
Citation: Wang, W.; Liang, R.; Qi, Y.;

Cui, X.; Liu, J.; Xue, K. Study on the

Prediction Model of Coal

Spontaneous Combustion Limit

Parameters and Its Application. Fire

2023, 6, 381. https://doi.org/

10.3390/fire6100381

Academic Editor: Thomas H. Fletcher

Received: 29 August 2023

Revised: 21 September 2023

Accepted: 3 October 2023

Published: 7 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

fire

Article

Study on the Prediction Model of Coal Spontaneous
Combustion Limit Parameters and Its Application
Wei Wang 1,†, Ran Liang 1,*,†, Yun Qi 1,2,*,†, Xinchao Cui 1, Jiao Liu 2,3 and Kailong Xue 1

1 School of Coal Engineering, Shanxi Datong University, Datong 037000, China;
wangwei@sxdtdx.edu.cn (W.W.); 220857002125@sxdtdx.edu.cn (X.C.); sdtu-faker@sxdtdx.edu.cn (K.X.)

2 China Safety Science Journal Editorial Department, China Occupational Safety and Health Association,
Beijing 100011, China; liujiao@cosha.org.cn

3 School of Emergency Management and Safety Engineering, China University of Mining & Technology,
Beijing 100083, China

* Correspondence: 210857002131@sxdtdx.edu.cn (R.L.); qiyun_sx@sxdtdx.edu.cn (Y.Q.)
† These authors contributed equally to this work.

Abstract: The limit parameters of coal spontaneous combustion are important indicators for deter-
mining the risk of spontaneous combustion in coal seams. By analyzing the limit parameters of coal
spontaneous combustion, the dangerous areas of coal spontaneous combustion can be determined,
and corresponding measures can be taken to avoid the occurrence of fires. In order to accurately pre-
dict the limit parameters of coal spontaneous combustion, the prediction model of coal spontaneous
combustion limit parameters based on GA-SVM was constructed by coupling genetic algorithm (GA)
and support vector machine (SVM). Meanwhile, the GA and particle swarm optimization algorithm
(PSO) were used to optimize the back propagation neural network (BPNN) to construct the GA-BPNN
and PSO-BPNN prediction models, respectively. To predict the intensity of air leakage of the upper
limit of coal spontaneous combustion in the goaf, the prediction results of the models were compared
and analyzed using MAE, MAPE, RMSE, and R2 as the prediction performance evaluation indexes.
The results show that the MAE of the GA-SVM model, the PSO-BPNN model, and the GA-BPNN
model are 0.0960, 0.1086, and 0.1309, respectively; the MAPE is 2.46%, 3.11%, and 3.69%, respectively;
the RMSE is 0.1180, 0.1789, and 0.2212, respectively; and the R2 is 0.9921, 0.9818, and 0.9722. The
prediction results of the GA-SVM model are the most optimal in four evaluation indexes, followed
by the PSO-BPNN and the GA-BPNN models. Applying each model to the prediction of minimum
residual coal thickness in the goaf of a coal mine in Shanxi, the GA-SVM model has higher accuracy,
which further verifies the universality and stability of the model and its suitability for the prediction
of coal spontaneous combustion limit parameters.

Keywords: coal spontaneous combustion; limit parameters; genetic algorithm (GA); support vector
machine (SVM); BP neural network; prediction model

1. Introduction

Coal spontaneous combustion is a coal mine endogenous fire affected by multiple
factors. Such fires constitute a large proportion of mine fires and seriously restrict the high
productivity, high efficiency, and safe production of mines [1,2]. Since the spontaneous
combustion of coal requires meeting certain conditions, the quantitative indicators are
applied to describe the coal spontaneous combustion conditions [3]. When the oxidized
exothermicity of coal itself is equal to the heat dissipation intensity of the surrounding
environment, it may cause spontaneous combustion of coal, which is the limiting condition
for triggering spontaneous combustion of coal, also known as the limiting parameter of
coal spontaneous combustion [4,5], mainly including the lower limit oxygen concentration,
the upper limit air leakage intensity, and the minimum floating coal thickness [6]. Due
to the complicated influencing factors of coal spontaneous combustion limit parameters,
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the relationship between the limit parameters and the influencing factors is characterized
by nonlinearity. Therefore, scientific and effective methods are used to predict the limit
parameters of the spontaneous combustion of coal, and, then, accurately determine the
dangerous zone of the occurrence of spontaneous combustion of coal, which has important
significance for coal mine fire prevention and suppression work.

In recent years, related scholars have carried out much research around coal spon-
taneous combustion limit parameters [7,8]. Xu Jingcai et al. [9] studied the relationship
between the spontaneous combustion limit parameters of coal and their influencing fac-
tors, and proposed to predict the spontaneous combustion limit parameters of coal by
using a BP neural network. Deng Jun et al. [10] studied the exothermicity and oxygen
consumption rate of coal samples from mines in the east Sichuan region on the basis of
programmed heating experiments, and analyzed the gas products of each coal sample
at different temperatures as well as the change rule of the spontaneous combustion limit
parameters. Meng Qian et al. [11] applied the support vector machine to the prediction of
the spontaneous combustion limit parameters of coal and made contrastive analysis with
the neural network model, which can result in a high prediction accuracy with a limited
number of samples. Wang C et al. [12] made contrastive analysis for the spontaneous
combustion limit parameters of coal with different degrees of metamorphism through the
spontaneous combustion programmed heating experiment, and concluded the change rule
of the limit parameters. Zhang Y et al. [13] studied the effect of sulfur content in coal on
the spontaneous combustion characteristics and the limiting parameters of coal. Zhang
Fei [14] analyzed the spontaneous combustion and characteristics of oxidation and the limit
parameters of No. 4 seam coal in the Xiagou mine with the help of the coal spontaneous
combustion programmed heating experiment, and diagnosed the spontaneous combustion
hazardous area of the coal left at a work face in the upper and lower goaf during the
final mining period. Wang Yilei et al. [15] tested coal samples from a high geothermal
mine by a large coal spontaneous combustion experimental device to determine the coal
spontaneous combustion limiting parameters, and the natural combustion period as well
as the generation rules of oxidization-characteristic gases in high geothermal mines at
different temperatures. Zhang Xinhai et al. [16] calculated coal spontaneous combustion
limiting parameters by the analytical solution method, which was verified by practical
application in the Kaida coal mine. Wang Jianli et al. [17] studied the effect of sulfur con-
tent in coal on the spontaneous combustion characteristics and the limiting parameters of
coal. Zhou Xihua et al. [18] investigated the changes of lignite spontaneous combustion
limiting parameters under different air supply conditions by analysing the temperature
programmed experiments. However, the above studies mainly focused on analysis and
verification of the coal spontaneous combustion limiting parameters through experimental
tests or single prediction models, while few scholars conducted studies utilising combined
prediction models. In order to reduce the errors by simplified calculation and avoid the
defects of the single prediction model because of the complexity of the influencing factors
of coal spontaneous combustion limiting parameters, it is necessary to establish the predic-
tion model of coal spontaneous combustion limiting parameters by combining machine
learning methods to improve prediction accuracy, which could provide better guidance for
the prevention and control of coal spontaneous combustion in the goaf.

In view of this, based on the analysis of the influencing factors of coal spontaneous
combustion limit parameters by the previous authors, the author intends to combine the
genetic algorithm (GA) and use of the support vector machine (SVM) into the prediction of
coal spontaneous combustion limit parameters to construct a GA-SVM prediction model.
In order to verify the accuracy of the prediction model, the GA and particle swarm opti-
mization (PSO) algorithms were used to improve the BP neural network to establish the
GA-BPNN model and PSO-BPNN model, respectively. These models were applied to the
prediction of coal spontaneous combustion limit parameters in a coal mine in Shanxi to get
a better prediction model by analyzing these prediction results, with a view to providing a
theoretical basis for the prevention and management of the natural ignition of coal.
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2. Optimized BP Neural Network Model
2.1. Sample Data

Taking the upper limit air leakage intensity of coal spontaneous combustion limit
parameters as an example, the prediction model of coal spontaneous combustion limit
parameters was constructed. There are five parameters in the input layer in the prediction
model, namely, exothermic strength, coal body temperature, measured oxygen volume
fraction, distance of the goaf from the working face, and thickness of the remaining coal;
the output layer is the upper limit air leakage strength. The data from the reference [9] are
selected as samples for prediction, the training samples are shown in Table 1, and the test
samples are shown in Table 2.

Table 1. Training sample data.

No. Distance/m Oxygen
Concentration/%

Coal
Temperature/◦C

Heat Liberation
Intensity

/105 J·s−1·cm−3

Thickness of
Residual
Coal/m

Upper Limit Air Leakage
Intensity/cm3·cm−2·s−1

1 1.7 20.60 19.60 0.87 0.7 0.70
2 2.5 20.04 20.30 1.04 0.6 0.83
3 4.7 19.88 22.00 1.27 0.5 1.08
4 7.6 19.03 22.50 1.34 0.4 1.56
5 16.3 18.21 24.20 1.43 0.2 2.35
6 20.5 17.99 25.60 1.51 0.3 2.58
7 25.2 17.60 26.70 1.58 0.4 2.88
8 29.1 17.36 26.80 1.58 0.3 3.17
9 36.4 16.90 27.50 1.62 0.2 3.43

10 43.9 15.74 28.30 1.67 0.3 3.87
11 44.3 15.68 28.60 1.69 0.4 3.92
12 47.0 14.91 28.10 1.66 0.5 4.12
13 53.7 13.77 25.13 1.49 0.7 5.60
14 56.4 13.09 24.80 1.47 0.6 5.77
15 59.0 12.44 24.30 1.43 0.5 6.00
16 61.2 11.93 23.60 1.40 0.4 6.53
17 70.6 10.78 24.67 1.46 0.2 5.39
18 74.3 9.81 26.30 1.55 0.2 4.18
19 78.0 8.85 27.80 1.61 0.3 3.76
20 89.2 7.14 30.40 1.79 0.3 2.89

Table 2. Test sample data.

No. Distance/m Oxygen
Concentration/%

Coal
Temperature/◦C

Heat Liberation
Intensity

/105 J·s−1·cm−3

Thickness of
Residual
Coal/m

Upper Limit Air
Leakage

Intensity/cm3·cm−2·s−1

21 11.0 18.59 23.40 1.39 0.3 1.88
22 39.7 16.50 27.90 1.64 0.2 3.52
23 50.4 14.36 28.20 1.66 0.6 4.24
24 66.8 11.18 24.20 1.43 0.3 6.01
25 83.5 7.97 28.10 1.66 0.4 3.76

2.2. BP Neural Network

The BP neural network is one of the most widely used methods in artificial neural
network models and algorithms. The BP neural network is a feed-forward multi-layer
neural network with the main features being back propagation of the error and transmission
forward of the signal [19]. The main idea of the BP neural network algorithm is to import
the original sample data into the BP neural network prediction model, then the actual
output of the BP neural network is obtained through arithmetic. When the relative error
between the actual output and the desired output does not meet the requirements of the
error accuracy, the error is propagated in the reverse direction to promptly adjust the
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weights and thresholds in the BP neural network model. Then, the original sample data are
reintroduced for another calculation, which could reduce the relative errors between the
actual output and the desired output to meet the requirements of error accuracy.

The BP neural network model consists of three parts, namely, input layer, hidden layer,
and output layer. The mathematical expression is the following:

hj = f (xj) =
1

1 + exp(−∑
p
j=1 ljbj + ε)

, j = 1, 2, . . . , p (1)

where hj is the output value, f (x) is the activation function, xj is the input value, lj is the
connection weights of the hidden nodes, bj is the threshold between the hidden nodes, ε is
the threshold of the hidden nodes, and p is the number of hidden nodes.

A coal spontaneous combustion limit parameters prediction model was constructed
based on the BP neural network in the reference [9], but the BP neural network has some
defects of non-convergence, slow convergence, and output results that easily fall into
the local minima during the training process. In order to predict the coal spontaneous
combustion limit parameters more accurately and avoid the shortcomings of the BP neural
network, the GA and PSO, respectively, are introduced to optimize the BP neural network.

2.3. GA-BP Neural Network Model

The genetic algorithm (GA) is a parallel and random search optimization algorithm
which simulates the genetic mechanism of nature and biological evolution. Based on
the principles of selection, crossover, and mutation of genetics, the initial weights and
thresholds of BP neural networks are improved by the GA so that the optimized BP
neural network can better predict the output values. The elements of the BP neural
network optimized by GA include cluster initialization, fitness function, selection operation,
crossover operation, and mutation operation [20,21]. The genetic algorithm mainly has the
following steps:

(1) Coding. Real coding is used to prevent falling into the local optimum with the mean
square error as the evaluation index and the inverse of the mean square error 1/EMSE
as the fitness function f. The smaller the loss is, the higher the fitness is, i.e.,

f = 1/EMSE = 1/
(

1
N ∑(O− T)2

)
(2)

where O is the model desired output, T is the mean, and N is the number of input
samples.

(2) Generating initial population. N individuals that are randomly generated form a
population. The GA starts evolving continuously based on the initial point.

(3) Selecting operator. The purpose of the selection operation is to pick the best individu-
als which can reproduce their offspring as parents, reflecting the idea of survival of
the fittest. The probability of individual selection is based on a method of roulette
wheel, that is, individuals that account for a larger proportion of fitness have a higher
chance of being selected.

Pk = fk/
N

∑
j=1

fi (3)

where k represents individuals in the population.
(4) Crossover operator. Crossover operation is a major genetic method of genetic algo-

rithm, reflecting the idea of information exchange. The real coding method is adopted
in this paper. The method of crossover is to take a (0, 1) random number m and a
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certain position (j) in the two chromosomes (ak and al) for crossover, combining to get
two new chromosomes, i.e., {

a′kj = akj(1−m) + al jm
a′l j = al j(1−m) + akjm

(4)

(5) Mutation operator. Mutation is the process of mutating selected individuals to form
new individuals on the basis of a particular probability, which is to maintain the
diversity of the population. Based on the random probability r (r ∈ (0, 1)), the yth
gene of the xth chromosome is selected to mutate and the mutated chromosome a′xy
is obtained with the expression:

a′xy =

{
axy +

(
axy − amax

)
f (t) r > 0.5

axy +
(
amin − axy

)
f (t) r ≤ 0.5

(5)

where amax and amin are the upper and lower bounds of gene axy, respectively, and
f (t) = r1(1 − t/Gmax), where t is the current iteration number, Gmax is the maximum
evolution number, and r1 is a random number of (0, 1).

The GA-BPNN prediction model was constructed by utilising the MATLAB R2021b
software, setting the number of neurons in the hidden layer to 20, the number of genetic
generations to 50, the population to 5, the maximum number of iterations to 1000, the
learning rate to 0.01, and the error threshold to 0.0000001. The specific parameter settings
are shown in Table 3. The iteration process of the GA-BP neural network is shown in
Figure 1, and when the number of iterations reaches 100, the fitting rate reaches 0.9422.
The results from the GA-BPNN prediction model are shown in Table 4. As can be seen
from Table 4, the relative error between the predicted and true values of the GA-BPNN
modeling operations ranged from 0.03% to 12.88%, with a difference of 12.85% and an
average relative error of 3.69%, while the absolute error ranged from 0.0012 to 0.4842, with
a difference of 0.4830 and an average absolute error of 0.1309. The absolute error is the
absolute value of the difference between the true value and the predicted value.

Table 3. Parameter setting of the GA-BPNN model.

Parameter Specific Values

Genetic generations 50
Population size 5

Maximum number of iterations 1000
Learning rate 0.01

Error threshold 0.0000001

Table 4. Comparison between real values and predicted values of the GA-BPNN model.

No. True Values
/cm3·cm−2·s−1

Prediction Values
/cm3·cm−2·s−1 Absolute Error Relative

Error/%

1 1.88 1.9433 0.0633 3.37
2 3.52 3.5554 0.0354 1.00
3 4.24 4.2388 0.0012 0.03
4 6.01 5.9394 0.0706 1.17
5 3.76 4.2442 0.4842 12.88
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2.4. The PSO-BP Neural Network Model

The particle swarm optimization algorithm (PSO), also known as the particle swarm
algorithm, is a random search algorithm based on observations of the study of the flock for-
aging behavior of birds [22]. The algorithm adopts the concepts of “group” and “evolution”
with the characteristics of information sharing and co-evolution among groups. The basic
idea of the PSO is that the solution of each problem is considered as the position of each
particle and the particle swarm composed of all the particles searches in a D-dimensional
space. These particles are constantly correcting their positions to realize the purpose of
optimization.

In PSO, the set of particles is xi = (xi1, xi2, . . . , xid) and the set of velocities is vi = (vi1,
vi2, . . . , vid), where v is the velocity of each particle 1 ≤ d ≤ n. The global and individual
extremes are gBesti and pBesti at iteration t. The equation of particle velocity and position is
updated as follows:

vi(t+1) = ωvi(t) + c1r1

(
pBesti − xi(t)

)
+ c2r2

(
gBesti − xi(t)

)
(6)

xi(t+1) = xi(t) + v1(t+1) (7)

where t is the number of current iterations, r1 and r2 are numbers randomly distributed in
the interval [0, 1], respectively, c1 and c2 are the learning factors, and inertia weight ω is a
parameter that balances the global search ability and local search ability of the population.
Part 1 in the Formula (6) is the momentum part that makes it move by inertia based
on its own velocity; part 2 reflects the thinking and evolutionary ability of the particles
themselves; and part 3 represents the information sharing and mutual collaboration among
the particles.

The PSO-BPNN prediction model was constructed by utilising the MATLAB software,
setting the number of neurons in the hidden layer to 20, the maximum number of iterations
to 1000, the learning rate to 0.01, the error threshold to 0.0000001, the learning factors to 2,
the population to 5, and the number of population updates to 30. The specific parameter
settings are shown in Table 5. The iteration process of the PSO-BP neural network is shown
in Figure 2, and when the number of iterations reaches 100, the fitting rate reaches 0.9543.
The comparison between the predicted and true values obtained from the PSO-BPNN
model is shown in Table 6. As shown in Table 6, the relative error between the predicted
value and the true value is between 0.10% and 10.40%, with a difference of 10.30% and
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an average relative error of 3.11%; its absolute error is between 0.0059 and 0.3911, with a
difference of 0.3852 and an average absolute error of 0.1086. The absolute error, as shown
in Table 6, is the absolute value of the difference between the true value and the predicted
value.
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Table 5. Parameter setting of the PSO-BPNN model.

Parameter Specific Values

Population size 5
Maximum number of iterations 1000

Learning rate 0.01
Error threshold 0.0000001
Learning factors 2

Number of population updates 30

Table 6. Comparison between real values and predicted values of the PSO-BPNN model.

No. True Values
/cm3·cm−2·s−1

Prediction Values
/cm3·cm−2·s−1 Absolute Error Relative

Error/%

1 1.88 1.9263 0.0463 2.46
2 3.52 3.5737 0.0537 1.53
3 4.24 4.2859 0.0459 1.08
4 6.01 6.0041 0.0059 0.10
5 3.76 4.1511 0.3911 10.40

The relative error and average relative error of the prediction results of each model
are shown in Figure 3. As can be seen from Figure 3, after GA and PSO optimization, the
average relative error of the prediction results is significantly better than that of the BP
neural network in the reference [9], and the results of the PSO optimization are better than
the GA optimization, which indicates that the optimized BP neural network overcomes the
original shortcomings.
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3. The GA-SVM Prediction Model
3.1. Support Vector Machine

Support vector machine (SVM) is a machine learning method based on the VC-
dimensional theory of statistical learning theory and the principle of structural risk mini-
mization proposed by Vapnik in the 1990s [23]. The learning method takes the classification
hyperplane as the decision surface in the mapping process to achieve the optimal linear
regression function, which makes it useful for nonlinear regression problems [23].

Suppose the training set samples are {(x1, y1), (x2, y2), . . . , (xm, ym)}, where xi ∈ Rm is
the input vector, yi ∈ Rm is the target value, and m is the number of samples. According to
the nonlinear mapping, Φ: x ∈ Rm→ F, the high-dimensional feature space F is constructed.
Based on the principle of minimizing structural risk, the objective function is as follows:

min 1
2‖ω‖

2 + C
m
∑

i=1
(ξi + ξ∗i )


yi −ωφ(xi)− b ≤ ε + ξ∗i
−yi + ωφ(xi) + b ≤ ε + ξi

ξ∗i ≥ 0, ξi ≥ 0
, i = 1, 2, · · · , m, C ≥ 0 (8)

where ξi and ξi
* are non-negative relaxation functions, C is the penalty factor, ε is the

parameter of the loss function, and ‖ω‖ is the model complexity descriptor function.

3.2. Optimization of the SVM by the GA

The model parameters of the SVM were optimized by global search ability and implicit
parallelism and other advantages of the GA. The prediction model of coal spontaneous
combustion limit parameters was constructed based on the GA-SVM. The computational
flow of the GA-SVM model is shown in Figure 4, and the main steps are as follows:

(1) Normalize the sample data and divide the training and test sets;
(2) Encode the type of kernel function, kernel parameters, and penalty factors of the SVM

in the binary coding manner and generate the initialization population,
(3) Determine the fitness function and calculate the fitness value,
(4) Determine whether the condition of termination is reached or not. If so, carry out the

decoding operation; if not, perform selection, crossover, and mutation to form a new
population and go to step (3), until the condition of termination is satisfied,

(5) Train the SVM model by decoding to obtain the optimal parameters, and then train
the GA-SVM model by obtaining the optimal SVM.
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The GA-SVM prediction model was constructed by utilising the MATLAB software.
The maximum evolutionary generation of the genetic algorithm was set to 200, the popula-
tion size was 20, the number of cross-validation v was taken to 5, the range of variation
of the penalty coefficient C was [0.1, 100], and the range of variation of the radius of the
Gaussian kernel function g was [0.01, 1000]. The specific parameter settings are shown in
Table 7. The iteration process of the GA-SVM is shown in Figure 5, and when the number of
iterations reaches 100, the fitting rate reaches 0.9652. The comparison between the predicted
values and true values from the GA-SVM model is shown in Table 8. As can be seen from
Table 8, the relative error between the predicted value and the true value is between 0.57%
and 4.91%, with a difference of 4.34% and an average relative error of 2.46%; its absolute
error is between 0.0214 and 0.2083, with a difference of 0.1869 and an average absolute error
of 0.0960. The absolute error, as described above, is the absolute value of the difference
between the true value and the predicted value.

Table 7. Parameter setting of the GA-SVM model.

Parameter Specific Values

Maximum evolutionary generations of the genetic algorithm 200
Population size 20

Number of cross-validations 5
Penalty coefficient [0.1, 100]

Radius of the Gaussian kernel function [0.01, 1000]

Table 8. Comparison between real values and predicted values of the GA-SVM model.

No. True Values
/cm3·cm−2·s−1

Prediction Values
/cm3·cm−2·s−1 Absolute Error Relative Error

/%

1 1.88 1.9354 0.0554 2.94
2 3.52 3.5748 0.0548 1.56
3 4.24 4.4483 0.2083 4.91
4 6.01 6.1503 0.1403 2.33
5 3.76 3.7386 0.0214 0.57
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4. Forecast Results and Example Analysis
4.1. Analysis of Results

In order to further verify the prediction performance of each model, the GA-BPNN
model, the PSO-BPNN model, and the GA-SVM model were used to model, train, and test
and analyze the upper limit air leakage intensity in the coal spontaneous combustion limit
parameters, respectively, under the condition of the same training and test samples. The
prediction results are compared with that of the reference [9]. The methods and models
proposed in this article are implemented based on the MATLAB R2021b environment for
Windows 10 64-bit system. Four evaluation indexes, mean absolute error (MAE), mean
absolute percentage error (MAPE), root mean square error (RMSE), and coefficient of
determination (R2), were selected to analyze the performance of the models. By recording
the analysis duration of each model, Table 9 can be obtained. From Table 9, it can be seen
that the GA-SVM model has the shortest analysis duration, indicating that its performance
is superior to other models.

Table 9. Duration of analysis for each model.

Name of the Method Duration of the Analysis/s

GA-BPNN 8.35
PSO-BPNN 5.61

GA-SVM 4.11

The prediction results of each model are shown in Figures 6–8 and Table 10, respec-
tively. Figure 6 shows the fitting curves of the prediction results of each model. From
Figure 6, it can be seen that the GA-SVM model has the best fitting results between the
output and the target value, while the fitting effect of the PSO-BPNN model, the GA-BPNN
model, and reference [9] decrease in order, indicating that there is the best result for the
training of the PSO-BPNN model. Figure 7 shows the comparison of the prediction results
of each model, which indicates that, although there is a deviation between the predicted
values and the real data of each model, the overall trend of change is consistent. There is
the largest deviation in the results of the reference [9], while there is the smallest deviation
in that of the GA-SVM model, and the change rule of prediction values of the GA-SVM
model is closer to that of the real data.
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Table 10. Calculation results of prediction performance evaluation indicators.

Models
Performance Index

MAE MAPE/% RMSE R2

Reference [9] 0.2160 6.16 0.2648 0.9602
GA-BPNN 0.1309 3.69 0.2212 0.9722
PSO-BPNN 0.1086 3.11 0.1789 0.9818

GA-SVM 0.0960 2.46 0.1180 0.9921

Table 10 shows the calculation results of the prediction performance evaluation indexes
of each model, and Figure 8 shows the comparison of the prediction performance evaluation
indexes of different models. According to Table 10 and Figure 8, it can be found that the
MAPE of the prediction results in the reference [9] is 6.16%, MAE is 0.2160, RMSE is 0.2648,
and R2 is 0.9602. The MAPE predicted by the GA-BPNN model is 3.69%, the MAE is 0.1309,
the RMSE is 0.2212, and R2 is 0.9722. The MAPE predicted by the PSO-BPNN model is
3.11%, the MAE is 0.1086, the RMSE is 0.1789, and R2 is 0.9818. The MAPE predicted by
the GA-SVM model is 2.46%, the MAE is 0.0960, the RMSE is 0.1180, and R2 is 0.9921.
Compared with the reference [9], the GA-BPNN model and the PSO-BPNN model, the
MAPE of the GA-SVM model is reduced by 3.70%, 1.23%, and 0.65%, respectively; the MAE
is reduced by 0.12, 0.0349, and 0.0126, respectively; the RMSE is reduced by 0.1468, 0.1032,
and 0.0609, respectively; and the R2 is increased by 0.0319, 0.0199, and 0.0103, respectively.
The prediction results of the GA-SVM model are better than that of other models, which
proves that the GA-SVM model is more accurate than the others in the prediction of the
parameters of the spontaneous combustion limit of coal.

4.2. Example Applications

In order to further illustrate the universality and stability of the prediction model of
the limit parameters of coal spontaneous combustion, the data of the minimum residual
coal thickness in a goaf of Z109 fully comprehensive caving work face in a coal mine
in Shanxi province were selected for verification. The Z109 working face is located in
the No. 22 coal seam of No. 1 mining area with U-type ventilation of the actual air
supply to 1200 m3/min and the length of the working face to 86 m. The mining method is
comprehensive mechanized top coal caving technology; the maximum mining height of
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the coal mining machine is 3.5 m with the advancing speed to 5.5 m/d. The spontaneous
combustion tendency of the mined coal seam is II, which is spontaneous combustion coal
seam with the shortest natural ignition period of 80 d.

The data of the minimum residual coal thickness were put to the BPNN model, the
GA-BPNN model, the PSO-BPNN model, and the GA-SVM model for comparative analysis.
The prediction results of each model are shown in Table 11, and the average relative error
and R2 are shown in Figure 9. The results show that the GA-SVM model is optimal in terms
of both average relative error and R2, followed by the PSO-BPNN model and the GA-BPNN
model, with the BPNN model bringing up the rear. It is proved that the GA-SVM model is
optimal in terms of accuracy with good universality and stability.

Table 11. Prediction results of the different models.

No.
True

Values/m

BPNN GA-BPNN PSO-BPNN GA-SVM

Prediction
Values/m

Relative
Error/%

Prediction
Values/m

Relative
Error/%

Prediction
Values/m

Relative
Error/%

Prediction
Values/m

Relative
Error/%

1 0.53 0.56 5.66 0.4747 10.44 0.5095 3.86 0.5101 3.76
2 0.77 0.74 3.90 0.7706 0.08 0.7664 0.47 0.7834 1.75
3 0.84 0.90 7.14 0.8546 1.74 0.8353 0.56 0.8534 1.59
4 0.73 0.68 6.85 0.7163 1.88 0.7173 1.74 0.7417 1.60
5 1.11 1.14 2.70 1.0981 1.07 1.1592 4.43 1.0878 2.00
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5. Conclusions

In this paper, the GA-BPNN prediction model, PSO-BPNN prediction model, and GA-
SVM prediction model of coal spontaneous combustion limit parameter are constructed,
and the main conclusions obtained by comparing and analyzing the prediction results of
each prediction model are as follows:

(1) A coal spontaneous combustion limit parameter prediction model is proposed based
on BP neural network. Two optimization algorithms, GA and PSO, are applied to
improve the BP neural network, respectively. The results show as follows: after opti-
mization of the GA and the PSO, the BP neural network overcomes the shortcomings,
such as slow convergence and local optimum. The prediction results of the BP neural
network optimized by the PSO are better than those optimized by the GA;



Fire 2023, 6, 381 14 of 15

(2) Comparing the prediction results of each prediction model with those in the refer-
ence [9], the results show the following: the MAE, MAPE, and RMSE of the GA-SVM
model are reduced by 0.0126, 0.65%, and 0.0609 than the PSO-BPNN model, respec-
tively; the R2 is increased by 0.0103 than the PSO-BPNN model. Compared with
the GA-BPNN model, the MAE, MAPE, and RMSE were reduced by 0.0349, 1.23%,
and 0.1032, respectively, with R2 increasing by 0.0199. Compared to reference [9], the
MAE, MAPE, and RMSE were reduced by 0.12, 3.70%, and 0.1468, respectively, with
R2 increasing by 0.0319. Therefore, the prediction results of the GA-SVM model are
superior to all other models, followed by the PSO-BPNN model, with reference [9]
bringing up the rear, which indicates that the GA-SVM model can effectively improve
the accuracy of the prediction of the parameters of the spontaneous combustion limit
of coal;

(3) To further verify the universality and stability of the GA-SVM model, it is applied
to the prediction of the minimum coal thickness in the goaf of a coal mine in Shanxi.
Compared with other prediction models, the results show that the prediction effect of
the GA-SVM model is optimal over the other models, indicating that the GA-SVM
model is more accurate in predicting the parameters of the spontaneous combustion
limit of coal.
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