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Abstract: In wildfire areas, earth observation data is used for the development of fire-severity maps
or vegetation recovery to select post-fire measures for erosion control and revegetation. Appropriate
vegetation indices for post-fire monitoring vary with vegetation type and climate zone. This study
aimed to select the best vegetation indices for post-fire vegetation monitoring using remote sensing
and classification methods for the temperate zone in southern Ecuador, as well as to analyze the
vegetation’s development in different fire severity classes after a wildfire in September 2019. Random
forest classification models were calculated using the fire severity classes (from the Relativized Burn
Ratio—RBR) as a dependent variable and 23 multitemporal vegetation indices from 10 Sentinel-2
scenes as descriptive variables. The best vegetation indices to monitor post-fire vegetation recovery in
the temperate Andes were found to be the Leaf Chlorophyll Content Index (LCCI) and the Normalized
Difference Red-Edge and SWIR2 (NDRESWIR). In the first post-fire year, the vegetation had already
recovered to a great extent due to vegetation types with a short life cycle (seasonal grass-species).
Increasing index values correlated strongly with increasing fire severity class (fire severity class
vs. median LCCI: 0.9997; fire severity class vs. median NDRESWIR: 0.9874). After one year, the
vegetations’ vitality in low severity and moderate high severity appeared to be at pre-fire level.

Keywords: wildfire; remote sensing; Sentinel-2; fire severity; vegetation indices; random forest;
vegetation recovery; northern South America

1. Introduction

While the analysis of the fourth-generation global fire emission database (GFED4) [1],
between the years 2000 and 2012, shows a modest decrease in global wildfire incidences,
the amount of burned areas in most environments increased, whereby the most affected
ecosystems were savannahs, open shrubland and subtropical grasslands. Climate change
and the resulting extreme weather events, such as droughts, influence the intensity of
fires. In total, 13.3 million individual fires, globally, were reported by the Global Fire
Atlas between 2003 and 2016 [2]. The estimated direct average carbon emission into the
atmosphere from the burned biomass between 1997 and 2016 was 2.2 × 1015 g of carbon
per year (Pg C yr−1) [3], whereby the process of decay of the burned trunks in some regions
indirectly releases further emissions years after the wildfire event [4]. Supporting measures
for the fast recovery of the vegetation after a wildfire are therefore important to bind CO2
from the atmosphere, and several authors have conducted work on this topic [5–8]. The
fire severity (FS) is an important indicator regarding the post-fire vitality of the affected
vegetation, as well as probable necessary supportive measures for recovery. Space Agencies,
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such as NASA [4] and ESA (Copernicus program with two equal satellites—Sentinel 2A and
2B) [9], document the wildfire phenomena around the planet with earth observation data.
They deliver an important and open access base to elaborate remotely sensed information
regarding FS, as well as the recovery of vegetation. In many affected areas, the increase
in the intensity of the fires decreases the ability to resprout, as the soil seed banks are
diminished during the wildfire [10], or vegetation parts at the subsurface, such as rhizomes,
are damaged by the heat. The required time of the vegetations’ recovery depends on the
vegetation type itself and differs strongly between forest areas and grassland due to their
different life cycles. Certain weed species found in some fire prone areas, particularly in
Savannahs, are adapted to frequent wildfires and are therefore stimulated positively by heat
and smoke [11], and some even require fire to geminate [12]. FS is therefore an important
parameter when assessing the impact of a wildfire on vegetation. For the definition of the
FS through earth observation data, the differenced Normalized Burn Ratio (dNBR) [13]
derived from pre- and post-fire satellite imagery, as well as the Relativized Burn Ratio
(RBR) [14] in cases of areas with low or sparse vegetation before the fire event [15], are
frequently used spectral indices. They aim to determine the extent of the wildfire area, as
well as the degree of change in vegetation caused by the fire [13]. Further, the mentioned
burn ratios help to immediately identify fire effects, as well as to assess vegetative recovery
potential and delayed mortality during the following growing season [13]. However,
follow-up monitoring of vegetation recovery in post-fire years is usually undertaken using
vegetation indices (VI), such as the Normalized Difference Vegetation Index (NDVI) [16], or
the Soil Adjusted Vegetation Index (SAVI) [17], etc., calculated from multitemporal satellite
scenes from the affected area over a number of years. These VIs map the vitality of the
vegetation and serve municipalities, planning parties or forest management institutions to
classify and define the development or stadium to which extent the burnt area recovered,
and maintenance steps can be evaluated accordingly. The maintenance of fire prone
areas to support vegetation recovery after wildfires can speed up the recovery process
of the vegetation by up to 10 years [18]; however, accurate measures differ according to
region, climate, as well as vegetation composition, and are therefore an important topic
to work on [5]. Various investigations address the vegetation’s recovery after wildfires
in the Mediterranean area [19,20], northern America [8,21,22], Siberia [23], as well as
Australia [24]. Further studies were developed for the humid tropics [5], as well as the
Páramo region [25–27], the latter covering areas in northern South America from Venezuela,
Colombia, Ecuador, and Peru. In Ecuador, scientific studies have been conducted using
remote sensing methods e.g., modeling and simulation of wildfires next to urban areas [28],
forest fire susceptibility monitoring using machine learning techniques [29], as well as fire
severity effects on physical-chemical soil properties in southern Ecuador [30]. To the current
knowledge of the authors, scientific publications defining the best VIs for the monitoring of
vegetation recovery in post-fire conditions are not existent. Moreover, studies investigating
the correlation between FS and vegetation recovery in the temperate climate (no dry
season, warm summer—Cfb, Köppen-Geiger-Classification) in southern Ecuador were not
found. The Loja province is covered by various climate zones, which leads to different
combinations of vegetation and different needs when developing effective restoration
methods after wildfires. Therefore, further studies are required to better understand and
predict the responses of vegetation to fire, as well as to define the restoration measures
necessary in the area. As already mentioned, VIs derived from remote sensing methods
are a useful and open access tool to better understand the post-fire vegetation recovery.
However, the choice to use an appropriate VI for vegetation recovery monitoring depends
on the vegetation composition and climate zone of the area in question, as different VIs
provide different levels of sensitivity for grassland, canopy moisture or plant structures [31].
For post-fire vegetation recovery monitoring using VIs, the correlation to FS is an important
aspect, as it strongly influences the regrowth rate. The present study investigates the
best VIs for fire prone areas at the Cfb climate zone in southern Ecuador using random
forest classification models. Furthermore, the autonomous vegetation recovery capacity
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is assessed using remote sensing techniques by analyzing a fire event which occurred in
September 2019 in the canton Quilanga. The results can support municipalities or planning
parties to better understand the vegetation’s behavior in post-fire conditions, as well as to
estimate whether recuperating measures are necessary at the area in question.

The primary objectives of the present investigation were:

• To elaborate the FS of the fire event in September 2019 at the El Saco basin.
• To identify the most appropriate VIs derived from Sentinel-2 (S2) images for the

monitoring of vegetation recovery after wildfires in the temperate climate zone in
southern Ecuador.

• To assess the vegetation recovery in the different FS classes based on the previous
selection of the best VIs for post-fire monitoring at the area in question.

2. Materials and Methods
2.1. Study Site

The investigated wildfire area is located in a mountainous, temperate zone (Cfb)
in the southern Andes (Sierra) of Ecuador in the canton Quilanga, which is part of the
province of Loja on the Peru border. It is characterized by grass- and shrub-land, as well
as some forest patches with non-native tree species, such as pine or eucalyptus, which
tend to dry out the soil and therefore influence the development of native vegetation.
Further, coffee production, farming and pastureland characterize the landscape. In the
area of concern, the precipitation value is approximately 1100 mm per year, whereby the
months from December to April/May are characterized by intense rain events [32]. From
June to November, the risk of fires increases due to the decline in precipitation; in recent
years, three intense wildfires have been reported: in 2012 (Parroquia Fundochamba, sector
Collingora, Quilanga); 2016 (Parroquia Fundochamba, sector Guaguasaco, Quilanga); and
the investigated event, in 2019 [33]. The last wildfire, caused by farmers intending to
prepare farmland in the beginning of September 2019, affected more than 8000 ha and
lasted for more than two weeks (Figure 10). For the present study, the basin of the river El
Saco (Figure 1), with a linear distance of 2500 m southeast from the center of Quilanga to
the outflow point, was chosen. It covers an area of 984.3 ha, reaches from 1520 m at the
outflow point to 2680 m a.s.l. at the highest point and includes one main and two micro
basins; the length of the mainstream is 4.83 km. Table 1 shows the different climate zones
in Loja/Ecuador according to the Köppen-Geiger-Classification.

Figure 1. Location and extent of the wildfire area (red), as well as the river El Saco basin (green) in
Quilanga, Ecuador; Background: contour map of elevation and river network derived from DEMs
(credit: Marc Souris, IRD), Road network: Google Traffic.
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Table 1. Climate zones in Loja (Ecuador), according to Köppen-Geiger-Classification.

Climate Zones in the Province of Loja

Aw Tropical, savannah
BSh Arid, steppe, hot
BWh Arid, desert, hot
Cfb Temperate, no dry season, warm summer
Cfc Temperate, no dry season, cold summer
Csb Temperate, dry summer, warm summer
Cwb Temperate, dry winter, warm summer
ET Polar, tundra

2.2. Workflow

The investigation of the wildfire area in this temperate zone of southern Ecuador
is based on various elaborations from the data, gained remotely (Figure 2). In the first
step the RBR, the FS was calculated, providing the basis for further evaluation. The
second step consisted of the identification of the best VIs for the monitoring of vegetation
recovery in the study area. In total, 23 VIs (Appendix A, Table A1) were calculated from
atmospherically corrected, multitemporal S2 scenes (Level 2A products). In addition,
random forest classification models (with feature selection) describing the FS class were set
up for every used S2 scene at the El Saco basin to identify the most influencing VIs within
the models. In the third step, the selected VIs were used for the analysis of the post-fire
vegetation recovery within the different FS classes.

Figure 2. Workflow of the analysis of vegetation recovery at each fire severity class in the temperate
(Cfb) zone in northern South America.

2.2.1. Elaboration of the Fire Severity

For the present investigation, the FS was assessed and remotely sensed from S2 images
with a spatial resolution of 10 m. Atmospherically corrected S2 images (Level 2A products),
taken on 31 July 2019 and 29 September 2019, were selected for the evaluation, considering
the cloud coverage at the time of the recordings above the El Saco basin. In the first step,
the NBR [34] was calculated for both images using the freely accessible SNAP program.
Furthermore, the dNBR between the two scenes, as well as the RBR (Equation (1) [15]),
were calculated.

RBR =

 dNBR(
NBRpre− f ire + 1001

)
 =

NBRpre− f ire − NBRpost− f ire(
NBRpre− f ire + 1001

)
 (1)
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A water and cloud mask of the images was created with the help of the NDWI
(Equation (2) [15]) as water bodies can have a similar NBR difference.

NDWI =
Green − NIR
Green + NIR

=
B3 − B8
B3 + B8

(2)

As the absolute dNBR may misclassify pixels in areas with little vegetation before the
fire event and because the first image of the El Saco basin was captured during the season
with less precipitation, the RBR was chosen for further usage in the following models. After
exporting the calculated RBR image as a GeoTIFF file, the pixels were classified in QGIS,
based on fire intensity (Table 2). The higher the value in a pixel, the lower the vitality of the
vegetation in that location.

Table 2. Classification of the fire severity from the Relativized Burn Ratio according to United States
Geological Survey—USGS [35].

Classification RBR-Value

High regrowth −0.500 to −0.251
Low regrowth −0.250 to −0.101

Unburned −0.100 to 0.099
Low severity 0.100 to 0.269

Moderate low severity 0.270 to 0.439
Moderate high severity 0.440 to 0.659

High severity 0.660 to 1.300

2.2.2. Identification of the Best VIs for the Monitoring of Vegetation Recovery in Different
Fire Severity Classes

In the study area, no supporting post-fire measures regarding vegetation or erosion
protection were carried out by the municipality. Therefore, the natural recovery capacity
of the vegetation located at the El Saco basin, without anthropogenic influence, within
the first two years after the fire event, could be analyzed. Ten atmospherically corrected
Level 2A products (two before and eight after the fire event) of the S2A and S2B platform
were chosen, taking into consideration cloud coverage and the change of vegetation in
the area over a year. From the eight scenes chosen after the fire event, two scenes were
selected within the first two months after the fire event (Nr. 3, 4; Table 3) to monitor the
short-term development of the vegetation. Moreover, three scenes were chosen for each of
the following years (2020: Nr.5–7 and 2021: Nr.8–10; Table 3), starting from the end of the
rainy season (April/May) until one and two years after the fire event.

Table 3. Summary of selected Sentinel-2 scenes; Granule: T17MPR.

Nr. Sentinel-2 Satellite Date Sun Zenith Angle Sun Azimuth Angle

1 A 6 June 2019 35.06 39.19
2 B 31 July 2019 33.31 47.13

Fire Event

3 B 29 September 2019 21.12 86.18
4 B 18 November 2019 24.54 129.68
5 A 21 April 2020 28.19 54.44
6 A 10 June 2020 35.50 38.95
7 B 24 August 2020 28.19 57.90
8 A 26 May 2021 33.78 40.46
9 A 5 July 2021 36.06 40.83
10 A 3 September 2021 25.91 63.91

Spectral indices derived from satellite images are widely used to map burned areas [36–38],
as well as to monitor the vegetation’s development after a fire event [23,37,39,40]. For this study,
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23 VIs (Appendix A, Table A1) were calculated for every S2 scene and databases were created
by extracting the VI-values according to the FS class (unburned, low severity, moderate low
severity, moderate high severity) derived from the RBR at the El Saco basin. To determine the
best VIs for the vegetation monitoring at the study area, a pixel-based classification was
carried out using the Random Forest approach, after Breiman [41], with the FS class from
the RBR (classified after USGS [35]) as the dependent variable. This approach is frequently
used for FS mapping [16], as well as for the classification of vegetation or tree species [42].
For this study, the parameter mtry (number of predictors samples randomly for each node)
was taken as the square root of the number of input parameters and ntree (number of
trees) was set to 500 at each classification (default values). In addition, a recursive feature
selection process was applied using the mean decrease in accuracy (MDA), which is used to
measure the performance of the model without a specific describing variable. The removal
of a variable with a high MDA value would cause the model to lose accuracy in prediction.
The higher the MDA value, the higher the importance of the variable to the accuracy of
the model. Further, the results of the classification models were assessed by the out of bag
(OOB) error [42]. The classification of the FS class with feature selection was run with every
database containing the data of the VIs of every S2-scene. The BEST model (according to
the overall accuracy (OA)) was chosen to be representative for the respective date. The
variables (=VIs) of these BEST models were checked regarding matching VIs between the
different dates to obtain a preselection of VIs. To prove that these matching VIs are suitable
for post-fire vegetation monitoring in the temperate Andes, new databases were set up for
model calculation at each date, containing the FS class as the dependent variable and the
matching VIs as the describing variables. Further, four additional databases were set up for
the scenes of the years: (I) 2020; (II) 2021; (III) eight scenes (not using the scenes nr. 2 and
3, which were part of the RBR calculation); and (IV) all ten scenes containing the FS class
as the dependent variable and the matching VIs as the describing variables. With these
10 single-date and four multi-date databases, the Random Forest classification of the FS
class was repeated and the two best performing VIs in these models were used to analyze
the vegetation development in the FS classes. Figure 3 illustrates the identification process
of the best VIs for the monitoring of the post fire vegetation recovery.

2.2.3. Analysis of Vegetation Recovery in Different Fire Severity Classes

The vegetation recovery in the different FS classes at the El Saco basin was studied
using boxplot diagrams, descriptive statistics, and time series. The VIs selected in the
previous step were analyzed at one pre- and three post-fire moments from 2018 to 2021,
(around the month of the fire event, with a maximum difference of two months due to
cloud coverage) to understand the post-fire development of the vegetation at the El Saco
basin in the different FS classes. Further, the delta of the VIs for the first, the second, and
the first two post-fire years was calculated and statistically analyzed. While the analysis of
the VIs’ delta shows the recovery at each FS class within the first and the second post-fire
year, another important question was whether the pre-fire level of the vegetation’s vitality
could be obtained again according to the VIs. As it was not possible to obtain cloud free S2
scenes from the El Saco basin for the same month over four years (2018–2021), the median
values at the unburned area were used as reference values to understand the phenological
change, which influenced the post-fire images. The pre-fire medians of the VI values at
each FS class were set to a reference level of 100% and the difference in the following years
was calculated as percentage points [PP].
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Figure 3. Identification of vegetation indices for post-fire vegetation development analysis per fire
severity class and time series monitoring in the temperate Andes.

3. Results
3.1. Elaboration of the Fire Severity

The FS elaborated from S2 images with the formula of the RBR is shown in Figure 4a,c.
From the total size of the El Saco basin (984.30 ha), 781.25 ha and, therefore, 79.37% were
affected by the fire event. In the northeastern part of the basin, 0.07% and 0.30% of the pixels
were classified as “high regrowth” and “low regrowth”. These fragments can be defined
as misinterpretation as the calculated water and cloud mask (NDWI) did not cover some
parts of the cloud shadows and thus led to this misclassification. The class “unburned”
(UB) covers 4.54% and was classified mainly along the river courses of the basin. Further,
“low severity” (LS) was determined at 18.82% of the pixels. The biggest part of the area
was classified as “moderate low severity” (MLS), with 54.74%, and the class “moderate
high severity” (MHS) achieved 21.38%. The maximum FS class “high severity” (HS) was
classified at 0.15% of the burned area in the El Saco basin (Figure 4b). With the exception
of the mentioned misclassification due to cloud shadows, the field investigation mostly
confirmed the FS map. The vegetation in areas with HS or MHS showed the complete
destruction of the biomass on the surface. MLS or LS were classified in areas where higher
vegetation, such as shrubs or trees, were burned at the base with intact, green parts on the
crown, as well as in areas of the grassland, where some ferns and grass species sprouted
again one month after the fire event.
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Figure 4. (a) Fire severity after the wildfire in September 2019 at the El Saco basin, canton
Quilanga/Ecuador. Base map: Google Terrain; (b) Distribution of the fire severity within the burnt
area of El Saco at the canton Quilanga/Ecuador after the wildfire in September 2019; (c) Overview of
the wildfire area 2019 from the viewpoint Quilanga in Google Earth Pro.

3.2. Identification of the Best VIs for Post-Fire Monitoring in the Temperate Andes

To identify the best VIs for the monitoring of the vegetation recovery at each FS class,
ten BEST simple models using the VIs of each date were calculated (Table 4). The OA
resulted between 57.8% and 84.9%, with a median of 63.4%. The most significant model
predicting the RBR was the one of 29 September 2019 (84.9%), two weeks after the wildfire.
This can be explained as this scene was used for the RBR calculation, as well as the low
time lag from the fire event. The OA of the two scenes before the fire event is around 67%
and the worst classified model derives from the S2-scene on 10 June 2020 (OA 57.8%). From
the three S2-scenes in 2020 and 2021, the ones at the end of the rainy season achieved an
OA of 67.7% and 63.1%, respectively. The number of variables for each BEST model differs
due to the applied feature selection function. Therefore, the occurrence of the same Vis in
the different BEST models was checked. As a result, the Leaf Chlorophyll Content Index
(LCCI), the Normalized Difference Red-Edge and SWIR2 (NDRESWIR), as well as the Red
Edge Peak Area (REPA), were part of every model.

To verify that these matching VIs were suitable for post-fire vegetation monitoring at
the area in question, new databases were set up containing only LCCI, NDRESWIR and
REPA. As a result, the OA ranged between 75.0% and 81.3%, with a median of 76.8%, for
these models (Table 5); a minimum increase of 7.8% and a maximum increase of 17.3% in
OA compared to the BEST models appeared. The model from September 29, 2019, again
showed the highest OA, but decreased by 3.6% compared to the BEST model. While the
model from this date achieved 81.3% in OA with the three descriptive variables LCCI,
NDRESWIR and REPA, the BEST model used 12 VIs as descriptive variables to achieve an
OA of 84.9%.
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Table 4. BEST Random Forest models based on OOB results after Feature Selection using 23 Vegetation
Indices from single Sentinel-2 data recording dates.

BEST MODELS: Dependent Variable: RBR; Descriptive Variables: 23 Vegetation Indices
Classification: Random Forest with Feature Selection

Scene Nr: S2 Acquisition
Date

n Variables
after Feature

Selection
Split Overall Accuracy Kappa

1 6 June 2019 4 2 67.1% 0.503
2 31 July 2019 4 2 67.5% 0.508

Fire Event

3 29 September 2019 12 3 84.9% 0.779
4 18 November 2019 9 3 63.7% 0.444

5 21 April 2020 4 2 67.7% 0.511
6 10 June 2020 6 2 57.8% 0.342
7 24 August 2020 5 2 61.4% 0.408

8 26 May 2021 5 2 63.1% 0.436
9 5 July 2021 5 2 60.6% 0.401

10 3 September 2021 7 2 60.0% 0.383

Result: LCCI, NDRESWIR, REPA were part of every BEST model

Table 5. Random Forest models using three Vegetation Indices (LCCI, NDRESWIR, REPA) from
single Sentinel-2 data recording dates.

MODELS: Dependent Variable: RBR; Descriptive Variables: LCCI, NDRESWIR, REPA
Classification: Random Forest

Scene Nr: S2 Acquisition
Date n Variables Split Overall

Accuracy

Change in
Accuracy

Compared to
BEST Models

Kappa

1 6 June 2019 3 1 75.5% +8.4% 0.636
2 31 July 2019 3 1 75.3% +7.8% 0.634

Fire Event

3 29 September
2019 3 1 81.3% −3.6% 0.725

4 18 November
2019 3 1 76.6% +12.9% 0.654

5 21 April 2020 3 1 77.0% +9.3% 0.660
6 10 June 2020 3 1 75.0% +17.2% 0.628
7 24 August 2020 3 1 76.9% +15.5% 0.660

8 26 May 2021 3 1 77.0% +13.9% 0.661
9 5 July 2021 3 1 76.4% +15.8% 0.651

10 3 September
2021 3 1 77.3% +17.3% 0.666

The additional model calculations from the databases containing the VIs for the
S2-scenes in 2020, 2021, as well as combinations of eight and all ten scenes, helped to
understand the change in OA where multitemporal Sentinel scenes were used (Table 6).
The best combined models from both individual years showed an OA of approximately
82% using all nine input variables. The model derived from the eight S2 scenes (without
the scenes from RBR calculation) showed an OA of 83.5%, using 22 variables (of 24). The
best combined model from all ten scenes and, therefore, with the ones used for the RBR
calculation, resulted with an OA of 86.3% (eleven input variables). According to the
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MDA of the combined models, the most important input variables were the LCCI and the
NDRESWIR. These VIs were used for the monitoring of the vegetation recovery.

Table 6. Best Random Forest models based on OOB results after Feature Selection using three
Vegetation Indices (LCCI, NDRESWIR, REPA) from different Sentinel-2 data recording series.

BEST MODELS: Dependent Variable: RBR; Descriptive Variables: LCCI, NDRESWIR, REPA
Classification: Random Forest with Feature Selection

Scene Nr:
Vegetation Indices
from Different S2

Scenes

n Variables
after

Feature
Selection

Split Overall
Accuracy Kappa

3 Most Influencing
Variables According to

Mean Decrease Accuracy

5–7
LCCI, NDRESWIR,

REPA
3 SC 2020

9 3 82.4% 0.744
LCCI 24 August 2020

NDRESWIR 21 April 2020
LCCI 21 April 2020

8–10
LCCI, NDRESWIR,

REPA
3 SC 2021

9 3 82.6% 0.746

LCCI 03 September 2021
LCCI 26 May 2021

NDRESWIR 3 September
2021

1 and 4–10

LCCI, NDRESWIR,
REPA

8 SC 2019 to 2021
(no scenes from RBR

calculation)

22 4 83.5% 0.760
NDRESWIR 21 April 2020
LCCI 18 November 2019

LCCI 26 May 2021

1–10

LCCI, NDRESWIR,
REPA

10 SC 2019 to 2021
(with scenes from RBR

calculation)

11 3 86.3% 0.800

NDRESWIR 31 July 2019
NDRESWIR 29 September

2019
REPA 29 September 2019

3.3. Analysis of the Vegetation Recovery in Different Fire Severity Classes
3.3.1. LCCI and NDRESWIR in One Pre- and Three Post-Fire Scenes

Immediately after the fire event, the two analyzed VIs showed that with the increas-
ing FS class, the lower and the upper quartiles converged, and the median decreased
(Appendix A: Tables A2 and A3; Figures 5 and 6). At the VIs from the S2 scene of 24 Au-
gust 2020, about one year after the fire event, the medians in all four FS classes were higher
compared to the pre-fire year; thus, the time difference of two months (August and October)
and the phenological development due to the rainy season from December to May must be
considered (Section 3.3.3.). Figures 5 and 6 show the boxplots of the VI values per FS class
in the different years.

3.3.2. Development of the LCCI and the NDRESWIR in the First Two Post-Fire Years

When analyzing the vegetation’s development using the delta of the VIs between
post-fire scenes, the median values showed a high positive correlation with increasing
FS classes in the first year (LCCI: 0.9997, NDRESWIR: 0.9874). At the MHS area, the
recuperation appeared to be the highest, followed by MLS and LS (Figures 7 and 8). The
second post-fire year showed continuously equilibrated, slightly decreasing median dLCCI,
as well as dNDRESWIR values with increasing FS. The vegetation at the study area seemed
to be recuperating strongly in the first post-fire year.
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Figure 5. Boxplots of LCCI values in the fire severity classes at the El Saco basin in one pre- and three
post-fire Sentinel 2 scenes.

Figure 6. Boxplots of NDRESWIR values in the fire severity classes at the El Saco basin in one pre-
and three post-fire Sentinel 2 scenes.
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Figure 7. Boxplots of dLCCI values per fire severity classes from the first two post-fire years at the El
Saco basin.

Figure 8. Boxplots of dNDRESWIR values per fire severity classes from the first two post-fire years at
the El Saco basin.

3.3.3. Relative Post-Fire Development of LCCI and NDRESWIR Per Fire Severity Class

Due to the different acquisition times of the S2 images (cloud-free data), which were
used for the analysis of the vegetation’s post-fire development, the UB area served as a
reference to understand the relative change of the median within the FS classes. Comparing
the two post-fire years with the pre-fire year 2018 showed that the LCCI median in the UB
area in 2020 was +14.87 PP higher. due to the two months of difference with the pre-fire
scene, and caused by the different influence of the phenology (Table 7). The chosen S2
scene in 2021 had a similar LCCI median value in the UB area (+13.57 PP) compared to
the pre-fire year in 2018. The NDRESWIR median in the UB area, showing a +32.76 PP of
relative increase in 2020 and +23.72 PP in 2021 related to pre-fire conditions (Table 8). When
relativizing the time difference, the LCCI showed an increase in 2020 of +1.92 PP at the area
with LS, a decrease of −4.00 PP at the MLS, as well as a decrease of −0.54 PP at the MHS
compared to the pre-fire image in 2018 (Table 9). According to the LCCI, the vegetation in
LS and the MHS areas recovered one year after the fire event to about the same level as was
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measured in the pre-fire conditions in 2018. In the second post-fire year, the LCCI indicated
a decrease in all FS classes, whereby the MLS again showed the lowest value, with −9.71
PP. Interpreting the relativized data from the NDRESWIR (Table 10), the LS and MHS areas
performed better compared with MLS, whereby all three FS classes were at least around
the same level as the pre-fire year in 2018.

Table 7. Vegetation recovery according to the median LCCI per fire severity class compared to the
pre-fire year in percentage points (PP) at the El Saco basin.

Change of LCCI Median with Year and Fire Severity

Pre-Fire
24 October 2018

Post-Fire
29 September 2019

Post-Fire
24 August 2020

Post-Fire
3 September 2021

Unburned 100.00 PP −9.09 PP +14.87 PP +13.57 PP
Low severity 100.00 PP −10.58 PP +16.79 PP +11.95 PP

Moderate low severity 100.00 PP −20.96 PP +10.87 PP +3.86 PP
Moderate high severity 100.00 PP −25.62 PP +14.33 PP +5.27 PP

Table 8. Vegetation recovery according to the median NDRESWIR per fire severity class compared to
the pre-fire year in percentage points (PP) at the El Saco basin.

Change of NDRESWIR Median with Year and Fire Severity

Pre-Fire
24 October 2018

Post-Fire
29 September 2019

Post-Fire
24 August 2020

Post-Fire
3 September 2021

Unburned 100.00 PP +5.08 PP +32.76 PP +23.72 PP
Low severity 100.00 PP −14.05 PP +45.41 PP +37.84 PP

Moderate low severity 100.00 PP −87.78 PP +33.33 PP +22.78 PP
Moderate high severity 100.00 PP −185.51 PP +49.28 PP +39.13 PP

Table 9. LCCI time series: relativizing the phenological difference of the selected vegetation index
dates at the El Saco basin.

Relativized Change of LCCI Median

Post-Fire 29 September 2019 Post-Fire 24 August 2020 Post-Fire 3 September 2021
Unburned 0.00 PP 0.00 PP 0.00 PP

Low severity −1.49 PP +1.92 PP −1.62 PP
Moderate low severity −11.87 PP −4.00 PP −9.71 PP
Moderate high severity −16.53 PP −0.54 PP −8.30 PP

Table 10. NDRESWIR time series: relativizing the phenological difference of the selected vegetation
index dates at the El Saco basin.

Relativized Change of NDRESWIR MEDIAN

Post-Fire 29 September 2019 Post-Fire 24 August 2020 Post-Fire 3 September 2021
Unburned 0.00 PP 0.00 PP 0.00 PP

Low severity −19.13 PP +12.65 PP +14.12 PP
Moderate low severity −92.86 PP +0.57 PP −0.94 PP
Moderate high severity −190.59 PP +16.52 PP +15.41 PP

The calculated PP cannot be compared directly between the two selected VIs, as they
refer to different benchmarks, derived from different S2 bands and formulas. Nevertheless,
both VIs show a similar, V-shaped trend (Figure 9), as the LS and MHS have a higher
relative increase than the MLS area when comparing it with pre-fire conditions.
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Figure 9. Relative change of post-fire vegetation index values per fire severity class compared to
pre-fire conditions at the El Saco basin.

4. Discussion

When classifying the FS using Random Forest for every single scene of the used dates,
before and after the fire event, widely used VIs for time series monitoring, such NDVI, or
Soil Adjusted Vegetation Index (SAVI) [8,40,43,44], were not part of the final models. The
NBR, which is frequently used for post-fire vegetation monitoring [22], was part of one
model (29 September 2019), which questions the application of this index for grassland-
dominated areas. The understanding that the optimal spectral or VIs for quantifying FS
depends on vegetation composition or forest type is reported in different studies [24,34,45].
Tran et al. (2018) [24] considers the different spectral indices for FS assessment; namely,
NDVI, NBR, Normalized Difference Water Index (NDWI), Normalized Difference Vegeta-
tion Index Thermal (NDVIT), Normalized Burn Ratio Thermal (NBRT), Vegetation Index
6 Thermal (VI6T), Burned Area Index (BAI), Modified Soil Adjusted Vegetation Index
(MSAVI), Mid InfraRed Burn Index (MIRBI) and Char Soil Index (CSI). While the best
performing VI for open forests with mixed fire responses (resprouters and seeders) in the
Australian temperate forests was the dNDVI, the most accurate VI for obligate seeder closed
forests was found to be the delta Normalized Difference Water Index (dNDWI) [24]. In
2001, Trigg and Flasse [46] developed the Mid-Infrared Burn Index (MIRBI) for savannahs,
using the short wavelength and long-wavelength mid-infrared bands from MODIS. A
further study, assessing VIs for post-fire vegetation recovery monitoring in grass- and/or
shrubland was found in China/Mongolia by Qin et al. (2021), who recommended the
Normalized Difference Phenology Index (NDPI) [47]. One problem when comparing these
studies is that there are numerous VIs from different sources (Sentinel, Landsat, MODIS,
etc. [47,48]), with different recording conditions, as well as different temporal and spatial
resolution. This fact leads to a certain variance between the central wavelengths of the input
bands and, therefore, to probable deviations in the calculated VIs. Another problem is that
there is some ambiguity regarding the abbreviations of spectral and VIs used in scientific
studies. For example, BAI is short for Burned Area Index [49], but also for Built-up Area
Index [50]. The authors therefore recommend strongly to report used formulas, as well as
names, when using VIs. Globally, with the increasing number of open access earth observa-
tion data, the remote sensing of fire events is gaining increasing attention. Numerous VIs
are being developed or revised [51,52]; leading, on one hand, to more accurate tools, but on
the other hand, to probable oversupply and user confusion. In addition, when assessing
different VIs for the specific use in certain areas, it can be challenging to cover all important
aspects for post-fire monitoring. However, this study presents a scalable methodology to
assess VIs for post-fire vegetation recovery monitoring, applicable on other vegetation and
climate conditions, using also additional VIs. Compared to other reported studies, the
number of VIs examined (n = 23) in this paper is relatively high. The importance of LCCI,
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NDRESWIR and REPA to monitor vegetation recovery after wildfires in the temperate zone
in southern Ecuador, with sparse tree vegetation and broad grassland, was shown as they
conclude to FS class prediction. The RED, all RED EDGE, as well as the NEAR INFRARED
(SHORTWAVE INFRARED) bands of the S2 satellite images, contributed to the post-fire
vegetation development analysis in this study. This result should be considered in future
studies when monitoring vegetation recovery in former wildfire areas in the temperate zone
(Cfb), as well as areas with similar vegetation types. The vegetation recovery analysis in
the different FS classes showed that within the first two years, the vegetation recovered to a
great extent. In particular, the grassland recovered fully within the first post-fire year, which
coincides with a study from Li and Guo (2018) in a North American mixed prairie [44].
At the El Saco basin, areas with higher severity and, therefore, a higher incision in the
vegetation, developed faster in post-fire conditions. Nevertheless, LS and MHS seemed to
recover better, equalizing or surpassing the pre-fire level within the first post-fire year. This
is most likely due to the release of nutrients, which changes with fire severity [53]. The time
of vegetation recovery varies with different biomes. Therefore, the recovery period required
in forests and riparian vegetation types to regrow to pre-fire conditions is higher compared
to grasslands and steppe areas, where fires potentially increase the amount of biomass [54].
Asrar et al. (1989) [55] stated that burned prairie grassland showed higher leaf production
in burned areas. Further studies showed that more severely damaged areas recover faster
after the fire event than areas with lower severity [54,56]. As vegetation monitoring with
satellite data provides information regarding the amount of biomass, or the leaf area at
the location, one important note is that the present analysis does not specify the type of
vegetation if no reference data is given. In some cases, it could therefore be possible that the
values of the VIs may be higher than before the fire event, leading to a better evaluation of
the situation as it is. Some densely growing ferns, which are facilitated by fires or pioneer
vegetation, could be the reason for higher VI values, indicating good recovery in areas
where trees are burned, for which recuperation time is higher due to a longer life cycle
and therefore slower growth compared to pioneer vegetation. One possible solution could
be to use multitemporal S2 scenes with reference data regarding the vegetation types at
the area in question to classify the vegetation [42] and acquire information regarding the
development of vegetation types or species after the wildfire. This implies, further, that the
classification model of the vegetation type depends on monitoring in the field or the exact
interpretation of orthophotos. While short-term monitoring can be sufficient for grass- or
shrub-land, higher growing vegetation with a longer recuperation time will not be covered
within two years.

Figure 10. (a) Fire-affected shrub and tree vegetation layer (b) Impact of the wildfire on the landscape
one month after the event in the canton Quilanga/Ecuador [57].



Fire 2022, 5, 211 16 of 21

Globally, the effects of wildfires are receiving increasing attention with the increasing
number of extreme weather events and droughts. Being able to estimate the numerous
consequences can help to diminish and minimize post-fire effects on landscapes, ecosystems,
and/or settlements. Post-fire vegetation monitoring with adequate VIs from satellite data,
according to climate zone and vegetation type, can help planning parties to assess these
effects properly and determine suitable measures. When implementing post-fire measures
using soil and water bioengineering techniques to revegetate or mitigate erosion [57–59],
the use of time series from VIs can help to understand where to place the measures,
spatially, at the area in question. Knowing from experience, or from post-fire monitoring
with satellite data, that, for example, the vegetation in high severity areas recovers fast,
can help planning parties to decide whether to apply measures in the area or not. The
financial and time effort for planning and applying post-fire measures can be made more
effective by using remote sensing data and VIs. However, in addition to monitoring or
recuperation strategies for vegetation, educational work could have a high impact on the
prevention of fire events and, therefore, the preservation of an intact vegetation cover. As
farmers in the area use fire frequently (traditional slash and burn method [60]) to remove
vegetation from the surface of their land to prepare it for seeding [61], days with a high
risk of wildfires during the season with less precipitation should be avoided. Most of the
residents have access to internet with their smartphones. Therefore, the development and
promotion of an application such as the Fire Weather Index (FWI) [62], tuned for the area
in question, showing the daily wildfire risk due to various meteorological variables, such
as air temperature, relative humidity, wind speed and total precipitation, could help to
prevent the spreading of uncontrolled fire events. Further, the extension of infrastructure
for fire departments could have a high impact towards successfully limiting the spread
of wildfires.

5. Conclusions

This study showed that for the monitoring of the post-fire vegetation recovery with
sparse tree vegetation and broad grassland in the temperate Andes (Cfb), LCCI, as well as
NDRESWIR, were the best VIs. Widely used VIs such as NDVI or SAVI were not part of the
calculated final models. It underlines the assumption that the VI used for the monitoring
of post-fire vegetation development should be selected according to the main vegetation
type. As VIs do not indicate the vegetation type, there is no information regarding the
development of specific species at the area in question. The short-term monitoring (<2 years)
of vegetation recovery can be sufficient for grassland but must be extended for several
years in areas with higher vegetation, such as shrubs or trees. According to vegetation
monitoring with the selected VIs, the plants’ recovery showed a strong positive correlation
with the increasing FS class within the first two post-fire years at the investigated area.
A repetition of the study within the following years may provide further information
regarding the recovery of different vegetation types. Possible restauration strategies for the
area should refer to the vegetation recovery, combining remote sensing methods with as
field monitoring. By providing these answers to the research questions, a solid basis for
possible landscape and forest restoration strategies after wildfires in the temperate (Cfb)
zone in northern South America is delivered and the need for supporting or revegetating
interventions can be evaluated. Municipalities or planning parties can use this information
as a basis to develop further post-fire recuperation strategies. According to the knowledge
of the authors, to date, no such study has been carried out for the temperate zone in southern
Ecuador. The result of the present investigation is therefore an important contribution to
recovering landscapes after fires in this region.
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Appendix A

Table A1. Formulas used for the calculation of the vegetation indices using Sentinel-2 scenes from
the wildfire area in Quilanga/Ecuador.

Nr. Name Formula Source

1 Built-up Area Index (BAI) BLUE−NIR
BLUE+NIR [50]

2 Chlorophyll Green index (CGI) NIR
GREEN+RE1 [63]

3 Global Environmental Monitoring
Index (GEMI)

η − 0.25η2 − RED−0.125
1−RED

η =
2(NIR2−RED2)+1.5NIR+0.5RED

NIR+RED+0.5

[64]

4 Greenness Index (GI) GREEN
RED [65]

5 Green Normalized Difference
Vegetation Index (gNDVI)

NIR−GREEN
NIR+GREEN [66]

6 Leaf Chlorophyll Content Index (LCCI) RE3
RE1 [67]

7 Normalized Difference Red-Edge and
SWIR2 (NDRESWIR)

RE2−SWIR2
RE2+SWIR2 [68]

8 Normalized Difference Vegetation
Index (NDVI)

NIR−RED
NIR+RED [69]

9 Red-Edge Normalized Difference
Vegetation Index (reNDVI)

NIR−RE1
NIR+RE1 [66]

10 Normalized Burn Ratio (NBR) NIR−SWIR2
NIR+SWIR2 [13,15]

11 Red-Edge Peak Area (REPA) RED + RE1 + RE2 + RE3 + NIR [68,70]

12 Red-Edge Triangular Vegetation Index
(RETVI)

100(NIR − RE1)−
10(NIR − GREEN)

[71]

13 Soil Adjusted Vegetation Index (SAVI) NIR−RED
NIR+RED+0.5 1.5 [17]

14 Blue and RE1 ratio (SRBRE1) BLUE
RE1 [65]

15 Blue and RE2 ratio (SRBRE2) BLUE
RE2 [72]

16 Blue and RE3 ratio (SRBRE3) BLUE
RE3 [68]

17 NIR and Blue ratio (SRNIRB) NIR
BLUE [73]

18 NIR and Green ratio (SRNIRG) NIR
GREEN [65]

19 NIR and Red ratio (SRNIRR) NIR
RED [73]

20 NIR and RE1 ratio (SRNIRRE1) NIR
RED1 [63]

21 NIR and RE2 ratio (SRNIRRE2) NIR
RED2 [68]

22 NIR and RE3 ratio (SRNIRRE3) NIR
RED3 [68]

23 Water Body Index (WBI) BLUE−RED
BLUE+RED [74]
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Table A2. Statistics of pre- and post-fire LCCI in different fire severity classes at the El Saco basin.

LCCI

Min Median Mean Max Standard
Deviation Skewness Kurtosis

24.October 2018

UB 1.165 1.540 1.860 4.546 0.615 1.210 3.437
LS 1.165 1.531 1.684 3.629 0.365 1.463 4.642

MLS 1.232 1.527 1.613 3.257 0.262 1.938 7.757
MHS 1.298 1.612 1.672 3.141 0.245 2.283 10.032

29.September 2019

UB 0.668 1.400 1.700 5.244 0.650 1.434 4.641
LS 0.887 1.369 1.456 4.072 0.314 1.761 7.854

MLS 0.867 1.207 1.261 3.124 0.157 2.306 12.066
MHS 0.993 1.199 1.225 2.876 0.103 3.809 33.201

24.August 2020

UB 1.002 1.769 2.024 5.751 0.623 1.228 4.058
LS 1.124 1.788 1.911 4.487 0.425 1.228 4.377

MLS 1.141 1.693 1.774 3.369 0.292 1.392 5.250
MHS 1.141 1.843 1.880 3.007 0.230 0.840 3.953

3.September 2021

UB 0.978 1.749 2.024 6.069 0.674 1.283 4.184
LS 1.100 1.714 1.841 4.585 0.435 1.454 5.423

MLS 1.222 1.586 1.678 3.437 0.290 1.613 5.920
MHS 1.240 1.697 1.733 3.140 0.216 1.129 5.065

Table A3. Statistics of pre- and post-fire NDRESWIR in different fire severity classes at the El
Saco basin.

NDRESWIR

Min Median Mean Max Standard
Deviation Skewness Kurtosis

24 October 2018

UB −0.398 −0.177 −0.125 0.298 0.153 0.663 2.267
LS −0.417 −0.185 −0.158 0.271 0.112 0.760 3.008

MLS −0.417 −0.180 −0.168 0.227 0.088 0.760 3.687
MHS −0.373 −0.138 −0.132 0.238 0.078 0.975 5.448

29 September 2019

UB −0.498 −0.168 −0.134 0.325 0.141 0.807 2.969
LS −0.498 −0.211 −0.204 0.265 0.090 0.643 3.880

MLS −0.504 −0.338 −0.327 0.139 0.066 1.101 5.119
MHS −0.553 −0.394 −0.389 −0.033 0.054 1.329 7.360

24 August 2020

UB −0.406 −0.119 −0.098 0.287 0.126 0.459 2.479
LS −0.413 −0.101 −0.097 0.205 0.093 0.204 2.763

MLS −0.413 −0.120 −0.118 0.168 0.075 0.179 2.899
MHS −0.513 −0.070 −0.075 0.154 0.071 −0.548 4.371

3 September 2021

UB −0.419 −0.135 −0.105 0.344 0.147 0.576 2.491
LS −0.402 −0.115 −0.115 0.248 0.111 0.190 2.815

MLS −0.401 −0.139 −0.137 0.190 0.092 0.194 2.683
MHS −0.344 −0.084 −0.087 0.170 0.072 −0.139 2.909
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