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Abstract: Estimates of burn severity and forest change following wildfire are used to determine
changes in forest cover, fuels, carbon stocks, soils, wildlife habitat, and to evaluate fuel and fire
management strategies and effectiveness. However, current remote-sensing models for assessing
burn severity and forest change in the U.S. are generally based on data collected from California, USA,
forests and may not be suitable in other forested ecoregions. To address this problem, we collected
field data from 21 wildfires in the American Southwest and developed region-specific models for
assessing post-wildfire burn severity and forest change from remotely sensed imagery. We created
indices (delta normalized burn ratio (dNBR), relative delta normalized burn ratio (RdNBR), and
the relative burn ratio (RBR)) from Landsat and Sentinel-2 satellite imagery using pre- and post-fire
image pairs. Burn severity models built from southwest U.S. data had clear advantages compared
to the current California-based models. Canopy cover and basal area change models built from
southwest U.S. data performed better as continuous predictors but not as categorical predictors.

Keywords: burn severity; southwestern U.S.; remote sensing; composite burn index (CBI); RdNBR;
dNBR; RBR

1. Introduction

Fire is a key ecosystem process in the southwest U.S., and quantifying its severity
provides the foundation for predicting and managing a variety of social and ecological
processes. From 2012 to 2019, approximately 100,000 to 200,000 ha burned annually in
Arizona (AZ) and New Mexico (NM) combined; however, 900,000 ha burned in 2011 and
40,000 ha in 2020 [1]. Large fire years in the Southwest often correlate with drought and the
La Nina phase of the Southern Oscillation [2,3]. The Southwest historically had an abun-
dance of low severity, frequent fires that maintained open forests with a healthy understory
grass component. Fire frequency typically decreases in the Southwest with elevation and
moisture, and fires often become stand-replacing at higher elevations, occurring mainly
during extreme drought [4]. Wildfire events with uncharacteristically high intensity or
extent can result in the degradation of ecosystem services [5,6]. The quantification of burn
severity can prime the understanding of changes to fuels, soils, and wildlife habitat [7].
Characterizing burn severity and forest change at landscape scale also informs post-fire
decision making and improves understanding of the carbon, financial, and ecological
impacts of fire [8–11]. Phenological, fire regime, and forest structure differences in the
Southwest present challenges that could confound modeling burn severity compared to
other western U.S. forests.

The USDA Forest Service (USFS) Geospatial Technology and Applications Center
provides burn severity (composite burn index (CBI)) and forest change estimates (percent
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basal area loss (BA) and percent canopy cover loss (CC)) for large fires on forested lands
in the U.S. through the Rapid Assessment of Vegetation Condition after Wildfire (RAVG)
program. The program provides these products in two timeframes: an “Initial Assessment”
(IA) based on imagery acquired within a few weeks after fire containment and an “Extended
Assessment” (EA) using post-fire imagery from approximately one year post fire (near
the following peak of greenness) [12]. The IA assessment timeframe allows for first-
order fire effects to be determined more clearly; however, the EA assessment timeframe
favors estimation of survivorship and delayed mortality [12]. The IA RAVG burn severity
products are often favored by land and fire managers looking for burn severity data during
the current fire season; however, most burn severity field campaigns find IA field data
collection to be logistically difficult to accomplish, as the timeframe between fire extinction
and monsoon or snowfall is often narrow, and hence build models with EA data.

The standard RAVG estimates are calculated from models relating field-based mea-
sures of burn severity to the relative delta normalized burn ratio (RdNBR) [13]. The RdNBR
is based on the normalized burn ratio (NBR), which is the difference of the near-infrared
(NIR, e.g., Landsat 8 OLI band 5, 0.851–0.879 µm) and the short-wave infrared (SWIR2, e.g.,
Landsat 8 OLI band 7, 2.107–2.294 µm) spectral bands, divided by the sum of the two. The
NIR is lower when less green vegetation is present, and the SWIR increases when more
ash and char are present [14]. The delta normalized burn ratio (dNBR) is the difference
of the pre-fire NBR and post-fire NBR, multiplied by 1000 [12]. The RdNBR relativizes
the dNBR using the pre-fire NBR to moderate the effects of low vegetation pre-fire [13].
Parks et al. (2014) [15] made a further adjustment to RdNBR to assure the denominator is
always greater than zero, thus developing the relative burn ratio (RBR). Additionally, the
dNBR, and its derivatives (RdNBR and RBR), can utilize an offset in the calculations, which
accounts for possible phenological differences between pre- and post-fire dates [16]. The
offset is the average dNBR within one or more relatively homogeneous unburned areas
outside each fire.

Current RAVG models were developed from data gathered in the Sierra Nevada,
northern California, and southern Oregon, USA [17], yet are routinely applied across
the conterminous U.S. Concern has arisen that the accuracy of these estimates may vary
geographically given ecological differences in both pre- and post-fire conditions across
regions [18]. Models derived from a single region and forest type could fail to adequately
represent phenological, fire regime, and forest structure differences found in other regions,
including the neighboring Southwest, USA. As in the Sierra Nevada, frequent, low-severity
fire regimes can prevail in the dry and mixed conifer forest types of the Southwest [19].
Like California, high-severity fires in the Southwest continue to increase, especially in high-
elevation areas [20,21]. Unlike the Mediterranean climate of the Sierra Nevada, however,
precipitation in the Southwest occurs bimodally, with the precipitation occurring during
the summer monsoon around July and August and with synoptic events in winter [4,22].
Wildfire is generally more widespread early in the summer with a typical fire season peak-
ing just before the onset of heavy precipitation associated with the summer monsoon [4].
This bimodal precipitation regime can affect burn severity modeling if monsoonal precip-
itation results in ash loss or rapid green-up of grasses, sprouting shrubs, or trees, which
can moderate the changes in NBR as compared to areas with much less summer moisture.
Additionally, the sparse canopy cover of Southwest woodlands and the abundance of
grasses make modeling canopy cover and basal area changes in these vegetation types
challenging with satellite imagery, as the understory signature may overwhelm and mute
the overstory signature. The RdNBR index is prone to producing extreme values when
pre-fire vegetation is extremely low, which can appear as outliers but do not necessarily
describe drastic change due to fire [15].

The purpose of this study was to determine if models created specifically for the
Southwest would produce better burn severity and forest change estimates than the current
models by comparing the predictive accuracy of both sets of models [23]. An analogous
project developed models specific to the Pacific Northwest region [24]. Region-specific
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models may be able to better address localized ecological dynamics by better fitting data
distributions of response variables to predictor variable ranges for the region. Canopy cover
and basal area change models relying on satellite indices such as RdNBR have the potential
for lower accuracy in areas of lower tree canopy cover, such as the Southwest [17], because
the understory can dilute the spectral signature of the trees. For this project, we evaluated
models including two additional burn severity indices, dNBR and RBR, topographic and
ecological variables, and various model forms, in addition to the use of region-specific field
and photographic interpretation training data in efforts to improve the predictive capacity
of models.

2. Methods
2.1. Site Locations

Vegetation in the Southwest varies from low-elevation shrub steppe to chapparal,
woodland, and montane conifer forests at higher elevations. Woodlands often consist of
Pinyon pine (Pinus edulis Engelmann) and Juniperus species, while forests range from dry
forests dominated by Ponderosa pine (Pinus ponderosa var. arizonica EngelmannShaw), at
times including Gambel oak (Quercus gambelii Nuttall), to mixed conifer forests including
white fir (Abies concolor Gordon and Glendinning-Hildebrand) and interior Douglas fir
(Pseudotsuga menziesii var. glauca Mayr-Franco) and at the highest elevations mesic species
including Engelmann spruce (Picea engelmannii Engelmann) and Rocky Mountain subalpine
fir (Abies bifolia A. Murray bis.). The lower elevation forests and woodlands typically have
more open tree canopies and a mix of grass, herbaceous, tree litter, and dead woody
material making up the surface fuels, whereas the upper elevations typically have dense
conifer fuels with canopies that extend to the forest floor to meet surface fuels made
up largely of conifer litter. Microclimate, based on topographic position, elevation, and
aspect, plays a major role in the distribution of vegetation in the Southwest, with topo-
edaphic climax communities shifting based on aspect and energy setting even within the
same elevation and precipitation bands [22]. The primary target vegetation types for this
study include the montane conifer forested types most subjected to forest management
practices. These include multiple ponderosa pine types, mixed mesic and wet mixed conifer
types, and spruce–fir types. Taxonomic nomenclature follows the Flora of North America
(eds. 1993+) [25].

2.2. Field Sampling

A Southwest-specific field dataset was obtained to train models to satellite imagery.
Field sampling design and plot placement followed Key and Benson (2006) [12] and
Miller et al. (2009) [17]. Fires in AZ and NM from 2017 and 2018 were chosen for field
sampling (Figure 1, Table 1). We considered candidate fires for RAVG product development
if they included large portions of federal land and were accessible via roads. Sampling was
carried out at even intervals along roads or trails at a target density of 15–30 plots per fire.
Circular plots measured 30 m in diameter and were located at least 500 m apart, ≥100 m
from roads or trails, in areas with >10% tree cover, and in areas of homogeneous burn
severity, preferably 60 m × 60 m [12]. We collected location data at the center of each plot
using both a Garmin Glo and a Trimble GeoXH GPS and averaged location data to improve
accuracy and reliability [26]. We included unburned plots (n = 67) as 20% of the entire
dataset to ensure that models span the full range of wildfire severities [27]. We removed
several plots from our analysis that had received post-wildfire management (e.g., salvage
logging) between the time of the fire and our 1-year post-wildfire imagery. Our final plot
sample size was 337.

To assess the composite burn index (CBI), we used a CBI questionnaire to generate a
composite score for each plot, following Key and Benson (2006) [12]. The composite score
accounts for fire effects on each of five strata: substrate, low understory, taller understory,
midstory trees, and big trees, based on ocular estimates of scorch, consumption, and other
changes related to fire [12].
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Figure 1. Locations of 2017 and 2018 fires where field plots were located.

Table 1. Locations and number of plots on each fire sampled.

Fire Name National Forest State Ignition Date Year
Sampled Plots

Bear Tonto AZ 16 Jun 2018 2019 17
Blue Water Cibola NM 12 April 2018 2019 22

Diener Canyon Cibola NM 12 April 2018 2019 25
Sardinas Canyon Carson NM 24 June 2018 2019 20

Tinder Coconino AZ 27 April 2018 2019 25
Venado Santa Fe NM 20 July 2018 2019 19

33 Springs Apache–Sitgreaves AZ 6 October 2017 2018 13
Baca Gila NM 12 May 2017 2018 23

Bonita Carson NM 3 June 2017 2018 27
Boundary Coconino AZ 1 June 2017 2018 14
Flying R Coronado AZ 14 June 2017 2018 15

Frye Coronado AZ 7 June 2017 2018 21
Goodwin Prescott AZ 24 June 2017 2018 11
Hondito Carson NM 16 May 2017 2018 7

Kerr Gila NM 1 May 2017 2018 14
Lizard Coronado AZ 7 June 2017 2018 9
Pinal Tonto AZ 8 May 2017 2018 9

Rucker Coronado AZ 7 June 2017 2018 9
Sawmill Coronado AZ 23 April 2017 2018 7

Slim Apache–Sitgreaves AZ 1 June 2017 2018 10
Snake Ridge Coconino AZ 19 May 2017 2018 20

Total 337

Tree measurements were collected on trees >10 cm diameter at breast height (dbh,
1.37 m) post-fire in each plot to characterize species, canopy cover, tree height, estimated
pre-fire mortality, and fire-induced mortality [28]. We used the Central Rockies variant
of the Forest Vegetation Simulator (11 January 2019 version) [29,30] to generate pre- and
post-fire canopy cover and basal area estimates based on tree measurements and estimates
of pre-fire mortality and fire-induced mortality, respectively. Fire-induced mortality was
distinguished from pre-fire existing dead trees based on factors such as the amount of bark,
depth of char, and presence of limbs and small branches similar to previous studies [31].
FVS uses established biometric equations that relate tree measurements to other tree metrics
such as canopy cover and basal area [32,33]. The FVS includes a canopy cover adjustment
factor (CCadj) based on the spacing of trees (five levels from random to uniform) to adjust



Fire 2022, 5, 137 5 of 26

for overlapping tree crowns [32,34], which could be used to calibrate FVS-estimated canopy
cover to actual conditions. We excluded plots with <10% pre-fire canopy cover to limit the
dataset to forested lands.

2.3. Derivation of Satellite Imagery Indices

We derived burn severity indices from multi-spectral satellite imagery (the Landsat-8
Optical Line Imager (OLI) and Landsat-7 Enhanced Thematic Mapper Plus (ETM+) courtesy
of the U.S. Geological Survey, and the Sentinel-2 Multispectral Imager (MSI) (Copernicus
Sentinel data 2016–2018) [35]), each rescaled to top-of-atmosphere reflectance. In this
paper, we refer to Landsat-7 ETM+ and Landsat-8 OLI collectively as “Landsat.” We used
OLI imagery except for a single case where ETM+ had clearer imagery. Consistent with
the current RAVG workflow, the indices were calculated from a pair of satellite images—
one each pre- and post-wildfire—judiciously selected by an analyst to reveal fire-related
changes and minimize changes due to other factors such as annual productivity, seasonal
phenology, or non-fire disturbances. To calculate the version of indices with the offset, an
offset value was subtracted from the standard dNBR, and thus RdNBR and RBR equations,
for each pair of indices to account for differences between pre- and post-fire images due to
phenology [15].

Because GPS plot locations can be inaccurate, we smoothed satellite indices using ad-
jacent pixels to account for potential location error. A 3-by-3 kernel weighting neighboring
pixels based on the portion overlapped by a 60 m diameter circle was used to partially
weight pixels which could overlap a 30 m diameter plot centered anywhere within 15 m of
the center pixel’s centroid (Figure 2, Tables 2 and 3).
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Table 2. Kernel used to smooth 30 m Landsat data.0.025 0.146 0.025
0.146 0.320 0.146
0.025 0.146 0.025



Table 3. Kernel used to smooth 20 m Sentinel-2 data.0.0766 0.1377 0.0766
0.1377 0.1427 0.1377
0.0766 0.1377 0.0766


2.4. Photo-Interpretation Sampling

Because direct estimates of canopy cover from 20–30 m resolution satellite imagery
are poor without proper training, canopy cover estimates were derived remotely from pho-
tographic interpretation of high-resolution (30 cm) imagery from the USDA Forest Service
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Southwest Region photogrammetry program using a point intercept method for assigning
canopy cover values (e.g., canopy/no canopy) to gridded points within a plot [36,37]. The
PI data also increased the sample size to areas relatively inaccessible by field crews. Existing
pre- and post-fire aerial resource photography was obtained for forests that burned in 2017
and 2018. Pre-fire aerial photos were limited to those acquired no more than five years
prior to the given fire (Table 4) to prevent large differences in natural canopy cover change
prior to the fire from influencing the data. The photo interpretation sampling area was
cross-checked against insect and pathogen aerial detection surveys to confirm that none
overlapped areas with extensive non-fire mortality events.

Table 4. Fires sampled, dates of fire, and pre- and post-fire aerial photos.

Fire (National Forest) State Year of
Fire

Year of
Pre-Fire
Aerial
Photos

Year of
Post-Fire

Aerial
Photos

Number of
PI Plots

(Number of
OS Plots)

Tinder (Coconino) AZ 2018 2014 2018 35 (12)
Goodwin (Prescott) AZ 2017 2015 2017 13 (4)

Sardinas Canyon (Carson) NM 2018 2014 2018 33 (8)
Deiner (Cibola) NM 2018 2016 2018 29 (10)

Blue Water (Cibola) NM 2018 2016 2018 32 (10)
Pinal (Tonto) AZ 2017 2012 2017 23 (3)

Fires below not field sampled

Highline (Tonto)/ Bears AZ 2017 2012 2017 19
Redondo RX (Cibola) NM 2018 2016 2018 18

Total 202 (47)

Photo interpretation plots were located using two systems. First, to characterize fire-
induced changes across the entire burn perimeter, a systematic grid of 100 potential plots
was generated for each of the 8 fires where pre- and post-fire aerial resource photography
was available. Grid spacing was adjusted for each fire to retain up to 40 PI plots per fire
after stratification and exclusion of plots due to low canopy cover or edge effects. The
gridded photo plots were stratified evenly across immediate assessment RdNBR values [12].
Fire perimeters were buffered by −60 m, meaning only the area >60 m interior of the fire
perimeter was sampled to avoid plots being partially in or out of the fire. Unburned photo
plots were identified within the fire perimeter and also within a 500 m buffer outside of the
fire perimeter to allow for approximately half of unburned plot sampling to occur outside
the fire perimeter. Second, to relate remotely sensed data to field observations, another
47 photo plots were over-sampled (OS) coincident with a stratified random sample of field
plots. Field-sampled plots were buffered by 250 m so that the two sets of plots did not
overlap. Plots with <10% canopy cover pre-fire were omitted from all analyses.

A circular plot with a diameter of 40 m was used for PI. A PI technician attributed a
grid of 37 points within each 40 m plot as live tree canopy, shrub canopy, or bare ground [37]
using the Image Sampler, an add-on to Esri ArcMap that aids in sampling aerial photos.
Where shadows or edges made attributing cover unreliable, points in question were dis-
carded. If more than 20% of sample points were discarded, the entire PI plot was discarded.
A combined 202 PI plots (grid and OS) were used in analysis.

2.5. Accounting for Canopy Reduction due to Fire

Canopy scorch and torch post-fire are inherently accounted for in the PI data; however,
FVS has no direct mechanism to estimate losses in canopy cover due to fire. Miller et al.
(2009) [17] used a reduction of tree crown footprint based on field-measured increases in
crown base height to reduce tree crown widths, using crown volume shapes published for
California. No crown volume equations are readily available for the Southwest. Addition-
ally, in many instances, tree crown reduction due to fire does not occur uniformly from the
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bottom up. To account for scorch post-fire in field plots, we utilized a two-step process.
First, we subtracted the change in FVS cover (FVS ∆ CC) from the change in PI cover
(PI ∆CC) to adjust the FVS-modeled canopy cover change for scorch (FVS ∆CC − PI ∆CC
= scorch adjustment). Second, we utilized k-nearest neighbor (KNN) regression to relate
the scorch adjustment to CBI (scorch adjustment vs. CBI). This KNN coefficient was then
used to increase FVS-generated canopy cover change to account for scorch. To test whether
the change in canopy cover between the two methods was comparable and warranted
combining data for overall model development, PI ∆CC and scorch-adjusted FVS ∆CC
were compared to each other using a simple linear regression through the origin [38].

2.6. Model Development

To improve model accuracy based on anticipated difficulties in estimating burn sever-
ity in this region, we explored the use of additional variables and modeling methods
beyond the current parametric models [17] used in RAVG fire severity and forest change
products. Similar to previous studies, we included several variables derived from a 30 m
DEM (U.S. Geological Survey, Reston, VA, USA) [39] shown to be relevant to burn severity,
including elevation, slope, aspect, and topographic convergence index [31,40–43]. We eval-
uated non-parametric models because the utility of several of these algorithms has been
demonstrated in the field of fire effects prediction, including random forest [40,41], boosted
regression trees [42], and general additive models (GAM) [32]. Our response variables can
be characterized as proportions which typically includes a mass of observations at 0 and 1
with continuous data between these bounds. Zero-and-one inflated data follow the beta
(ZOIB) distribution [44], which we used in a GAM. We tested a variety of standard satellite
indices that have been shown to predict burn severity and forest change, including RdNBR,
dNBR, and RBR [12,13,16], and we tested each index with and without “offsets,” values
calculated in unburned areas near each fire and intended to account for non-disturbance
differences between the pre- and post-fire images. Given the high potential for monsoonal
rains to occur quickly following fire, resulting in loss of ash cover, we did not use the con-
version factor derived by Miller and Quayle (2015) [45] to modify 1-year post-fire models
to produce immediate post-fire estimates for burn severity and stand change. Instead, we
developed stand-alone models for immediate post-fire effects based on image pairs that
used post-fire imagery captured immediately after the fire.

To predict burn severity, canopy cover change, and basal area change after wildfire,
we developed and tested a series of parametric and non-parametric models, with data
obtained from the Southwest. To limit the overall number of models evaluated, model form
and different predictor variables were each evaluated in turn, rather than evaluating every
permutation of model form and predictors (Figure 3). Only the best candidate models were
carried forward into the next evaluation, i.e., once the model form was chosen, satellite
indices were evaluated on only the selected model form. To compare candidate model
performance, test mean squared error (MSE) was computed within a 7-fold cross validation
and then averaged across folds. The details of the models sequentially tested are given in
Appendix A.

The parametric models fit were of the form currently used in RAVG production (Craig
Baker, pers. comm.), which are the inverse of those documented in Miller et al. (2009) [17]
and follow a sine curve for ∆BA and ∆CC and natural log curve for CBI (Equations (1)–(3)).
The application of these parametric models (Miller et al., 2009) [17] includes limits below
and above which predictions are set to the minimum and maximum values, that is, zero
and 100% loss, respectively, for ∆BA and ∆CC and zero and three, respectively, for CBI.

CBI =
(

1
c

)
ln
(

Index − a
b

)
(1)

∆BA = sin
(

Index − a
b

)
(2)
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∆CC = sin
(

Index − a
b

)
(3)

Index refers to any one of the satellite indices tested (dNBR, RdNBR, or RBR) and a, b,
and c are constants.
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3. Results
3.1. Model Development Process

Initial model development produced extensive results, which can be found in
Appendices A and B. Models built from just the field-derived canopy cover datasets pre-
dicted better than those using combined canopy cover data (field- and PI-derived), so only
the field-derived canopy cover response variable was carried forward. General additive
models (GAMs) performed best as a group and were the model form carried forward into
final model development. Multivariate GAMs were evaluated, but due to mixed results
and the complexity of acquiring additional variables in the production phase, we elected to
only carry forward simple GAMs into the final models (Table A3). Indices derived from
Sentinel data performed better than indices derived from LANDSAT data. The indices
that performed best and which were carried forward into final model development were
the RBR for the EA time series and dNBR for the IA (Tables A6 and A7). Indices with the
offset used in calculations generally performed the best, so all final models were built using
indices with the offset included (Table A8).

3.2. Final Models

We compared the best candidate models (simple GAMs) to those used in the current
RAVG products as of this writing [17]. The models built from Southwest data all had
a lower test MSE than the current RAVG models [17] when applied to the Southwest
data, suggesting that the Southwest models perform better when viewed as continuous
data products. However, the results for accuracy and Kappa, which are used to evaluate
categorical data response, were mixed (Table 5). For CBI, all three metrics (test MSE,
accuracy, and Kappa) suggested that the models built from Southwest data perform better
in the Southwest. Conversely, the Miller et al. (2009) [17] canopy cover change models had
higher accuracies and Kappa, though differences were mostly small. Likewise, for ∆BA
the current RAVG [17] models had higher accuracy and Kappa (Table 5). However, for
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BA change for both EA and IA timeframes, several datapoints in the highest burn severity
categories were predicted into the lowest burn severity category and vice versa with the
current RAVG models [17] (Tables A9–A17). This does not diminish accuracy, but the
magnitude of the error possible is higher than in the models built using the Southwest data.
The model accuracy metric only factors in a binary response at each category and does not
penalize differently for large versus small categorization errors. These results suggest that
the ∆BA and ∆CC models built from Southwest data predict better as continuous products
for the Southwest, but current RAVG models [17] predict the most observations in the
correct categories.

Table 5. Comparison of our final SW models predicting CBI, ∆BA, and ∆CC (percent accuracy, Kappa,
and test MSE) to models currently used in RAVG burn severity and forest change products at the
time of this writing [17].

IA SW-Specific Model
(Sentinel-2 dNBR)

IA Current Model (Landsat
RdNBR)

EA SW-Specific Model
(Sentinel-2 RBR)

EA Current Model (Landsat
RdNBR)

Acc. Kappa Test MSE Acc. Kappa Test MSE Acc. Kappa Test MSE Acc. Kappa Test MSE
CBI 61.4 46.7 0.0184 46.9 32.1 0.8753 62.0 47.0 0.0237 50.1 35.9 1.1265
∆BA 52.2 33.9 0.0409 67.4 47.5 0.0547 56.1 38.1 0.0407 63.8 46.9 0.0705
∆CC 50.7 38.0 0.0347 54.9 41.5 0.0886 53.4 41.2 0.0337 54.9 41.4 0.0518

4. Discussion

Our objective was to create and explore the efficacy of region-specific models for
the southwest U.S. predicting burn severity and forest change with fire. Surprisingly, we
found that current RAVG models are better categorical predictors for forest change than
our region-specific models, although our models appear to serve as better continuous
prediction tools. Our methods (Appendix A) and publicly available code (https://github.
com/alreiner/SW_RAVG.git) (accessed on 1 August 2022) provide for the development of
similar region-specific models in other systems.

4.1. Efficacy of Region-Specific Models in Assessing Post-Wildfire Change

We assessed the performance of region-specific fire effects models with test metrics
for assessing the model’s ability to fit a continuous response or categorize the response.
Categorical prediction is best assessed with the confusion matrix and accuracy, whereas test
MSE is a metric more suitable for evaluating a continuous response. In general, the Miller
et al. (2009) [17] ∆BA and ∆CC models may have better categorical prediction capabilities
than models developed from the SW data; however, continuous and overall predictions
from the Southwest models are superior when applied to Southwest data (Table 5). When
the total vegetation cover is low in a spectral image, changes to the vegetation have lower
impact on the spectral image, which could make for a weaker relationship between the
indices and fire effects. Effectively, the sparser vegetation has the effect of increasing the
substrate signal, which influences the indices. A wide variety of forested vegetation types
are present in the Southwest and in our dataset, ranging from pinyon–juniper woodland
to mixed conifer forest. The variation in the spectral signature may be wider than that of
Miller et al. (2009) [17], which did not include arid woodlands.

Nuances between satellite indices factor into why various indices performed better in
Southwest models. Cansler and McKenzie (2012) [46] note that in areas with little variation
in pre-fire reflectance, meaning homogenous vegetation cover, dNBR has little advantage
over RdNBR. Parks et al. (2014) [15] note that areas with very low pre-fire NBR can cause
very high or very low RdNBR due to the square root in the denominator, leading RBR to
potentially perform better. The Southwest has highly variable canopy cover and many
vegetation types with low cover, so it is not surprising that RBR proved optimal in some
instances. A few factors could explain why dNBR was the best IA predictor, whereas RBR
was the best EA predictor. Parks et al. (2014) [15] note that dNBR is correlated to pre-fire
NBR. Severity is understandably correlated to pre-fire vegetation cover in the Southwest,

https://github.com/alreiner/SW_RAVG.git
https://github.com/alreiner/SW_RAVG.git
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as stand-replacing fire regimes occur in the highest elevation sites dominated by mesic
forests, which inherently have high vegetation cover compared to the arid woodlands of
the low elevations. For the IA time series, this correlation would likely boost the predictive
capacity of a satellite index. However, for the EA time series, derived one growing season
after the fire, giving the understory more time to recover, RBR, an index normalized by
pre-fire vegetation cover, was favored, suggesting that normalizing the index to pre-fire
vegetation cover is more useful for modeling at that timeframe. This normalization makes
finer differences in dNBR more apparent in the lower-cover portions of the study area,
which likely had more understory recovery than the closed-canopy forest types. The
Sentinel-2-based indices may have performed better than the Landsat indices partially due
to the finer scale (20 m rather than 30 m) [47].

The zero-and-one inflated beta distribution [44] is suitable where a binary response
is a frequent outcome in an otherwise continuous data distribution. In the context of
fire severity, ∆CC, and ∆BA, these are unburned plots or plots with 100% canopy scorch.
Accounting for this distribution in a GAM may have given the GAM models an advantage
over the parametric and random forest models by better addressing the binary nature of
the data. The Southwest GAM models generally outperformed the Southwest parametric
models. It is plausible that GAMs using a zero-and-one inflated beta distribution derived
with the Miller et al. (2009) [17] data might predict with greater accuracy.

In our analyses, multivariate GAM performance may have been reduced by several
factors. The stepwise procedure we utilized for multivariate model development is reliant
on appropriate selection of plausible a priori variables with potential collinearity between
variables. For this reason, it can be sensitive to over-fitting if care is not taken when
selecting a priori variables [48]. However, we used a limited selection of a priori variables
and selected only those with sufficiently high importance. The gamlss package available
in R allows the use of the zero-and-one inflated beta distribution; however, it does not
incorporate model selection algorithms utilizing shrinkage such as LASSO. The shrinkage
algorithms would be more effective at reducing the moderate to low importance predictors
to zero. In our analyses, the relationships of the non-satellite predictors were weak, so there
was little additional information to be added from each. Holden et al. (2009) [40] noted that
topographic variables which describe moisture availability present shifting, and perhaps
conflicting, roles with increasing elevation. For example, at lower elevations, aspect can
influence vegetation distributions and fuel loads due to changes in moisture availability. It
is possible that at lower elevations, only northerly aspects have enough moisture and fuels
to burn with high severity. Conversely, at higher elevation where mixed conifer forests
are dominant, southerly aspects or areas that experience lower moisture have adequate
fuels to burn with high severity and could be more likely to do so given the lower fuel
moistures. These differences in the way aspect and other geomorphic predictor variables
relate to severity with increasing elevation may be important for process-based modeling
but are less useful for multivariate GAMs. Models produced from larger datasets and
machine learning methods capable of incorporating complex interactions may capture
these interconnections better.

4.2. Influence of Forest Change Measurements on Error

Field measurements and photo interpretation methods each have an irreducible error
when estimating canopy cover, which can weaken canopy cover models. Error in field
methods can arise from measurement or sampling error, and error can be introduced in
photo interpretation due to shadows or edges being less interpretable. Field plots were
intentionally located in areas of relatively homogenous severity [17], whereas PI plots were
located on a systematic grid, which could have increased the ratio of PI plots in areas of
mixed severity, potentially muting the CBI to satellite index relationship.

Changes in canopy cover and tree mortality in areas of heterogeneous severity would
have a weaker relationship between predictor and response variables. This may have led
to the PI models having weaker relationships with satellite indices when compared to
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the field plots. Background mortality may also be a confounding error source in photo
interpretation where pre-fire photos were taken several years before the fire and some
background mortality would be expected even in the absence of fire. Similarly, in this
analysis, the post-fire aerial resource photography utilized was collected the same year as
the fire, which would not pick up delayed mortality for the EA timeframe. Field data were
collected the year after fire, so include the 1-year delayed mortality with the assumption of
EA mortality being the same as IA, which may not be entirely accurate but is likely a minor
error considering overall error sources and precision of the data and models.

4.3. Implications and Directions for Future Research

The implications of this research support continued development of the synergy
between remotely sensed data and machine learning methods as well as appraisal of current
models and development of improved or region-specific models. With the increasing
variety of remotely sensed data as well as machine learning methods with which to develop
models, more nuance is possible in fire effects modeling. New sensors are being developed
each year, expanding the capacity for remote data collection, and data post-processing
methods as well as machine learning algorithms are continually being expanded and
improved. New sensors and machine learning will aid in more precise and accurate model
development in the years to come. Automated workflows could improve the use of these
data and machine learning methods. The improvements and lessons our Southwest models
offer include addressing the zero-and-one inflated beta distribution inherently with the
choice of model form and algorithm. A drawback to the parametric models currently
used in RAVG products is the need to apply limits to the sine and natural log functions at
points of inflection or nonsensical predictions, capping them at minimum and maximum
predictions. These limits affect the categorization of a portion of the data range, which
can influence categorization errors. Our Southwestern-specific models and approach to
other arid or semi-arid regions, such as the southwestern Rockies and the Great Basin, may
improve fire effects modeling and provide better information to researchers and managers
under increasingly variable fire regimes.

Future research could benefit from three tactics not employed in this project: using
the individual bands from the remote satellite sensors rather than indices, exploring addi-
tional machine learning methods other than GAM with modifications to accommodate the
zero-and-one inflated distribution, and employing composite images through Google Earth
Engine (GEE). Indices are useful in that they compile information from several relevant
variables into one variable, making models, relationships, and predictions easier to un-
derstand. However, there is some information loss when multiple variables are combined
into an index. Applying multivariate and machine learning modeling methods to the
variables addressed in this research plus the individual band differences or individual
bands such as pre- and post-fire bands five and seven and NBR may provide additional
predictive power [49]. Additional variables not used in this study could improve model
results, namely active fire data such as those derived from MODIS and VIIRS [50,51].
This concept could be taken a step further by exploring linear unmixing, in which the
entire spectrum of image information is used rather than categorizing the image data into
bands [52]. The gamlss package in R is one of the few ready-made algorithms available
to model the binary and continuous response of a dataset simultaneously. It is possible
to split data into binary and continuous response subsets and model them separately;
however, as the split is non-random, these models will be applied to data on which they
were not developed, which results in sample selection bias. Methods and algorithms to
overcome this bias are being developed and should be explored to allow a variety of proven
machine learning methods beyond GAM to be applied. Previous studies [42] have used the
GEE environment to create composite images from collections of imagery based on date
and quality constraints, from which more robust models can be developed as these data
moderate differences in individual images. Given that we focused on exploring Sentinel-2
data just as data from this sensor were becoming available, we did not have a broad history
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from which to pull multiple images for the 2017 fires sampled, so we opted not to pursue
the use of composite images. However, others have found value in this approach [42],
which warrants future exploration.

Appropriately designed field training data are key building blocks to creating im-
proved or regional models. Although CBI has historically been utilized as the primary
response variable in burn severity models, there is value in collecting and modeling as
response variables other more mechanistically linked or forest structure data rather than
unitless and subjective data such as CBI [50,53]. Additionally, field verification of new and
existing models could help to highlight areas where revision to current models would be
beneficial. Archiving data and methods would greatly facilitate re-analysis of historical
datasets with more contemporary statistical learning tools as well as meta-analyses using
combined data or the use of similar datasets as validation sets for model development.

5. Conclusions

Our region-specific post-wildfire model had several advantages over conventional
California-based models and showcases the utility of developing region-specific models.
However, measurement error, limitations to current statistical packages, and the complexity
of untangling the remote-sensing data spectrum are among the potential issues with
developing and implementing similar models to assess post-wildfire change. Continued
development, collection, and archival of remote and ground-based data will provide for
better calibration and more accurate decision making. Our success in improving on the
Miller (2009) [17] models should provide guidance for future region-specific adaptations of
these models.
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Appendix A

Appendix A.1. Model Development Methods and Intermediate Results

Appendix A.1.1. Model Evaluation Metrics and Feature Selection

We chose to use test MSE averaged across a sevenfold cross validation to compare
models, although a variety of test metrics have been used in similar studies to compare
candidate models [54]. Other metrics include accuracy and Kappa, generated from con-
fusion matrices, and area under the receiver operating curve (AUC). Overall accuracy,
defined as the “degree of right predictions of a model” [54], and Kappa (or Cohen’s Kappa),
which is the difference of the overall accuracy of the model and that of pure chance [55],
are commonly used in assessing geospatial mapping accuracy. However, accuracy can
give an overly optimistic score for models with heavy class imbalance [56], and Kappa
also has drawbacks because it is a relative score that is also affected by unbalanced cate-
gories [57]. The area under the receiver operating curve (AUC) is a measure of the ability
of a (binary) classifier to distinguish between classes and has been used in the assessment
of severity classification models [16]. However, AUC is typically applied to classification
and can involve dichotomizing a non-binary response [31]. We chose to use test MSE to
test candidate models because it describes the deviation of model predictions from training
data and does not utilize common, yet arbitrary, classes. We show accuracy and Kappa for
final models for comparison to previous studies. Accuracies were computed on the same
model-development dataset for a direct comparison of final (whole dataset) models [42] to
current models [17].

For multivariate models tested, feature selection using correlations and multi-model
inference approach (MMI) was completed to reduce the number of available predictors to a
smaller set. Correlation coefficients were used in feature selection to reduce redundant and
marginally useful predictors [58]. The Kendall’s tau correlation coefficient was used due to
the non-linear relationships between predictors and response variables, as well as the lack
of normality in the distributions for most variables [59,60]. We used the MuMin v4.0.5 [61]
package to compare all possible combinations of plausible variables and rank models
by second-order Akaike information criterion (AICc). The relative variable importance
(RVI) was computed for each variable, and variables with RVI > 0.5 were considered
important [48] and brought forward in multivariate model development.

Appendix A.1.2. Non-Parametric Modelling Methods

We fit two types of non-parametric models: a random forest and a general additive
model (GAM). A random forest is a multivariate learning algorithm that combines many
decision trees into a final model outcome [62]. A GAM is an additive model that uses
smoothing to accommodate potentially nonlinear relationships for individual predictor
variables. Random forests have the advantage of modeling complex interactions of co-
variates, but they lack interpretability, whereas GAMs are more interpretable and can
model nonlinear and “hockey-stick” relationships. We used the randomForest v4.6-14
package (R documentation, randomForest v4.6-14) [63] to fit a random forest model with
the topographic variables explored during feature selection, plus Landsat-derived pre-fire
NBR and EA RdNBR (Table A5). We used the gamlss package version 5.3-2 in R to fit
a GAM using a zero-and-one inflated beta (ZOIB) distribution [64,65]. The stepGAIC
function in the gamlss package was used to determine multi-variate GAM formulas for
each parameter [64]. In addition to the topographic variables selected during the feature
selection phase, we added pre-fire NBR as a potential variable for the stepGAIC function
when finding the optimal multivariate model, to aid the satellite indices as predictors in
sparse vegetation types. The parameters modeled by gamlss for the ZOIB distribution
(family = BEINF) allow for prediction of the continuous nature of the data (mu), as well as
the probability of zero (nu) and one (tau) (R documentation, gamlss version 5.3-2). Mu, nu,
and tau were combined to generate a continuous response, which factors the probability of
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zero and one (Equations (A1) and (A2)) in with the continuous response (Equation (A3))
(pers. comm., Saba Saberi):

p0 = nu/(1 + nu + tau) (A1)

p1 = tau/(1 + nu + tau) (A2)

Yest = (1 − p0) ∗ (p1 + (1 − p1) ∗ mu) (A3)

where p0 and p1 are the probability at 0 and 1, respectively, and Yest is the predicted
response.

Appendix A.1.3. Canopy Cover Estimation Results

Pre- and post-fire canopy cover estimates from FVS and PI methods were compared.
The FVS utilizes categorical classifications of tree spacing to adjust canopy cover due to tree
canopy overlap. For pre-fire data, the “Very Uniform” canopy cover adjustment (CCadj) in
FVS yielded the best match between the FVS and the PI data; therefore, the “Very Uniform”
CCadj was used in FVS to generate canopy cover for all field data. For post-fire data,
the “Somewhat Uniform” or “Moderately Uniform” yielded the best match, illustrating
that FVS-generated canopy cover requires an adjustment to account for green tree foliage
removed by fire through needle scorch and torch (Table A1).

Table A1. Summary statistics for canopy cover (along with 5 different levels of canopy cover
adjustment factor for FVS-generated values ranging from “random” tree spacing to “extremely
uniform”) for the over-sampled plots.

Method Min 1st
Quartile Median Mean 3d Quartile Max Standard

Deviation

Pre-Fire

FVS (Extremely Uniform) 38.7 80.3 87.7 84.6 92.6 100.0 11.5
FVS (Very Uniform) 24.0 59.7 69.1 67.2 76.7 99.2 14.2

FVS (Moderately Uniform) 17.9 48.0 57.1 56.1 65.0 96.8 14.3
FVS (Somewhat Uniform) 13.9 39.1 47.3 47.0 54.8 92.6 13.7

FVS (Random) 12.2 35.0 42.7 42.6 49.9 89.5 13.2
Photo interpretation (PI) 22.0 57.0 70.0 67.6 79.5 100.0 18.9

Post-Fire

FVS (Extremely Uniform) 0 45.2 75.2 62.3 86.7 100.0 33.4
FVS (Very Uniform) 0 28.8 54.2 47.4 67.8 99.2 27.5

FVS (Moderately Uniform) 0 21.7 43.0 38.8 55.7 96.8 23.6
FVS (Somewhat Uniform) 0 17.0 34.6 32.0 46.0 92.6 20.3

FVS (Random) 0 14.9 30.9 28.9 41.5 89.5 18.7
Photo interpretation (PI) 0 11.0 35.0 36.3 59.0 92.0 27.6

To calibrate the FVS-modeled change in canopy cover to include partial tree crown
reduction due to scorch and torch (in addition to tree mortality), we utilized KNN regression
between PI-adjusted canopy cover change and the tree portion of the CBI (i.e., the CBI
components attributed to the upper two strata). The resultant coefficient had a maximum
of −0.14 and a minimum of −0.25. The KNN-predicted difference is consistent with how
scorching patterns may affect the canopy, in that little modification occurs at low severity,
a fair amount of modification occurs at moderate severity, and at high severity, where
many trees are completely torched and therefore not considered in FVS calculations, less
modification is needed (Figure A1).
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The KNN-derived coefficient was applied to the FVS-generated canopy cover change
estimates to account for tree canopy removed by fire due to scorch and torch. The adjust-
ment was not applied to values where the tree portion of CBI was less than 0.5, because
those low burn severity plots would be expected to show minor to low canopy cover
loss. Canopy cover change was capped at 100%. A simple linear no-intercept regression
between the adjusted FVS canopy cover change and the PI canopy cover change had an ad-
justed r-squared of 95.81%, demonstrating a strong relationship between the two methods
(Figure A2). Therefore, the combined canopy cover change dataset was carried forward
into analysis as a potential response variable (“combined ∆CC”) in addition to the separate
FVS and PI ∆CC datasets.
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Figure A2. Photo interpretation canopy cover change versus scorch- and torch-adjusted FVS-
generated canopy cover change and linear regression line.

Our methods of adjusting FVS-derived canopy cover from field measurements with
the KNN regression with a limit at 0.5 for the tree portion of CBI created a cluster of
scorch-adjusted canopy cover datapoints at 0.14. Further use of these data as input to other
modeling products will be affected by this artificial and uneven data distribution. In raster
data, this data cluster at 0.14 could be moderated by smoothing.
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Appendix A.1.4. Feature Selection Results

The topographic and ecological predictor variables were explored to remove redun-
dant variables and include those variables that would provide the most information to
the models. The three response variables at the bottom of the matrix (Figure A3) are
the composite burn index (CBI), change in canopy cover with fire (∆CC), and change in
basal area with fire (∆BA). A first cut at feature selection using Kendall’s tau correlations
indicated correlations between the model response variables (∆BA, ∆CC, and CBI) and
topographic variables slope, elevation, and TCI. LANDFIRE Biophysical Setting (BPS) code
had low correlation to change in basal area [66].

Multi-model inference (MMI) was then performed using the top four predictor vari-
ables (slope, elevation, TCI, and LANDFIRE BPS code) that showed measurable correlation
with response variables (∆BA, ∆CC, and CBI) along with the satellite index (RdNBR) used
in previous RAVG models. The RdNBR with offset from Landsat Extended Assessment
(EA) data was the most highly ranked predictor variable for all response variables based
on relative variable importance (RVI; Table A2). Elevation was the second most impor-
tant predictor for the model predicting CBI, whereas TCI was the second most important
predictor for the other response variables (Table A2). The LANDFIRE BPS code was cor-
related to ∆CC, but not to CBI or ∆BA, and therefore was not included (Table A2). Due
to the corroboration between Kendall’s tau correlations and MMI results for TCI, eleva-
tion, and slope, these three predictor variables were carried forward in GAM multivariate
model development.
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Table A2. Relative variable importance for the “best” models for each response variable. Predictor
variables with RVI ≥ 0.50 are in bold.

Relative (Predictor) Variable Importance for the “Best” Models
Response
Variable RdNBR *** Elevation TCI Slope BPS Code

CBI 1 0.66 0.44 0.35
∆BA 1 0.44 0.50 0.33

FVS ∆CC * 1 0.43 0.50 0.36
PI ∆CC ** 1 0.38 0.79 0.39 0.04

* FVS-generated canopy cover change was only computed for field dataset. ** PI-generated canopy cover change
was only computed for PI dataset. *** RdNBR value used was generated from Landsat EA data with offset.
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Appendix A.1.5. Model Form Evaluation Results

Several model forms as well as the different representations of the canopy cover
response variable were compared using test MSE. Among the canopy cover change response
variables, the scorch-adjusted FVS canopy cover change (adj. FVS ∆CC) had the lowest test
MSE for every model form tested, with the parametric model having the lowest test MSE
and multivariate GAM having the second lowest. Although the simple regression results
indicated that combining the scorch-adjusted FVS and PI datasets would be warranted, the
model created from that combined dataset did not have the lowest test MSE and so was
not carried forward in analysis (Table A3). The scorch-adjusted FVS-derived canopy cover
change data were the only ∆CC method carried forward in analysis after this point because
it had lower test MSE across all model forms (Table A3). General additive models (GAMs)
had the lowest test MSE for the CBI response variable, with multivariate GAMs being the
second lowest. (Multivariate GAM model statements are below the variable dictionary
in Table A4.) For ∆BA, the multivariate GAM had the lowest test MSE, and the simple
GAM had the second lowest test MSE. The random forest model results generally had the
higher test MSE. Based on these results, the simple GAM models were carried forward
(rather than parametric or random forest) as the model form for comparisons of predictor
variables.

Table A3. Comparison of test MSE (and standard deviation of test MSE in parentheses) averaged
across 7 folds for each model form (parametric (Equations (1)–(3)), simple GAM, multivariate GAM,
and Random Forest) using EA Landsat RdNBR with offset as a predictor.

Parametric Simple GAM Multivariate
GAM Random Forest

CBI 0.2486(0.0289) 0.0273(0.0032) 0.0267(0.0033) 0.2657(0.0247)
∆BA 0.0504(0.0085) 0.0483(0.0104) 0.0473(0.0101) 0.0518(0.0040)

Non-adj. FVS ∆CC 0.0511(0.0081) 0.0484(0.0102) 0.0474(0.0094) 0.0518(0.0040)
Adj. FVS ∆CC 0.0392(0.0065) 0.0397(0.0072) 0.0390(0.0070) 0.0440(0.0048)

PI ∆CC 0.0514(0.0028) 0.0523(0.0035) 0.0530(0.0038) 0.0607(0.0050)
Combined ∆CC 0.0457(0.0015) 0.0481(0.0041) 0.0724(0.0032) 0.0492(0.0027)

Non-adj. FVS ∆CC is FVS-derived canopy cover change not adjusted for scorch. Adj. FVS ∆CC is scorch-adjusted
FVS canopy cover change. PI ∆CC is the canopy cover change derived from the PI dataset. Combined ∆CC is
canopy cover change derived from the combined scorch-adjusted FVS as well as PI canopy cover change.

Table A4. Dictionary of variables used in multivariate GAMs.

Variable Name Data

L_EA_rdnbr_with EA Landsat RdNBR with offset
LEA_preN_f EA Landsat pre-fire NBR

elev Elevation
slope Slope
TCI Topographic convergence index

CBI.B Overall CBI rescaled to 0-1
pdBA Pre- to post-fire percent change in BA

pdFVSVU Pre- to post-fire percent change in non-scorch-adjusted FVS canopy cover
adj.lim.pdFVSVU Pre- to post-fire percent change in scorch-adjusted FVS canopy cover

pdTreeCCloss Pre- to post-fire percent change in PI-derived canopy cover change
pdCC adj.lim.pdFVSVU and pdTreeCCloss datasets combined

Multivariate GAM models, using EA timeframe Landsat RdNBR:.

Model: CBI
Model statement: gamlss(formula = CBI.B ~ L_EA_rdnbr_with + pb(TCI) + pb(L_EA

_rdnbr_with), sigma.formula ∼= L_EA_rdnbr_with, nu.formula ∼= L_EA_rdnbr_with, tau.
formula ∼= L_EA_rdnbr_with, family = BEINF, data = na.omit(SWRAVG_field_train))

Model: ∆BA
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Model statement: gamlss(formula = pdBA~L_EA_rdnbr_with, sigma.formula ∼=
L_EA_rdnbr_with + slope, nu.formula ∼= L_EA_rdnbr_with + LEA_preN_f, tau.formula ∼=
L_EA_rdnbr_with + slope, family = BEINF, data = na.omit(SWRAVG_field_train))

Model: pdFVSVU
Model statement: gamlss(formula = pdFVSVU ~ L_EA_rdnbr_with + cs(elev), sigma.

formula ∼= L_EA_rdnbr_with, nu.formula ∼= L_EA_rdnbr_with + TCI, tau.formula ∼=
L_EA_rdnbr_with + elev + slope + LEA_preN_f + TCI, family = BEINF, data = na.omit
(SWRAVG_field_train))

Model: adj.lim.pdFVSVU
Model statement: gamlss(formula = adj.lim.pdFVSVU ~ L_EA_rdnbr_with, sigma.

formula ∼= L_EA_rdnbr_with + TCI, nu.formula ∼= L_EA_rdnbr_with + elev + LEA_preN_f,
tau.formula ∼= L_EA_rdnbr_with + slope, family = BEINF, data = na.omit(SWRAVG_field_train))

Model: pdTreeCCloss
Model statement: gamlss(formula = pdTreeCCloss ~ L_EA_rdnbr_with + cs(slope),

sigma.formula ∼= L_EA_rdnbr_with, nu.formula ∼= 1, tau.formula ∼= L_EA_rdnbr_with +
slope, family = BEINF, data = na.omit(SWRAVG_PI_train))

Model: pdCC
Model statement: gamlss(formula = pdCC ~ L_EA_rdnbr_with + cs(elev) + cs(TCI),

family = BEINF, data = na.omit(SWRAVG_train))

Table A5. Dictionary of variables used in random forest.

Variable Name Data

L_EA_rdnbr_with EA Landsat RdNBR with offset
pdBA Pre- to post-fire percent change in BA

BPScode Landfire Biophysical Setting Code
asp_N45 Aspect shifted to the north by 45 degrees

aspect Aspect
cos_aspect Cosine of aspect

cosasp_N45 Cosine of aspect shifted to the north by 45 degrees
Elev Elevation
slope Slope

TPI_5cell Topographic position index calculated across 5 cells
TPI_10cell Topographic position index calculated across 10 cells
TPI_15cell Topographic position index calculated across 15 cells
FlowAcc Flow accumulation intermediate calculation from TPI
SolarRad Solar radiation

TCI Topographic convergence index
LEA_preN_f EA Landsat pre-fire NBR

Appendix A.1.6. Index and Sensor Evaluation

Comparisons were also made between results using different sensors (Landsat and
Sentinel-2) and indices (RdNBR, dNBR, and RBR). Comparisons at this stage were made
using simple GAMs for more direct comparison between different indices, although
multivariate GAMs sometimes outperformed the simple GAMs. GAMs using indices
from the Sentinel-2 sensors typically had lower test MSE than their Landsat counterparts
(Tables A6 and A7). For both the Extended Assessment (EA) and Initial Assessment (IA)
time series, the models with the lowest test MSE were formed from Sentinel-2 indices
(Tables A6 and A7). For the EA time series, models using RBR had the lowest test MSE for
all three response variables (Table A6), and IA time series models utilizing dNBR had the
lowest test MSE for all response variables (Table A7); therefore, these indices were carried
forward in model development.
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Table A6. Test MSE (and standard deviation of test MSE in parentheses) averaged across 7-fold CV
of single-predictor GAM models for the EA time series.

RdNBR dNBR RBR
Landsat Sentinel-2 Landsat Sentinel-2 Landsat Sentinel-2

CBI 0.0273
(0.0032)

0.0275
(0.0033)

0.0260
(0.0021)

0.0256
(0.0018)

0.0244
(0.0020)

0.0240
(0.0018)

∆BA 0.0483
(0.0104)

0.0455
(0.0087)

0.0495
(0.0062)

0.0465
(0.0052)

0.0450
(0.0070)

0.0416
(0.0059)

Adj. FVS
∆CC

0.0397
(0.0072)

0.0363
(0.0056)

0.0412
(0.0042)

0.0378
(0.0032)

0.0378
(0.0048)

0.0340
(0.0039)

Table A7. Test MSE (and standard deviation of test MSE in parentheses) averaged across 7-fold CV
of single-predictor GAM models for the IA time series.

RdNBR dNBR RBR
Landsat Sentinel-2 Landsat Sentinel-2 Landsat Sentinel-2

CBI 0.0333
(0.0022)

0.0273
(0.0018)

0.0215
(0.0021)

0.0185
(0.0020)

0.0227
(0.0021)

0.0193
(0.0021)

∆BA 0.0710
(0.0092)

0.0642
(0.0103)

0.0440
(0.0052)

0.0416
(0.0069)

0.0454
(0.0057)

0.0424
(0.0079)

Adj. FVS
∆CC

0.0605
(0.0060)

0.0524
(0.0065)

0.0377
(0.0031)

0.0351
(0.0045)

0.0399
(0.0034)

0.0360
(0.0056)

Indices calculated with the offset had higher accuracies in all comparisons made
(Table A8). These models were run with the simple GAM. Given the tendency for indices
calculated with the offset to perform better, we carried indices with the offset forward in
model development.

Table A8. Test MSE (and standard deviation of test MSE in parentheses) for candidate models with
and without offset.

Sentinel-2 IA dNBR Sentinel-2 EA RBR
With Offset No Offset With Offset No Offset

CBI 0.0185 (0.0020) 0.0193 (0.0018) 0.0240 (0.0018) 0.0253 (0.0019)

∆BA 0.0416 (0.0069) 0.0428 (0.0065) 0.0416 (0.0059) 0.0443 (0.0064)

Adj. FVS ∆CC 0.0351 (0.0045) 0.03670 (0.0041) 0.0340 (0.0039) 0.0368 (0.0042)

Note that, in our study, we developed separate equations for EA versus IA timeframes,
rather than applying a correction factor to EA models to arrive at IA predictions [45].
Limitations with this approach and other post-fire fire effects studies should be considered
when using these models. Our approach of developing models for both EA and IA timelines
using only EA data carries the assumption that burn severity and stand metrics are roughly
similar immediately post-fire versus one growing season post-fire. For the strata which
are most likely to change from IA to EA post-fire timelines, the CBI methodology includes
survey questions that would moderate shifts in CBI such as the presence of colonizers and
change in species composition in the understory strata as well as char height for the trees,
which should stay the same immediately versus 1-year post-fire. Most of the other metrics
apply to fire effects as they occur due to the fire, not how they abate after 1 year. Basal area
should remain similar between EA and IA and may be easier to determine 1-year post-fire
because fire-killed trees would likely not have foliage.
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Appendix B

Appendix B.1. Final Models

Appendix B.1.1. Final Model Coefficients and Equations

Model: CBI for IA timeframe
Predictor variable: Sentinel dNBR with offset
Model statement: gamlss(formula = CBI ~ dNBR, sigma.formula ∼= dNBR, nu.formula

∼= dNBR, tau.formula ∼= dNBR, family = BEINF, data = na.omit(SWRAVG_field))
Coefficients (intercept, predictor):
Mu: −1.033641, 0.005051
Sigma: −0.47943, −0.00123
Nu: 1.09289, −0.04033
Tau: −9.479199, 0.008912

Model: ∆BA for IA timeframe
Predictor variable: Sentinel dNBR with offset
Model statement: gamlss(formula = ∆BA ~ dNBR, sigma.formula ∼= dNBR, nu.formula

∼= dNBR, tau.formula ∼= dNBR, family = BEINF, data = na.omit(SWRAVG_field))
Coefficients (intercept, predictor):
Mu: −2.329664 0.005388
Sigma: −0.238895 0.001175
Nu: 1.71349 −0.01886
Tau: −4.591958 0.009354

Model: ∆CC for IA timeframe
Predictor variable: Sentinel dNBR with offset
Model statement: gamlss(formula = ∆CC ~ dNBR, sigma.formula ∼= dNBR, nu.formula

∼= dNBR, tau.formula ∼= dNBR, family = BEINF, data = na.omit(SWRAVG_field))
Coefficients (intercept, predictor):
Mu: −1.834267 0.005703
Sigma: −0.5793095 −0.0008575
Nu: 1.27214 −0.02225
Tau: −5.17080 0.01224

Model: CBI for EA timeframe
Predictor variable: Sentinel RBR with offset
Model statement: gamlss(formula = CBI ~ RBR, sigma.formula ∼= RBR, nu.formula ∼=

RBR, tau.formula ∼= RBR, family = BEINF, data = na.omit(SWRAVG_field))
Coefficients (intercept, predictor):
Mu: −0.995575 0.008016
Sigma: −0.52598 −0.00168
Nu: 0.22578 −0.04363
Tau: −18.91817 0.03696

Model: ∆BA for EA timeframe
Predictor variable: Sentinel RBR with offset
Model statement: gamlss(formula = ∆BA ~ RBR, sigma.formula ∼= RBR, nu.formula ∼=

RBR, tau.formula ∼= RBR, family = BEINF, data = na.omit(SWRAVG_field))
Coefficients (intercept, predictor):
Mu: −2.387856 0.008696
Sigma: −0.359833 0.002062
Nu: 1.28024 −0.02816
Tau: −4.62454 0.01483

Model: ∆CC for EA timeframe
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Predictor variable: Sentinel RBR with offset
Model statement: gamlss(formula = ∆CC ~ RBR, sigma.formula ∼= RBR, nu.formula ∼=

RBR, tau.formula ∼= RBR, family = BEINF, data = na.omit(SWRAVG_field))
Coefficients (intercept, predictor):
Mu: −1.773280 0.008446
Sigma: −0.714907 0.001485
Nu: 0.8161 −0.0338
Tau: −4.71010 0.01688

Appendix B.1.2. Final Model Confusion Matrices

Confusion matrices for each of the final models are presented in Tables A9–A20 below.

Table A9. Confusion matrix for Southwest model predicting IA CBI with Sentinel-2 dNBR with offset.

Reference

Prediction 0–<0.1 0.1–<1.25 1.25–<2.25 2.25–3 Total User’s
Accuracy (%)

0–<0.1 9 3 0 0 12 75.0
0.1–<1.25 52 73 16 1 142 51.4
1.25–<2.25 1 29 67 24 121 55.4

2.25–3 0 0 4 58 62 93.5
Total 62 105 87 83 337

Producer’s accuracy (%) 14.5 69.5 77.0 69.9 61.4

Table A10. Confusion matrix for current RAVG (Miller et al., 2009) model predicting IA CBI with
Landsat RdNBR with offset.

Reference

Prediction 0–<0.1 0.1–<1.25 1.25–<2.25 2.25–3 Total User’s
Accuracy (%)

0–<0.1 61 87 39 1 188 32.4
0.1–<1.25 1 5 9 3 18 27.8
1.25–<2.25 0 11 36 23 70 51.4

2.25–3 0 2 3 56 61 91.8
Total 62 105 87 83 337

Producer’s accuracy (%) 98.4 4.8 41.4 67.5 46.9

Table A11. Confusion matrix for Southwest model predicting IA BA change with Sentinel-2 dNBR
with offset.

Reference

Prediction 0–<10% 10–<25% 25–<50% 50–<75% 75–<90% 90–<100% Total User’s
Accuracy (%)

0–<10% 118 13 2 1 0 0 134 88.1
10–<25% 50 9 3 2 0 4 68 13.2
25–<50% 17 9 12 11 5 3 57 21.1
50–<75% 0 6 3 2 1 14 26 7.7
75–<90% 0 0 0 2 2 12 16 12.5

90–<100% 0 0 0 1 2 33 36 91.7
Total 185 37 20 19 10 66 337

Producer’s accuracy (%) 63.8 24.3 60.0 10.5 20.0 50.0 52.2
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Table A12. Confusion matrix for current (Miller et al., 2009) model predicting IA BA change with
Landsat RdNBR with offset.

Reference

Prediction 0–<10% 10–<25% 25–<50% 50–<75% 75–<90% 90–<100% Total User’s
Accuracy (%)

0–<10% 167 21 9 2 0 2 201 83.1
10–<25% 10 2 4 1 1 3 21 9.5
25–<50% 3 6 3 6 3 3 24 12.5
50–<75% 2 3 1 5 3 4 18 27.8
75–<90% 0 5 2 1 0 4 12 0.0

90–<100% 3 0 1 4 3 50 61 82.0
Total 185 37 20 19 10 66 337

Producer’s accuracy (%) 90.3 5.4 15.0 26.3 0.0 75.8 67.4

Table A13. Confusion matrix for Southwest model predicting IA scorch-adjusted canopy cover
change with Sentinel-2 dNBR with offset.

Reference

Prediction 0–<10% 10–<25% 25–<50% 50–<75% 75–<90% 90–<100% Total User’s
Accuracy (%)

0–<10% 69 13 4 0 0 0 86 80.2
10–<25% 26 23 16 3 0 0 68 33.8
25–<50% 8 27 31 7 4 8 85 36.5
50–<75% 0 4 10 2 3 8 27 7.4
75–<90% 0 1 4 3 1 12 21 4.8

90–<100% 0 0 0 1 4 45 50 90.0
Total 103 68 65 16 12 73 337

Producer’s accuracy (%) 67.0 33.8 47.7 12.5 8.3 61.6 50.7

Table A14. Confusion matrix for current (Miller et al., 2009) model predicting IA canopy cover change
with Landsat RdNBR with offset.

Reference

Prediction 0–<10% 10–<25% 25–<50% 50–<75% 75–<90% 90–<100% Total User’s
Accuracy (%)

0–<10% 98 40 15 1 0 0 154 63.6
10–<25% 1 8 8 3 0 1 21 38.1
25–<50% 2 10 15 2 0 2 31 48.4
50–<75% 2 4 13 3 2 8 32 9.4
75–<90% 0 1 5 5 3 4 18 16.7

90–<100% 0 5 9 2 7 58 81 71.6
Total 103 68 65 16 12 73 337

Producer’s accuracy (%) 95.1 11.8 23.1 18.8 25.0 79.5 54.9

Table A15. Confusion matrix for Southwest model predicting EA CBI with Sentinel-2 RBR with offset.

Reference

Prediction 0–<0.1 0.1–<1.25 1.25–<2.25 2.25–3 Total User’s
Accuracy (%)

0–<0.1 1 0 0 0 1 100
0.1–<1.25 61 87 26 1 175 49.7
1.25–<2.25 0 18 56 17 91 61.5

2.25–3 0 0 5 65 70 92.9
Total 62 105 87 83 337

Producer’s accuracy (%) 1.6 82.9 64.4 78.3 62.0
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Table A16. Confusion matrix for current (Miller et al., 2009) model prediction EA CBI with Landsat
RdNBR with offset.

Reference

Prediction 0–<0.1 0.1–<1.25 1.25–<2.25 2.25–3 Total User’s
Accuracy (%)

0–<0.1 60 83 28 1 172 34.9
0.1–<1.25 2 8 15 2 27 29.6
1.25–<2.25 0 10 37 16 63 58.7

2.25–3 0 4 7 64 75 85.3
Total 62 105 87 83 337

Producer’s accuracy (%) 96.8 7.6 42.5 77.1 50.1

Table A17. Confusion matrix for Southwest model predicting EA BA change with Sentinel-2 RBR
with offset.

Reference

Prediction 0–<10% 10–<25% 25–<50% 50–<75% 75–<90% 90–<100% Total User’s
Accuracy (%)

0–<10% 131 13 1 0 0 0 145 90.3
10–<25% 39 7 5 2 0 4 57 12.3
25–<50% 12 11 10 6 5 4 48 20.8
50–<75% 3 3 3 8 0 14 31 25.8
75–<90% 0 3 1 1 3 14 22 13.6

90–<100% 0 0 0 2 2 30 34 88.2
Total 185 37 20 19 10 66 337

Producer’s accuracy (%) 70.8 18.9 50.0 42.1 30.0 45.5 56.1

Table A18. Confusion matrix for current (Miller et al., 2009) model predicting EA BA change with
Landsat RdNBR with offset.

Reference

Prediction 0–<10% 10–<25% 25–<50% 50–<75% 75–<90% 90–<100% Total User’s
Accuracy (%)

0–<10% 142 10 3 0 0 0 155 91.6
10–<25% 9 8 2 2 0 1 22 36.4
25–<50% 20 3 5 0 1 1 30 16.7
50–<75% 7 7 5 4 3 5 31 12.9
75–<90% 3 2 2 6 1 4 18 5.6

90–<100% 4 7 3 7 5 55 81 67.9
Total 185 37 20 19 10 66 337

Producer’s accuracy (%) 76.8 21.6 25.0 21.1 10.0 83.3 63.8

Table A19. Confusion matrix for Southwest model predicting EA scorch-adjusted canopy cover
change with Sentinel-2 RBR with offset.

Reference

Prediction 0–<10% 10–<25% 25–<50% 50–<75% 75–<90% 90–<100% Total User’s
Accuracy (%)

0–<10% 80 17 4 0 0 0 100 80.0
10–<25% 21 29 23 1 0 1 74 39.2
25–<50% 2 17 24 6 2 5 56 42.9
50–<75% 0 5 11 3 4 11 34 8.8
75–<90% 0 0 3 5 1 13 22 4.5

90–<100% 0 0 0 1 5 43 51 84.3
Total 103 68 65 16 12 73 337

Producer’s accuracy (%) 77.7 42.6 36.9 18.8 8.3 58.9 53.4
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Table A20. Confusion matrix for current (Miller et al., 2009) model predicting EA canopy cover
change with Landsat RdNBR with offset.

Reference

Prediction 0–<10% 10–<25% 25–<50% 50–<75% 75–<90% 90–<100% Total User’s
Accuracy (%)

0–<10% 98 40 15 1 0 0 154 63.6
10–<25% 1 8 8 3 0 1 21 38.1
25–<50% 2 10 15 2 0 2 31 48.4
50–<75% 2 4 13 3 2 8 32 9.4
75–<90% 0 1 5 5 3 4 18 16.7

90–<100% 0 5 9 2 7 58 81 71.6
Total 103 68 65 16 12 73 337

Producer’s accuracy (%) 95.1 11.8 23.1 18.8 25.0 79.5 54.9
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