaf (0.99%) and Grass (0.84%) classes.
The model’s ability to accurately classify these classes can significantly contribute to land
cover mapping and monitoring applications. However, the slightly lower accuracies for
the Shrub (0.76%) and Conifer (0.78%) classes suggest that further refinement or data
augmentation may be beneficial for improving their performance. It is worth noting that
the variations in accuracy across classes could be due to the inherent differences in features
and characteristics among these land cover categories. Additionally, other factors, such as
data imbalance, the availability of training samples, and class complexity, might influence
the results. Overall, these results suggest that the CNN model performs well in classifying
land cover types, with particularly outstanding performance for the Broadleaf class. These
high validation accuracy values provide evidence of the model’s ability to generalize well
beyond the original training dataset. This generalization capability is crucial for real-world
applications, where the model is expected to accurately classify land cover in diverse and
previously unseen regions.

The comparison with the RF and SVM models reveals that all three models exhibit
similar performances with minor variations. In particular, the CNN model shows a slight
advantage in classifying Coniferous land cover, which underscores its potential in discern-
ing subtle and complex patterns in land cover data. The CNN achieves an impressive
accuracy of 0.78 for Coniferous regions, while the RF model falls short with an accuracy of
0.70 for the same category.

The fuel map generation process provides a comprehensive representation of fuel
characteristics by aligning the land cover classification with the well-known Scott and
Burgan fuel system, effectively categorizing fuel types into seven primary classes and
derived subclasses. This detailed fuel map exhibits high accuracy, which is crucial for fire
risk assessment and management efforts. This accurate and detailed fuel map serves as a
valuable resource for decision-makers involved in land management, fire risk assessment,
and various other domains. It empowers authorities, stakeholders, and land managers
to make well-informed decisions regarding wildfire prevention strategies, resource allo-
cation, and emergency response planning. Moreover, the fuel map’s applications extend
beyond fire management. It supports ecosystem restoration, habitat conservation, and re-
source management initiatives, highlighting its role in enhancing wildfire management
and promoting ecological resilience.
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Furthermore, in contrast to previous methods, this study introduces significant ad-
vancements. Firstly, it generates a high-resolution map with a granularity of 10 m, a substan-
tial improvement compared to the 1-kilometer resolution in [38]. Moreover, it streamlines
the process by relying on readily available and relatively stable external maps, ABG and
BC, thereby reducing the need for extensive data acquisition campaigns. Additionally,
in contrast to the approach detailed in [36], the results of the proposed method seamlessly
integrate with the established fuel model classification by Scott and Burgan, making it a
valuable, efficient, and accurate tool for generating fuel maps.

The method’s limitation could be its reliance on external biomass and climate maps as
fundamental inputs for generating the final fuel map classification. Moreover, the availabil-
ity of such maps may be limited across different regions. The availability of these maps
may vary across different regions and could pose challenges for areas where such data
are scarce or unavailable. To address this, future research could focus on developing an
autonomous AGB estimation system solely based on Sentinel-2A spectral images, elimi-
nating the need for external maps. However, this poses a complex challenge, requiring a
deep understanding of spectral signals and precise model calibration and validation with
ground reference data. Thus, the AGB map provided by ESA can serve as the ground
reference label for training the CNN. This method could offer promising opportunities
but also faces some potential limitations. For instance, the accuracy of the ESA AGB map
itself is crucial, such as the spatial and temporal alignment of ESA’s AGBs with Sentinel-2A
images, as any errors or uncertainties in this map can directly impact the reliability of
the CNN’s predictions. Moreover, the limited coverage of the ESA AGB map may pose
challenges, particularly in remote or inaccessible areas, where biomass estimates may be
unavailable. It is essential to ensure a comprehensive and representative training dataset to
account for different land cover types and biomass levels to avoid biases in the model.

In conclusion, while the proposed CNN-based method using the ESA AGB map as a
label offers exciting possibilities for autonomous fuel mapping, it is crucial to address the
potential limitations mentioned above to ensure the method’s accuracy and practicality in
real-world applications. By mitigating these challenges, the proposed approach can make
valuable contributions to land cover classification and biomass estimation, supporting
various fields such as environmental management, disaster response, and resource conser-
vation.

6. Conclusions

In conclusion, recent years have demonstrated the fundamental role of machine
learning in harnessing the enormous volume of data generated daily by satellite remote
sensing. The motivation for this paper stems from the research conducted within the
FirEUrisk project, driven by the desire to both solidify the foundations of these novel
techniques and provide a functional open-source tool for fuel type mapping. This work
has shed light on how the primary machine learning approaches are indispensable tools
in this context. Notably, the CNN’s superior performance, especially in distinguishing
between the Broadleaf and Conifer classes, underscores its potential for land cover mapping
and monitoring tasks. Furthermore, aligning our fuel type classification with the widely
recognized Scott and Burgan (2005) standard is a pivotal step in harmonizing our efforts
with established wildfire management protocols. This integration ensures compatibility
and simplifies the adoption of this innovative approach into current fire management
practices. This tool paves the way for a more efficient and automated analysis of large-scale
satellite imagery, benefiting various fields such as agriculture, forestry, disaster monitoring,
and environmental studies. The results of this study could be expanded in future works
that consider both bigger and more geographically diverse training datasets and more
complex neural networks capable of carrying out an ABG prediction.
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