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Abstract: We developed and applied a spatial optimization algorithm to prioritize forest and fuel 
management treatments within a proposed linear fuel break network on a 0.5 million ha Western 
US national forest. The large fuel break network, combined with the logistics of conducting forest 
and fuel management, requires that treatments be partitioned into a sequence of discrete projects, 
individually implemented over the next 10–20 years. The original plan for the network did not con-
sider how linear segments would be packaged into projects and how projects would be prioritized 
for treatments over time, as the network is constructed. Using our optimization algorithm, we ana-
lyzed 13 implementation scenarios where size-constrained projects were prioritized based on pre-
dicted wildfire hazard, treatment costs, and harvest revenues. We found that among the scenarios, 
the predicted net revenue ranged from USD 3495 to USD 6642 ha−1, and that prioritizing the wildfire 
encounter rate reduced the net revenue and harvested timber. We demonstrate how the tradeoffs 
could be minimized using a multi-objective optimization approach. We found that the most efficient 
implementation scale was a sequence of relatively small projects that treated 300 ha ± 10% versus 
larger projects with a larger treated area. Our study demonstrates a decision support model for 
multi-objective optimization to implement large fuel break networks such as those being proposed 
or implemented in many fire-prone regions around the globe. 

Keywords: spatial optimization; fuel breaks; multi-objective optimization; forest planning; fuel 
break networks; fire management planning 
 

1. Introduction 
Linear fuel break networks are used by land managers to decrease the extent of large 

fires and ultimately, reduce wildfire-related losses [1–5]. Linear fuel breaks fragment 
landscapes with bands of reduced fuel that are used as control lines from which to carry 
out suppression operations [6,7]. The creation of effective linear fuel break segments re-
quires the delineation of the connected network segments across landscapes. This is a rig-
orous process that combines local expertise and spatial analyses to identify efficient fuel 
break network designs [7–10]. Multiple aspects are considered when locating segments of 
the fuel break network, including access, terrain, and vegetation [4,11–14]. Once built, 
there are additional considerations for re-treatment rates to maintain low fuel loadings 
across time [15,16].  

A wide range of decision support tools have been applied to the problem of design-
ing and testing the effectiveness of fuel breaks, although studies that have examined the 
problem from a linear network perspective are rare [7]. For instance, many studies have 
analyzed the effectiveness of fuel breaks, either dispersed or arranged linearly, using fire 
spread models to analyze treatment effects, including models such as FARSITE, Flam-
Map, FSim [17,18], FConst MTT [6,19,20], BURN-P3 [21], and Cell2Fire [22]. These models 
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are used in planning frameworks to evaluate multiple landscape fuel break scenarios and 
to analyze tradeoffs [7,23–26]. A few studies have focused specifically on the design of 
optimal linear fuel break networks using mathematical programming models [27–29]. 
Models to test linear fuel break designs have considered the rate or probability of the suc-
cess of the fuel break segments [20,30]. In general, these and other studies suggest that 
fuel break networks are effective in terms of reducing fire spread, although empirical data 
point to the need for suppression resources to actually stop the fire [4]. Both dense vege-
tation and extreme weather conditions contribute to the failure of fuel breaks under real-
world conditions [31,32].  

Despite a large number of studies testing the effectiveness of fuel break networks, as 
well as government proposals to build new or expand existing networks [7,33], there are 
few, if any, decision support tools to prioritize project areas (i.e., sub-networks) and the 
treatments within them to create the proposed networks. For instance, in Portugal, 3538 
km of proposed linear fuel breaks have been mapped, but prioritizing specific segments 
for treatment from a cost and fire management standpoint has received little attention 
[20]. Studies that demonstrate models to optimize the implementation sequence and iden-
tify economic and fire management tradeoffs for prioritizing sub-networks within the 
larger networks are lacking, despite a large amount of literature on spatial forest planning 
[34,35]. 

In this study, we demonstrate a new modeling framework to prioritize treatments 
and sequence project areas to implement a large linear fuel break network within a fire-
prone Western US national forest. Local fire management staff mapped a 3300 km net-
work within the national forest, considering terrain, roads, and suppression difficulty. The 
bulk of the network will require forest and fuel management for the fuel breaks to serve 
their intended purpose, and thus, the forest must now formulate priorities, estimate costs, 
and build a strategic implementation plan. To support this effort, we modeled a range of 
spatially explicit treatment scenarios optimized for single and multiple objectives, includ-
ing predicted wildfire hazard, treatment cost, and harvest revenue. We used these outputs 
to identify optimal implementation sequences of projects and treatment segments. We 
discuss how the process can provide land management organizations with a broad un-
derstanding of tradeoffs among different prioritization schemes and provide a detailed 
schedule of projects and treatments over time, with the specificity to identify the capacity 
and funding required to implement the proposed networks.  

2. Materials and Methods 
2.1. Study Area 

The study area was the 520,000 ha Umatilla National Forest (Umatilla NF) located in 
the Blue Mountains ecoregion [36] within northeast Oregon and southeast Washington 
states (Figure 1). Elevations generally range from 900 m to 1500 m, with higher peaks close 
to 3000 m. Dry forests of ponderosa pine (Pinus ponderosa Lawson & C. Lawson) dominate 
the lower elevations, with dry mixed conifer—grand fir (Abies grandis (Douglas ex D. Don) 
Lindl) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco)—at higher elevations. Cold 
dry forested areas are dominated by lodgepole pine (Pinus contorta Douglas ex Loudon) 
at higher elevations. About 4961 ha (1%) burn annually, predominantly due to lightning-
caused wildfires (1992–2020) [37]. 
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Figure 1. Map of the Umatilla National Forest illustrating the fuel break network (dark black lines) 
and local mills. 

2.2. Fuel Break Network 
The Umatilla NF designed a fuel break network (FBN) in the year 2020 using regional 

guidelines and expert opinion from local fire management staff. The FBN consisted of 
segments located primarily along ridgetops and roads, with an intended buffer for fuel 
treatments on both sides of the 3315 km length that included grasslands, non-burnable 
areas, and conifer forests. The intended width of the FBN was 300 m (150 m per side), 
aligning with legislation [38] that maximizes fire crew safety and success rates, and con-
sistent with other programs elsewhere [38–41]. The FBN included fuel break sections 
within protected areas where mechanical treatments are prohibited. However, these will 
not be implemented due to administrative restrictions that prohibit mechanical fuel man-
agement [42]. About a 50,000 ha portion of the Umatilla NF has been prioritized for wa-
tershed-level restoration as part of the five-year forest action plan [43], and the fuel breaks 
for these areas were not considered for prioritization. Network density was about 0.5 km 
per km2 (5 m per hectare) over the 225,819 ha portion of the Umatilla NF where the net-
work is being implemented. 

2.3. Forest Vegetation 
We intersected the FBN with the landscape stand polygon layer maintained by the 

Umatilla NF to identify the portions of treatment stands within the FBN (Figure 2). The 
stand boundaries were originally delineated from photo interpretation and followed 
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natural breaks in vegetation type and changes in stand structure from past management 
activities and disturbances. The landscape stand layer contains a total of 63,241 non-for-
ested and forested stands, which were clipped to the FBN, resulting in a network contain-
ing 22,166 interconnected potential fuel break treatment units covering 67,500  ha. Within 
this area, we excluded upland hardwoods and shrublands, leaving 54,198 forested ha 
(80% of the network) available as potential candidates for fuel break treatments. Areas 
that were not available for treatments corresponded to mostly grass and basalt scab flats 
common in much of the Umatilla NF. Inventory data for each stand was obtained from a 
corporate USDA Forest Service spatial database on the Umatilla NF. These data consisted 
of tree density, species, and size class in 2.54 cm increments [44]. 

 
Figure 2. Distribution of priority objective values for the individual fuel break segments for a sample 
of the northeastern portion of the study area: (A) wildfire hazard, computed as the product of the 
conditional probability of flame length > 1.25 m and annual burn probability, derived from FSim 
outputs [18], (B) merchantable volume, and (C) net revenue. The geographical location of these seg-
ments is shown in the red box in Figure 1. 

2.4. Fuel Break Treatments 
Forest and fuel treatments were assigned using stand thresholds developed in col-

laboration with Umatilla NF staff (Table 1). Treatment intensity, in terms of removals, was 
dependent on existing canopy cover (CC) percentage and fuel loadings. In short, stands 
were eligible for thinning if the stand canopy cover exceeded 15% (pers. comm. Don Jus-
tice, Umatilla NF). Thinning was from below (small trees first) until the post-thin CC was 
15%, as per the practice in the Blue Mountains fuel break projects ensuring that stands 
have less than a 0.10 crown bulk density [45]. Thinning from below prioritized the re-
moval of smaller trees of targeted fire-intolerant species (e.g., grand fir) and reduced lad-
der fuels to prevent torching and crowning fire behavior. The maximum tree size for har-
vest was set at 53.3 cm to meet late-old structure (LOS) objectives, as specified in local 
harvest guidelines [46,47]. The thinning was simulated in two steps until the CC was re-
duced to 15%. In the first step, all available species (< 53.3 cm) were removed until the CC 
was reduced to 15% of the stand. Then, if the CC was still greater than 15%, the second 
step removed grand fir trees between 53.3 cm and 76.2 cm until the CC was reduced to 
15% of the stand. If the CC of the stand was still greater than 15% after the second step, all 
trees less than 53.3 cm and all grand firs under 76.2 cm would be removed. Surface fuel 
treatments were of the pile and burn type, consisting of a hand or machine piling of har-
vest residue and downed woody material [48], which is widely practiced on the Umatilla 
NF. Non-forested stands of grass-shrub lands were not assigned to receive treatment. All 
treatments were simulated with the Forest Vegetation Simulator (FVS), Blue Mountains 
variant [44]. The pile and burn treatments were simulated using the FuelMove keyword, 
which has the same effect as the pile burn process in terms of removing fuels from the site. 
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Table 1. Stand thresholds used to determine treatment types, as described by Belavenutti et al. 
(2021), modified for fuel breaks by thinning down to 15% canopy closure. 

Threshold Treatment Types 
 Stand canopy closure (CC) > 15% Available for thinning 

 Merchantable volume > 35 m3 ha−1 Commercial thinning 
 Thinning volume > 0 m3 ha−1 and < 35 m3 ha−1 Non-commercial thinning (density reduction) 
 Fuel loading > 3.6 ton ha−1 in the 0–7.6 cm diameter size 

class Thin + Pile and burn (2 years post-thinning) 

 Stand canopy closure (CC) < 15% AND Fuel loading > 3.6 ton 
ha−1 in the 0–7.6 cm diameter size class 

Pile and burn only 

 Thresholds for treatments do not apply (e.g., stand received 
treatment in last 15 years) 

Recently-treated forest, no treatment 

 Stand is grass-shrub non-forest Non-forest, no treatment 

2.5. Financial Valuation 
Outputs from FVS included the population of cut trees from each treated stand by 

DBH, species, and total merchantable volume. These data were post-processed with the 
FVS economics extension to cut the trees into logs and calculate the small end diameter 
required for financial valuation. In essence, logs are valued by the diameter of the small 
end, which is not reported in standard FVS outputs. We used the LANFIN keyword file 
developed by Vogler et al. [49] for this process. 

Parameters for costs and revenue were obtained from local timber sale and fuels 
treatment transaction data on the Umatilla NF. We did not consider extraneous project 
implementation costs, such as road reconstruction or decommissioning, since most of the 
proposed FBN was co-located with established roads. We used the economic extension of 
FVS to convert modeled harvest volume outputs into logs of specific sizes and species 
[50]. Corresponding average pond values (USD m−3) ranging from USD 71 to USD 101 
were collected from timber sale specialists on the Umatilla NF and used to calculate the 
total value of delivered logs from each stand. Log pond values were only calculated for 
stands that generated ≥ 35 m3 ha−1 of merchantable timber, assuming stands producing 
less were not commercially viable. Although harvesting operations along the roads might 
include these stands with lower volume, in practice, the assumptions provided con-
sistency with prior studies that prioritized the Umatilla NF for restoration projects [51]. 

Harvest cost (USD m−3) ranging from USD 10 to USD 110 was calculated based on the 
slope and tree size class, consistent with methods used in previous studies [52,53]. A 
ground-based harvesting system and associated costs were assigned for stands having a 
slope ≤ 35%, and a cable harvesting system was assigned for all stands that exceeded the 
35% threshold. The average slope per stand was calculated from digital elevation data, 
with a resolution of 30 m. If thinning was not commercially viable (i.e., volume removal < 
35 m3 ha−1), it was assumed to be a non-commercial thinning, incurring costs of USD 1600 
ha−1. The cost of the pile and burn method was assumed to be USD 1110 ha−1. 

Timber hauling costs from individual stands to the nearest wood processing facility 
were estimated using the road network consisting of approximately 750,000 road sections, 
which were classified by driving speed. Round-trip travel time between each stand and 
the nearest processing facility was computed for the shortest path, using travel distance 
and speed [54]. One additional hour of delay time was added for loading, unloading, and 
wait times. Round trip costs per one cubic meter of timber were then estimated using 
travel time, the truck hourly cost of USD 100, and the truckload capacity of 12 m3. Net 
revenue was calculated as the difference between the value of the logs delivered to the 
mill minus all the other costs associated with thinning and surface fuel treatments. 
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2.6. Wildfire Hazard 
We used wildfire simulation raster outputs generated with the FSim [18] model, as 

part of prior work on the Umatilla NF [55]. FSim captures spatial characteristics regarding 
topography, surface fuels, and historical weather conditions to quantitatively assess wild-
fire hazards [56]. FSim uses an ignition density grid to indicate the spatial likelihood of 
large-fire occurrence, regardless of ignition source. We measured wildfire hazard as the 
probability of a fire with a flame length greater than 1.25 m, a threshold at which direct 
attack is avoided in fire suppression operations due to crown fire occurrence. Testing re-
vealed that the prioritization results were relatively insensitive to higher or lower thresh-
olds. This particular hazard metric has been described and used in other studies [57,58]. 
Wildfire hazard (Haz) was calculated using the flame length probability outputs that re-
port the conditional probability of a fire of a given flame length category in 20 0.5 m clas-
ses. Wildfire hazard was then calculated by summing the flame length weighted condi-
tional probabilities from the flame length classes above 1.25 m and then multiplying by 
the annual burn probability for the pixel. 𝐻𝑎𝑧 =  ෍ ሺ𝐵𝑃௜𝑥𝐹𝐿௜ሻி௅೔வଶ଴

ி௅೔ୀଵ.ଶହ  (1)

where FLi is the flame length midpoint of the ith category, and BPi is the annual burn 
probability.  

We transferred the calculated raster pixel values for wildfire hazard to the fuel break 
treatment units and multiplied the area to create a metric that measured the area-weighted 
hazard, henceforth, fire hazard. 

2.7. Treatment Unit Aggregation for Project Areas 
We modified the ForSysR package ‘Patchmax’ [59] to aggregate treatment units (forest 

stands within the FBN) into project areas, maximizing one or multiple objectives. Patchmax 
is a multicriteria spatial planning model developed to explore landscape management 
scenarios for forest restoration. Patchmax was specifically modified to sequence multi-ob-
jective optimal project areas, found by minimizing the Euclidean distance from the maxi-
mum possible objective values, as described with linear equations in the work of  Diaz-
Balteiro et al. [60]. Patchmax employs the breadth-first search (BFS) algorithm [61] to ex-
plore combinations of adjacent treatment units and build potential optimal project areas. 
During the first iteration, the algorithm considers each of the treatment units as a seed 
polygon that links to the adjacent units, growing a project configuration of desirable size. 
Among all resulting feasible projects, the one with the highest objective contribution (i.e., 
lower deviations from the maximum objective values) is identified and removed from 
further consideration, and this process is repeated until a desired number of optimal pro-
ject areas is met. Here, multi-objective optima (Equations (2)–(6)) are found by searching 
the objectives obtained in the feasible project configurations, as described above, and iden-
tifying the one that minimizes the Euclidean distance between the absolute optimum ob-
jective values achieved for a particular project. Equations (2) and (3) are used to calculate 
the total deviation from the optimum objective values of each feasible project p. Equation 
(4) calculates the contribution of treatment units t to the objective values of each project. 
Equations (5) and (6) are the treatment area constraints that allow a deviation of 10% from 
the treated area target per project. The user supplies a scenario in terms of objectives (e.g., 
maximize net revenue and fire hazard) and constraints (e.g., project area size, stand treat-
ment thresholds), and the model outputs a sequenced prioritized set of project areas and 
identifies treatment units within them, as well as the associated objective contribution. 
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𝐷 = ෍ 𝑑௣௝௝
ை௕௝ୀଵ  (2)

𝑑௣௝ = 𝑣௣௝ − 𝑣௝௠௔௫ (3)𝑣௣௝ = ∑ 𝑐௧௝𝑥௧௣௧௣௧ୀଵ  (4)

෍ 𝑎௧𝑥௧௣ ≤ 1.1 𝑃𝑟𝑗௔௥௘௔௧௣
௧ୀଵ  (5)

෍ 𝑎௧𝑥௧௣ ≥ 0.9 𝑃𝑟𝑗௔௥௘௔௧௣
௧ୀଵ  (6)

where 𝑑௣௝  is the deviation for the 𝑝௧௛ feasible project from the maximal 𝑗௧௛  objective 
value, 𝑣௣௝ is the objective value for the 𝑝௧௛ feasible project for the 𝑗௧௛ objective, 𝑣௝௠௔௫ is 
the maximum observed value among all feasible project configurations for the 𝑗௧௛ objec-
tive, tp is the total number of available treatment units in the study area for project p, x is 
a binary vector indicating whether the tth treatment unit is included in the project p (𝑥௧௣ = 
1) or not (𝑥௧௣ = 0), ctj is the contribution of the tth treatment unit to the 𝑗௧௛ objective, at is 
the area of the tth treatment unit, and 𝑃𝑟𝑗௔௥௘௔  is the project treatment area target. 

2.8. Scenarios 
We simulated 13 scenarios, or project strategies, that collectively examined the effect 

of different project objectives and treatment areas on prioritization outcomes when treat-
ing 40,000 ha, or ca. 75% of the available forested fuel break network (Table 2). Treating 
more than 75% of the FBN resulted in scenarios where the 1000 ha per project treatment 
constraint could not be met, and for smaller projects, these lowest ranking projects were 
of low value and did not contribute substantially to any of the priority objectives. Each 
scenario maximized one of the following objectives, or a combination of objectives using 
our multi-objective approach, as previously described: net revenue (revenue), merchant-
able volume (volume), and fire hazard (hazard). Then, we varied the treatment area per 
project by constraining the total to 100, 300, 600, and 1000 ha ± 10% to understand how the 
scale of project implementation affected objective attainment. For instance, environmental 
planning on national forests allows for a wide range of project sizes, although administra-
tive and legal efficiencies are associated with specific project sizes and associated treated 
areas. We focused on the scenarios with a 300 ha treatment area per project to examine the 
tradeoffs and the efficiency of multi-objective solutions. We saved all intermediate feasible 
project configurations generated by Patchmax to examine the tradeoffs between objectives. 
Feasible project configurations are generated when Patchmax tests each treatment unit as 
a seed polygon to grow a project in the adjacent treatment units. These latter solutions 
were then prioritized to examine production frontiers and analyze optimum multi-objec-
tive projects. 

Table 2. Description of scenarios simulated to prioritize project areas. See the methods section for 
additional description of the scenario details. 

Objective 
Treatment Area Per Project  

(ha) Number of Project Areas 

Wildfire hazard 100 400 
Wildfire hazard 300 133 
Wildfire hazard 600 66 
Wildfire hazard 1000 40 

Merchantable timber volume 100 400 
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Merchantable timber volume 300 133 
Merchantable timber volume 600 66 
Merchantable timber volume 1000 40 

Net revenue 100 400 
Net revenue 300 133 
Net revenue 600 66 
Net revenue 1000 40 

Multi-objective 300 133 

3. Results 
3.1. Effect of Treatment Area Per Project on Objective Values 

To examine the effect of treatment area per project on the outcomes, we simulated 
scenarios to build the complete network, while varying the area treated per project (Table 
2). The results showed that the area treated per project only had a minor impact on the 
objective values when considered on a per-hectare basis. Figure 3 shows the efficiency of 
treated area per project when cumulatively assessing objective attainment across treat-
ment implementation. Increasing treatment area per project from 100 to 1000 ha propor-
tionally reduced the number of projects required to complete the total treated area of 
40,000 ha and decreased the per area objective value. Wildfire hazard resulted in smaller 
cumulative differences due to the abundance and distribution of high-hazard units in the 
study area, making it easier to build efficient spatial projects. Based on the high efficiency 
in terms of the objective achieved per ha treated and additional input from the Umatilla 
NF staff, we chose the 300 ha treatment area per project for subsequent sensitivity analy-
sis. 

   
(A) (B) (C) 

Figure 3. Change in objective attainment with increasing area treated for four different amounts of 
treated area per project and three scenarios where each of the objectives was optimized: (A) wildfire 
hazard, (B) merchantable volume, and (C) net revenue. 

3.2. Tradeoffs between Fire Hazard and Revenue 
Figures 4 and S1 show the tradeoffs between 300 ha feasible project configurations 

that were tested as part of identifying optimal single and multi-objective solutions. Our 
scenarios are subsets of non-overlapping projects that were sequenced, depending on the 
priority objectives (i.e., single and multi-objective). From the total number of over 20,000 
simulated projects with 300 ha treated areas, only 11,083 of the solutions (50%) generated 
positive net revenue, with a maximum of USD 6642 ha−1. The harvested merchantable vol-
ume ranged from <1 to 43 m3 ha−1, with 6072 (27%) of the projects producing more than 20 
m3 ha−1. In contrast, simulated projects were more effective at treating high hazard stands, 
as measured by the number of projects that exceeded 50% of the optimal solution (11,340, 
51%). The proportion of total projects that substantially contributed to multiple objectives 
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was relatively small, with 4690 solutions (21%) contributing to all three objectives (i.e., 
generating positive net revenue, expressing more than 20 m3 ha−1 of merchantable volume, 
and exceeding 50% of the maximum fire hazard solution). 

 
Figure 4. Plot of the 22,166 different 300 ha feasible project configurations. Fire hazard, harvest vol-
ume, and net revenue objective contributions are presented per hectare, due to the ±10% variation 
in project size. 

3.3. Optimizing Potential Revenue Treatments 
Figure 5 shows the treatment prescriptions required to implement the optimal pro-

jects for the 300 ha scenario that generated the highest revenue out of the 20,000 simulated 
project solutions. The max revenue scenario resulted in 59 projects with a positive net 
revenue, compared to 42 for the multi-objective scenario (Figure 5D). The higher revenue 
for the former scenario resulted from the selection of a larger proportion of profitable 
commercial thinning treatments. The revenue surplus from commercial thinning de-
creased in the highest-priority projects in the scenario that optimized the treatment of 
high-hazard units (Figure 5C). 



Fire 2023, 6, 1 10 of 16 
 

 

 
Figure 5. Treatment prescriptions within projects with 300 ha of treated area scheduled for four 
scenarios: max net revenue, max volume, max hazard, and multi-objective. 

3.4. Multi-Objective Scenario 
The multi-objective scenario generated the smallest reduction in attainment com-

pared to the single objective for all three objectives examined (Figure 6). For example, the 
best-performing scenario for revenue was the scenario that maximized revenue, but the 
second-best was the multi-objective (Figure 6C). Similarly, the wildfire hazard scenario 
resulted in only a slight improvement compared to the multi-objective scenario, but also 
resulted in the largest reductions in volume and revenue. The multi-objective scenario 
was therefore, near optimal, regardless of the single objective. Thus, the multi-objective 
function was able to schedule the most efficient projects to contribute to all objectives sim-
ultaneously, unlike the other cases in which scheduled projects maximized one single ob-
jective.  

   
(A) (B) (C) 

Figure 6. Comparison of solutions obtained under single versus multi-objective priorities for three 
response metrics (A) cumulative wildfire hazard, (B) cumulative merchantable volume, and (C) cu-
mulative revenue, with increasing area treated and projects implemented. All outputs are from 
treating 300 ha per project. Note that within each panel, we graph the results of four scenarios where 
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each of the priority objectives (lines) are maximized individually. For example, panel A shows the 
effect on treating wildfire hazard from four different prioritization scenarios. 

These scenarios also illustrated a steep tradeoff between financial and fire hazard 
objectives (Figure 6C), showing that projects with high fire hazard objective contribution 
do not necessarily generate positive net revenue. As projects were implemented in the 
max revenue scenario, the decline in revenue was steeper compared to that of the multi-
objective scenario. Non-profitable commercial thinning is the most expensive treatment, 
but contributed significantly to treatments targeting fire exposure and harvested wood. 
The multi-objective scenario scheduled projects with a larger proportion of non-profitable 
commercial thinning more regularly to balance the objectives. Figure 7 illustrates project 
number 99 from the multi-objective scenario treating 122 ha (40%) with commercial thin-
ning using the pile and burn method and 178 ha (60%) using non-commercial thinning 
and the pile and burn method, resulting in a net revenue of USD 412 thousand and USD 
142 thousand, respectively. 

 
Figure 7. Illustration of the 133 sequenced projects from the 300 ha treated area scenario prioritizing 
multi-objectives. (A) Full extent of the fuel break network on the Umatilla National Forest. (B) Pro-
ject area distribution in the southwestern part of the forest. (C) Fuel break treatment units within 
project area 99 overlaid on aerial photos across forest and non-forest grass-shrub vegetation. Stand 
treatments include commercial thinning with the pile and burn method; non-commercial thinning, 
with the pile and burn method; and no treatment (conducted in forested stands with < 15% CC or 
grassland/shrubs). 
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4. Discussion 
We described the development and application of a new multi-objective decision 

support model to prioritize a large fuel break network on a fire-prone Western US national 
forest. The model fills a void in the operational fuels planning community where the cur-
rent prioritization of linear fuel breaks is largely, if not entirely, based on subjective eval-
uation and expert opinion. Although we do not discount the value of expert opinion from 
wildfire planners on the location of fuel breaks, broad scale (e.g., 500,000 ha) understand-
ing of priorities, tradeoffs, and economic factors requires landscape scale scenario plan-
ning models to efficiently schedule projects and treatments and to predict outcomes. Our 
new algorithm sequenced and optimized projects for the study area in less than 5 seconds 
per optimized scenario and was implemented in an globally available open source pro-
graming platform [62]. 

Prioritization is an important process in the implementation of forest and fuel man-
agement programs due to administrative, legal, and operational constraints that require 
subdividing and scaling activities to create project areas. In contrast to our prior work on 
simulating spatial landscape restoration projects with Patchmax (Belavenutti et al. 2022), 
we modified the evaluation function to sequence multi-objective optimal project areas and 
also saved the entire population of project solutions for a given scenario, rather than just 
identifying and analyzing the most optimal scenarios concerning one or more objectives. 
The purpose of this was to provide additional information to assess how capable the op-
timization was in leveraging the algorithm to pinpoint projects in a way that optimized 
multiple objectives. The importance of identifying the feasible solutions within pareto 
frontiers and the efficiency of multi-objective (i.e., goal programming) techniques for mul-
ticriteria decision making has been discussed in previous studies [63–65]. 

Our results showed significant tradeoffs between financial and fire management ob-
jectives and revealed that the multi-objective approach degrades the attainment of indi-
vidual objectives, while offering a robust global solution. Tradeoffs such as these have 
been reported elsewhere [66,67]. Our scenarios maximizing either volume or revenue 
were also effective for treating wildfire hazard, since overstocked stands in the study area 
were typically also rated as high fire hazard due to excessive surface and canopy fuels. 
Prioritized projects aggregated fuel break subunits with different treatment compositions, 
including a variety of non- and commercial thinning. Our simulation method essentially 
exploited the spatial variation of treatment subunits on the landscape to design projects, 
rather than simply ranking treatments according to their objective contribution, as ob-
served with predefined project areas (i.e., individual fuel break sections) in previous stud-
ies [19,20]. The results also show that implementing many smaller projects is more effi-
cient than conducting fewer large projects in increasing the rate of attainment in the earlier 
phases of implementation. This latter result is not surprising, but the performance reduc-
tion with an increase in the area treated per project has previously not been analyzed, and 
it is an important consideration when designing future management scenarios to respond 
to growing wildfire risks and other threats. However, there are many other efficiencies of 
scale, both economic and administrative, that also need to be considered along with the 
attainment of primary project objectives when determining the most efficient project sizes.  

One limitation of our study is that the priority of specific planned fuel break projects 
will be altered over time by the implementation of nearby fuel breaks, restoration projects, 
and wildfires. Forest managers can identify areas where extreme or impactful wildfires 
will likely occur, but specific fire perimeters are more difficult to predict due to the uncer-
tainty regarding future ignitions and weather forecasts [68–70]. These unpredictable wild-
fires will intersect with projects before or after implementation, suggesting that any long-
term plan (+10 years) will undergo significant revision during its implementation [71]. 
This requires forest managers to adjust the planned projects after identifying significant 
changes in landscape conditions. It is expected that implemented projects will alter fire 
exposure in the same vicinity of the fuel break network because fuel break projects are 
designed to facilitate suppression resources that will contain the fire, preventing it from 
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spreading to other areas. Whether or not this is a real limitation in the modeling depends 
on how close the fuel break sections are from each other and the sequence of implement-
ing projects that have interdependent fire exposures [20]. Our assessment of the space–
time sequence of the optimized fuel break network is included in Figure S2. Further re-
search is needed to extend our modeling framework to reevaluate fire hazard objective 
values with fire spread models each time a project is implemented in the simulation. Pre-
vious studies developed decision support tools with potential adjustments for this prob-
lem, such as the method of Chung et al. [23] that implemented the OptFuels system, a 
heuristic process that integrates FVS and FlamMap with a treatment optimization module 
for spatial projects that included the timing of fuel treatments, while considering changes 
in forest conditions, such as forest growth, wildfire behavior, and spread, over time. Forest 
landscape models such as LSim [72] considered the dynamics of wildfire and treatments 
over time, and the current work can be implemented into this system as the treatment 
scheduling module to optimize treatments under uncertain wildfire events and a chang-
ing climate. For instance, Mina et al. [73] used the forest landscape model LANDIS-II to 
simulate climate-smart management policy scenarios that promote warm-adapted spe-
cies, but the system lacks a treatment optimization module.  

There are many avenues for further research on fuel break networks and their appli-
cation across a wide range of fire frequent ecosystems. Questions relating to network den-
sity, width, location, effectiveness, and financial cost all need to be addressed with empir-
ical and simulation studies. Optimal network densities from a cost and fire management 
standpoint [74] may exist, as identified by diminishing returns for implementing pro-
posed networks in their entirety. The co-prioritization of linear fuel breaks with landscape 
restoration and forest health treatments on US federal forests [75] will also be a challeng-
ing problem for planners, and case studies are needed that demonstrate the effective cou-
pling of alternative treatment strategies [76]. Future work along these lines will facilitate 
the work of many government organizations tasked with designing long-range fuel treat-
ment strategies to address wildfire risk in a wide range of fire frequent ecosystems. 

Supplementary Materials: The following supporting information can be downloaded at: 
https://www.mdpi.com/article/10.3390/fire6010001/s1, Figure S1: Plot of the 22,166 different 300 ha 
feasible project configurations; Figure S2: Our assessment of the space-time sequence of the opti-
mized fuel break. 
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