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Abstract: Canopy fuel characterization is critical to assess fire hazard and potential severity in forest
stands. Simulation tools provide useful information for fire prevention planning to reduce wildfire
impacts, provided that reliable fuel maps exist at adequate spatial resolution. Free airborne LiDAR
data are becoming available in many countries providing an opportunity to improve fuel monitoring
at large scales. In this study, models were fitted to estimate canopy base height (CBH), fuel load (CFL)
and bulk density (CBD) from airborne LiDAR in a pine stand area where four point-cloud datasets
were acquired at different pulse densities. Best models for CBH, CFL and CBD fitted with LiDAR
metrics from the 1 p/m2 dataset resulted in an adjusted R2 of 0.88, 0.68 and 0.58, respectively, with
RMSE (MAPE) of 1.85 m (18%), 0.16 kg/m2 (14%) and 0.03 kg/m3 (20%). Transferability assessment
of fitted models indicated different level of accuracy depending on LiDAR pulse density (both higher
and lower than the calibration dataset) and model formulation (linear, power and exponential). Best
results were found for exponential models and similar pulse density (1.7 p/m2) compared to lower
(0.5 p/m2) or higher return density (4 p/m2). Differences were also observed regarding the canopy
fuel attributes.

Keywords: airborne LiDAR; canopy base height; canopy fuel load; canopy bulk density; fuel maps;
pulse density; fuel modelling; regression models

1. Introduction

Fire behavior models can provide useful information on potential wildfire propagation
and effects to support decision making in operational fire management [1–3]. Fuel treatment
costs are expensive, and forest managers can also benefit from fire behavior simulations to
identify priority areas to optimize prevention action planning where greater fire hazard
and severity is expected [4,5]. However, fire simulation tools require spatially explicit data
of fuel quantity and distribution with sufficient accuracy to get reliable estimations [6–8].

Under current climate change scenarios predicting longer fire seasons in many coun-
tries worldwide and increasing potential of extreme fire behaviour involving crown
fires [9–15], canopy fuel characterization is of utmost importance for wildfire prevention
and management in forest areas. Canopy structure attributes, namely base height (CBH),
available fuel load (CFL) and bulk density (CBD), are key factors conditioning fire initiation
and spread rate in the transition of flames from surface fuels to canopy fuels in forest
stands [16–18].

Airborne LiDAR (Light Detection And Ranging) has long been proven to be an ex-
cellent technology for characterization of vegetation structure in forest areas [19–21]. Free
airborne LiDAR data are increasingly becoming available in many countries (e.g., Canada,
Finland, Spain, Slovenia, USA), providing an opportunity for forest and fuel monitoring at
large scales. For example, in Spain, the National Plan for Aerial Orthophotography (PNOA)
is providing the second nation-wide coverage of LiDAR data at low pulse density, and
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already planning the third coverage to start this year. When appropriately calibrated with
field-based measurements, LiDAR data from aerial platforms can be used to generate high
spatial resolution fuel maps in a cost-effective manner, including surface fuels [22–24] and
canopy fuels [25–28].

Previous studies analyzed the effect of pulse density on forest attribute estima-
tion, though generally simulating lower LiDAR pulse densities from denser point-cloud
datasets [29–31]. Some studies also assessed the temporal transferability of LiDAR-derived
models for the estimation of different forest attributes [32–35]. However, information is
still lacking on LiDAR model transferability with regard to canopy fuels, especially the
effect of pulse density which is especially relevant to extrapolate the application of previous
models to other study areas or generate updated fuel maps with new LiDAR datasets.
Point-cloud characteristics depend not only on stand structure, but also on the LiDAR
instrument, its settings, and the pattern of flight [36]. This may be critical to get reliable
and accurate canopy fuel estimates, even for a particular area with the same species and
environmental conditions, as available LiDAR information in successive flights may not be
generally registered under the same acquisition characteristics. A recent study explored
the transferability of airborne LiDAR models including canopy fuels and the effect of both
pulse density and modelling technique [28]. These authors validated their models with
actual LiDAR data (i.e., not simulated) from different flights. Nevertheless, they used
datasets from 20 locations (i.e., different study areas), and did not address low density
LiDAR data that are commonly used to characterize and map 3D forest structure, including
canopy fuels, as high-density point clouds are not generally available to be applied at larger
areas of interest [37].

The aim of this study is to model the main canopy fuel attributes critical for crown
fire behavior simulation (CBH, CFL and CBD) based on airborne LiDAR data, assessing
model transferability to a set of different point clouds acquired in a pine forest stand. Field
inventory data are used to calibrate canopy models that are then applied to independent
datasets for validation with multi-temporal LiDAR data at higher and lower pulse densities.
This is, to our knowledge, the first study assessing transferability of LiDAR models for
canopy fuel mapping from metrics derived from low-density point clouds from four
different flights performed in the same study area (0.5, 1, 1.7 and 4 p/m2), and also the first
including the effect of different parametric model formulation.

2. Materials and Methods
2.1. Study Area and Field Data

The study area is located in Pinar de Valsaín at Sierra de Guadarrama National Park, in
Segovia province (40◦51′ N, 04◦01′ W). The area covers 7448 ha of a mountain public forest
dominated by Scots pine (Pinus sylvestris L.) with traditional forest management activities
for high-quality timber production since the 19th century. The stand includes a variety of
forest structure resulting from even-aged forest management based on natural regeneration
in a wide range of altitude (1260–1995 m). Topography is characterized by rugged terrain
with steep slopes (>30%) in the 60% of the area. The main vegetation in the understory
includes Quercus pyrenaica Willd., Ilex aquifolium L. and ferns (Pteridium aquilinum (L.) Kuhn)
in the lower elevations, whereas shrubs such as Juniperus communis subsp. alpine (Suter)
Čelak, Cytisus oromediterraneus Rivas Mart. et al. and Adenocarpus hispanicus (Lam.) DC. are
commonly found at higher elevations. Annual precipitation ranges from 720 to 1320 mm
depending on elevation, with snow often present in winter. Mean minimum and maximum
temperature are −1 ◦C and 22 ◦C in January and July, respectively. Fire season corresponds
to summer, with the firefighting services generally activated in the study area from 1st July
to 30th September.

A forest field inventory was performed during fall–winter 2009/2010 including
202 circular plots (radius = 13 m), where diameter at breast height (DBH) was measured at
two perpendicular directions for all trees with DBH ≥ 7.5 cm using a graduated caliper.
Tree heights were measured with a Vertex hypsometer for the three dominants trees in
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each plot. In fall-winter 2016/2017, a subset of 30 circular plots (radius = 14.1 m) from
the existing systematic sampling in the previous forest inventory were re-measured for
detailed forest fuel characterization (Figure 1). In addition to all DBH ≥ 7.5 cm, additional
measures of tree height and live crown base height (i.e., the lowest insertion point of live
branches in the crown, excluding isolated branches, as defined in previous studies [4,5])
were taken in 10 randomly selected trees per plot. Trees included at 13 and 14.1 m radius
were registered in the second forest inventory to compare field data and LiDAR metrics
extracted from both sample sizes. Plot locations were recorded with a hand-held GNSS
GPS receiver (Trimble Geo 7x unit) providing submeter accuracy after post-processing in
both field inventories (2009/2010 and 2016/2017) required for accurate LiDAR point cloud
matching. Post-processing was performed with Trimble GPS Pathfinder Office software
using the Base Station Network from the Spanish National Geographic Institute (IGN),
applying differential corrections to the raw GPS receiver files that resulted in an average
horizontal accuracy of 0.225 m.
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2016/2017 (orange, with plot identification number).

Tree height data were used to calculate stand height (H) and CBH (m) at plot level. H
and CBH were calculated as the average value of total heights and live crown base heights,
respectively, measured at tree level in each plot. Available CFL (kg/m2) may include foliage
and small branches (diameter < 6 mm), although needles are generally considered the
main aerial fuel consumed within the flaming front of a crown fire in conifer stands [17,25].
Previous allometry for the same pine species provided biomass estimations of either foliar
or branches < 20 mm based on equations using DBH as the input variable [38]. Hence,
CFL at plot level in this study was considered as foliar biomass, aggregating tree-level
calculations of needle biomass obtained from the available allometric equations for the
species. Assuming a homogeneous fuel distribution in the canopy, CBD (kg/m3) at plot
level was retrieved from CLF (kg/m2) and average canopy length in each plot calculated
as the difference between H and CBH (m). This approach was also used in previous
studies [4,5] as it is consistent with the criteria for crown fire initiation and spread proposed
by Van Wagner [16] and integrated in most fire simulation models [27].

2.2. ALS Data

Airborne LiDAR information used corresponded to four acquisition flights performed
in the study area at different pulse density (Table 1). Lower point clouds corresponding
to the first and second PNOA coverage were obtained in LAZ format from the CNIG
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website (Centro Nacional de Información Geográfica) of the Spanish National Geographic
Institute (IGN). Higher point clouds were acquired by SPASA in a specific flight planned
for this study and provided in LAZ format by the company. Two datasets from PNOA 2nd
coverage were available due to overlapping areas between contiguous provinces (Segovia
and Madrid). Pulse density was planned initially to be the same in PNOA-2016 and PNOA-
2018 (1 p/m2) but was finally performed with higher density in the overlapping area,
registering an average of 1.7 p/m2 in the field plots.

Table 1. ALS data available and corresponding field plots in the study area, including horizontal
(RMSE xy) and vertical (RMSE z) accuracy. RMSE, root mean square error.

ALS Data ALS Flight Year Pulse Density Field Plots RMSE xy RMSE z Sensor

PNOA-2010 PNOA 1st coverage Segovia 2010 0.5 p/m2 202 0.3 m 0.4 m LEICA ALS50
PNOA-2018 PNOA 2nd coverage Segovia 2018 1.0 p/m2 30 0.2 m 0.15 m LEICA ALS80
PNOA-2016 PNOA 2nd coverage Madrid * 2016 1.7 p/m2 14 0.2 m 0.15 m LEICA ALS70-HP
SPASA Specific flight over the study area 2019 4.0 p/m2 10 0.3 m 0.2 m LEICA ALS80

* Mean pulse density registered in the field plots for the overlapping area.

LiDAR data processing was performed in FUSION [39] and QGIS [40]. Return heights
from the point clouds were classified to discriminate vegetation from soil. Soil returns
were used to generate a digital terrain model (DTM) at 2 m resolution that was used to
normalized vegetation return heights.

A set of LiDAR metrics directly obtained from FUSION software were extracted at the
field plots from normalized vegetation returns (Table 2). Statistics were obtained with a
threshold level of 2 m to avoid including returns not corresponding to tree crowns. The
percentage of returns normalized by height strata (PRN_Si) were also calculated, based
on vegetation returns within and below each layer (see equation in Table 2) as proposed
by [41], to better account for laser attenuation through the canopy with different point
densities [42]. PRN_Si were obtained for different strata intervals including higher detail
in lower heights, with 1-m strata up to 16 m and 2-m strata above 16 m. Previous studies
assessing vertical profile from LiDAR returns also used more detailed strata in the lower
heights [30,43].

Table 2. ALS metrics extracted in the field plots and tested as potential predictor variables in the
canopy fuel models.

Metric Acronym Description

h_min Minimum of return heights
h_max Maximum of return heights
h_mean Mean of return heights
h_mode Mode of return heights
h_std Standard deviation of return heights
h_var Variance of return heights
h_CV Coefficient of variation of return heights
h_IQ Interquartile range of return heights
h_skew Skewness of return heights
h_kurt Kurtosis of return heights
h_AAD Average absolute deviation from mean height
h_MADmedian Median absolute deviation from median height
h_MADmode Median absolute deviation from mode height
P05, P10, P20, P25, P30, P40, P50, P60, P70, P75, P80, P90, P95,
P99

Percentiles 5, 10, 20, 25, 30, 40, 50, 60, 70, 75, 80, 90, 95 and 99 of
return heights

CRR Canopy relief ratio (h_mean–h_min)/(h_max–h_min)
PFRi Percentage of first returns above threshold height i
PFRmean Percentage of first returns above mean height
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Table 2. Cont.

Metric Acronym Description

PFRmode Percentage of first returns above mode height
PARi Percentage of all returns above threshold height i
PARmean Percentage of all returns above mean height
PARmode Percentage of all returns above mode height

PRN_Si

Percentage of returns normalized by height strata, calculated
from the number of returns (NR) within and below each
strata (Si):
(NRi+1/(NRtotal − NRi)) × 100

2.3. Statistical Analysis and Modelling

Parametric regression analysis was used to estimate CBH, CFL and CBD from LiDAR
metrics derived from PNOA-2018 point clouds, using field plots from the 2016/2017 inven-
tory as reference data. Three different model formulations were tested: linear (Equation (1)),
power (Equation (2)) and exponential (Equation (3)).

Y = a0 + a1X1 + a2X2 + . . . + ajXj + ε (1)

Y = a0 Xa1
1 Xa2

2 . . . X
aj
j + ε (2)

Y = ea0 ea1X1 ea2X2 . . . eajXj + ε (3)

where Y is the canopy fuel attribute to be modelled (CBH, CFL or CBD), Xj are the LiDAR
metrics included as predictors and aj are the coefficients of each parameter in the model
fitted, with a0 accounting for the independent term, and ε is the additive error term assumed
to be normally distributed in Equation (1). To solve model fitting in non-linear formulation,
logarithmic transformations were applied to power and exponential forms, resulting in
Equations (4) and (5), respectively:

Ln(Y) = Ln(a0) + a1Ln(X1) + a2Ln(X2) + . . . + ajLn
(
Xj

)
(4)

Ln(Y) = Ln(a0) + a1X1 + a2X2 + . . . + ajXj (5)

Histograms and Shapiro–Wilk test were used to check normality distribution in the
dependent variables (CBH, CFL and CBD) prior to parametric model fitting. Different
combinations of metrics were tested, selecting the best models for each canopy fuel property
and formulation type according to the significance level (p-value < 0.05) of every input
parameter and the overall model performance. Adjusted R2 was used to consider the effect
of varying sampling size in the different datasets. Error level was calculated as both the
root mean square error (RMSE) and the mean absolute percentage error (MAPE), the latter
used to facilitate comparison of model estimations among canopy fuel properties with
different units.

Pearson correlation matrix was obtained for each dataset prior to model fitting to
identify relevant LiDAR metrics and potential correlation between variables. In addition,
multicollinearity was checked in input metrics included as predictors in multivariate
models (variance inflation factor, VIF < 5). Linear regression model assumptions were
also checked, including homocedasticity, normality and independence of residuals. All
statistical analyses were performed with R software [44].

2.4. Transferibility Assessment and Canopy Fuel Mapping

Transferability assessment to higher pulse density was performed applying the models
previously fitted with the calibration dataset, i.e., metrics derived from PNOA-2018 used as
predictors, to the rest of available LiDAR point clouds in the study area (Table 1). Field data
from the 2016/2017 inventory was used as reference of canopy fuel values. This method
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allowed for an independent validation of model transferability to LiDAR data acquired in
14 and 10 plots, respectively, with an increase of pulse density of 70% (PNOA-2016) and
400% (SPASA). Date and location of forest treatments performed in the study area during
the 2016–2019 period were checked to ensure that any disturbance occurred in the field plots
before LiDAR flights. Similarly to a previous study by [28], the three-year time lag between
LiDAR data and field inventory was considered negligible for forest stand characterization.
Hence, the assessment of model transferability to PNOA-2016 and SPASA datasets was
addressed taking into account the effect of return density in quasi-simultaneous LiDAR
data acquisitions.

CBH, CFL and CBD were obtained for each LiDAR dataset and model formulation
(linear, power and exponential). Model transferability was assessed by the R2, RMSE,
MAPE and bias from observed and predicted values. A correction factor (CF) based on
residual standard error (RSE) of the fitted models was considered in the estimation of
fuel properties with power and exponential formulation, adding the following CF term
(Equation (6)) to the predicted values to account for the underestimation bias resulting
from logarithmic transformation in Equations (4) and (5):

CF = e(
RSE2

2 ) (6)

To address model transferability to lower LiDAR pulse density, metrics from PNOA-
2010 were used as input data considering field data from the first forest inventory (2009/2010)
as reference data. CFL was calculated in the same 30 plots that were re-measured in the
2016/2017 forest inventory following the same methods described in Section 2.1. However,
CBH and CBD could not be derived from available field data. A regression model was first
fitted to estimate CBH at plot level from H values from 2016/2017 forest inventory that
was applied to 2009/2010 field data. CBD was then calculated as described in Section 2.1.
Regarding LiDAR data, metrics were also extracted at 13 m radius to get point-cloud
statistics equivalent to the smaller field sampling size in the first forest inventory.

Finally, the best models resulting from the previous modelling and transferability
assessment were selected to generate maps for each canopy fuel attribute at 25 m resolution
(equivalent to the 14.1 m radius size used in the calibration dataset) from LiDAR metrics
obtained in raster format for the whole study area. MDT previously generated (Section 2.2)
was used to normalize returns prior to metric extraction in 25 m cells. A schematic diagram
of the study work-flow is shown in Figure 2.
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3. Results
3.1. Canopy Fuel Modelling

Detailed field data for canopy fuel characterization obtained in the 30 re-measured
plots during the 2016/2017 forest inventory (Table 3) was used to calibrate models for CBH,
CFL and CBH estimation from PNOA-2018 LiDAR metrics. Table 4 summarizes results for
the best models found for each dependent variable and formulation. In general, exponential
models had the best performance for the three canopy fuel attributes. Observed versus
predicted values are shown in Figure 3.

Table 3. Descriptive statistics of stand variables obtained in the 2016/2017 field inventory
plots (n = 30). N, stand density (trees/ha); G, basal area (m2/ha); Dg, Quadratic mean diameter
(cm); H, Stand height (m); CBH, canopy base height (m); CFL, canopy fuel load (kg/m2); CBD,
canopy bulk density (kg/m3); s.d., standard deviation.

Statistic N G Dg H CBH CFL CBD

Minimum 240.2 18.8 15.6 11.2 2.2 0.47 0.04
Maximum 2273.5 74.6 44.9 32.3 22.2 1.73 0.30

Mean 873.4 41.1 28.0 20.4 8.3 1.00 0.12
s.d. 490.8 12.5 9.1 5.6 4.7 0.31 0.05

Table 4. Summary of the best canopy fuel models fitted for each formulation with PNOA-2018 LiDAR
and field data, with the best performing model in bold for each variable. CBH, canopy base height;
CFL, canopy fuel load; CBD, canopy bulk density; R2

adj, adjusted R2; RMSE, root mean square error;
MAPE, mean absolute percentage error.

Variable Model Input Metrics R2
adj RMSE MAPE

CBH (m)

linear h_skew
PRN_6-8 0.701 2.44 38.3%

power h_mean
PRN_3-4 0.827 1.84 22.5%

exponential h_mean
PRN_3-4 0.871 1.85 18.4%

CFL (kg/m2)

linear PFR
PRN_7-8 0.656 0.17 15.8%

power PFR
P05 0.615 0.17 15.9%

exponential PFR
PRN_1-2 0.680 0.16 14.4%

CBD (kg/m3)

linear PFR
PRN_1-2 0.585 0.03 21.8%

power PFR 0.473 0.04 21.6%

exponential PFR
PRN_1-2 0.576 0.03 19.7%
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CBH was the canopy fuel variable showing the strongest relationship with LiDAR
metrics, independently of the regression method used. Variability explained by the CBH
models (R2

adj) ranged from 0.70 to 0.87, with RMSE between 1.8 and 2.4 m and MAPE
ranging 18% to 38%. Selected input metrics in the best models were the same for the
power and exponential formulation, and in all cases a PRN metric accounting for return
density in low height strata was included (6–8 m in the linear model, 3–4 m in power and
exponential models).

CFL models showed more moderate results compared to CBH models in terms of
R2

adj (0.62–0.68) but had better levels of estimation error, with RMSE of 0.17–0.18 kg/m2

and MAPE of 14–16%. PFR was a predictor metric in all model formulations, showing the
best results either combined with a low percentile (P05 in the power function) or PRN in
low height strata.

CBD models showed the worse fitting results to LiDAR metrics, with similar R2
adj

of 0.58 for linear and exponential formulations that performed significantly better than
the power model (0.47). Error levels were intermediate to observed values in CBH and
CFL models, with RMSE ranging 0.03–0.04 kg/m3 and MAPE of 20–22%. Regarding
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input metrics, all models included PFR as in CLF models, but in this case only linear and
exponential formulations showed better results adding PRN in low height strata.

3.2. Transferability Assessment

A regression model was fitted with field data from 2016/2017 forest inventory to
estimate CBH field values that could not be directly retrieved from 2009/2010 forest
inventory. Equation (7) shows the best model found that provides CBH estimates in the
field plots from H values (R2= 0.91, p < 0.00001, RMSE = 1.4 m y MAPE = 15.9%):

CBH = −6.661823 + 0.8841×H (7)

Once CBH was calculated, CBD at plot level could be also retrieved with the same
method used for the 2016/2017 forest inventory (as described in Sections 2.1 and 2.3).
Table 5 summarizes the stand and canopy fuel attributes in the 2009/2010 forest inventory.
Similar average values were observed for CFL and CBD, with slightly higher minimum
and mean CBH values. Previous statistical analyses reported that there were no significant
differences in stand and canopy fuel variables between both forest inventories despite the
7-year time lag in the field datasets [42].

Table 5. Descriptive statistics of stand variables obtained in the 2009/2010 field inventory plots
(n = 202). N, stand density (trees/ha); G, basal area (m2/ha); H, Stand height (m); CBH, canopy
base height (m); CFL, canopy fuel load (kg/m2); CBD, canopy bulk density (kg/m3); s.d.,
standard deviation.

Statistics N G H CBH * CFL CBD

Minimum 75.3 14.3 8.5 3.1 0.51 0.05
Maximum 2147.2 91.0 35.4 22.1 1.69 0.20

Mean 604.1 41.7 20.6 11.5 0.96 0.11
s.d. 374.1 14.5 5.1 5.2 0.32 0.04

* Estimated CBH from H measurements (Equation (7)).

The best fitted models obtained for each canopy fuel variable and formulation (Table 4)
were applied to the three other LiDAR datasets available in the study area (Table 1). Model
extrapolation resulted in different transferability level depending on pulse density (higher
and lower LiDAR returns), type of formulation (linear, power and exponential) and canopy
fuel variable (Table 6).

The transferred CBH model resulted in the higher variability of performance and error
level, with R2 between observed and predicted values ranging from 0.08 to 0.87, RMSE
from 1.4 to 6.9 m, MAPE from 20% to 47% and bias from −1.4 to 4.8 m. Model performance
significantly varied depending on the LiDAR dataset and model formulation, with the
highest bias in model transfer to the lower pulse density (PNOA-2010).

Transferability assessment for CFL and CBD showed a more consistent model per-
formance between LiDAR datasets. The transferred CFL model resulted in R2 between
observed and predicted values from 0.66 to 0.89 with RMSE, MAPE and bias levels ranging
0.11–0.19 kg/m2, 9–18% and −0.05–0.11 kg/m2, respectively, and the best performance in
the PNOA-2016 dataset for all formulation methods.

R2 values in transferred CBD models were lower compared to CFL ranging from
0.51 to 0.77. Error level was more homogeneous in terms of RMSE of 0.022–0.029 kg/m3,
whereas MAPE ranged 14% to 31% and bias from −0.016 to 0.013 kg/m3. Similar to CFL,
the PNOA-2016 dataset showed the best performance for all formulation methods.

Regarding the different LiDAR datasets, all canopy fuel variables showed the best
model transfer performance with PNOA-2016 which had a slightly higher pulse density
(1.7 p/m2) compared to the PNOA-2018 dataset (1 p/m2) used for calibration. These results
were consistent independent of model formulation, thus confirming the effect of return
density on model transferability. The extrapolation of CBH models to the PNOA-2016
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dataset reported the worse performance in the linear model (R2 = 0.52 y MAPE = 47%),
with good level of correlation in power and exponential formulations between observed
and predicted values (R2 from 0.85 to 0.87) but high error level (MAPE from 30% to 36%).
Transferred CFL model performance in this LiDAR dataset was similar in all formulations
with good accuracy (R2 from 0.88 to 0.89, MAPE from 8% to 13%). Extrapolation of the
CBD model also resulted in adequate performance for all formulations in this pulse density
(R2 from 0.76 to 0.77, MAPE from 14% to 16%).

Table 6. Performance of the best canopy fuel models fitted with PNOA-2018 LiDAR for each
formulation transferred to the different LiDAR data available in the study area. R2 denotes agreement
between observed and predicted values. CBH, canopy base height; CFL, canopy fuel load; CBD,
canopy bulk density; RMSE, root mean square error; MAPE, mean absolute percentage error.

Variable Model LiDAR Data R2 RMSE MAPE Bias

CBH (m)

linear

PNOA-2010 0.257 5.79 36.2% 3.27

PNOA-2016 0.525 2.49 47.2% −0.86

SPASA 0.085 2.32 33.3% 0.71

power

PNOA-2010 0.275 6.94 43.6% 4.81

PNOA-2016 0.875 2.39 36.1% −1.40

SPASA 0.463 1.37 20.4% 0.56

exponential

PNOA-2010 0.217 6.24 32.3% 3.62

PNOA-2016 0.853 1.52 30.4% −0.82

SPASA 0.717 1.67 31.0% 1.40

CFL
(kg/m2)

linear

PNOA-2010 0.664 0.19 18.3% 0.05

PNOA-2016 0.880 0.15 13.3% 0.11

SPASA 0.656 0.17 17.4% −0.05

power

PNOA-2010 0.668 0.17 15.5% 0.05

PNOA-2016 0.894 0.13 10.2% 0.09

SPASA 0.693 0.16 16.3% −0.02

exponential

PNOA-2010 0.672 0.19 17.3% 0.04

PNOA-2016 0.881 0.11 8.6% 0.03

SPASA 0.743 0.15 15.5% −0.05

CBD
(kg/m3)

linear

PNOA-2010 0.625 0.027 23.1% 0.001

PNOA-2016 0.762 0.025 16.4% 0.011

SPASA 0.520 0.029 24.4% −0.004

power

PNOA-2010 0.576 0.022 19.0% −0.003

PNOA-2016 0.771 0.025 14.5% 0.013

SPASA 0.505 0.033 31.2% −0.016

exponential

PNOA-2010 0.666 0.026 21.1% −0.005

PNOA-2016 0.772 0.023 15.4% 0.006

SPASA 0.602 0.027 23.6% −0.008

With regard to the transferability assessment in the higher density LiDAR dataset
(SPASA, 4 p/m2), the exponential models showed a significant higher performance for all
canopy fuel attributes. Best results between observed and predicted values were found
for the extrapolation of the CFL model (R2 = 0.74, MAPE = 15%), followed by CBH model
(R2 = 0.72 y MAPE = 31%) and CBD model (R2 = 0.60 y MAPE = 23%).
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Model transfer to the lower density LiDAR dataset (PNOA-2010, 0.5 p/m2) resulted
in very low performance for CBH estimation in all formulations (R2 < 0.28 y MAPE > 32%).
However, transferability of CFL and CBD model showed better results, with a similar
or even a better performance compared to model transfer to the higher pulse density
(4 p/m2). CFL showed the best results for power formulation (R2 = 0.67 y MAPE = 15%)
whereas the exponential formulation had the best transferability level in the CBD models
(R2 = 0.68 y MAPE = 21%).

Overall, exponential models showed a better performance, though differences were
observed between canopy fuel variables (CBH, CFL, and CDB). Figure 4 represents observed
versus predicted values for exponential models transferred to each LiDAR dataset.
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canopy fuel load; CBD, canopy bulk density) resulting from applying the best model fitted with
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pulse density: PNOA-2010 (n = 30), PNOA-2016 (n = 14) and SPASA (n = 10). Least square trend line
(dashed) is shown.

3.3. Canopy Fuel Mapping

According to the previous results, the exponential models were selected to generate
wall-to-wall canopy fuel products over the whole area. LiDAR data from PNOA-2018
were processed to obtain raster layers of metrics required as input in each model (CBH,
CFL, CBD). Resulting high resolution fuel maps (25 × 25 m) generated for the study area
are shown in Figure 5, providing spatially-explicit information of canopy fuels for fire
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behavior simulations. High CBH values were generally found in lower altitudinal ranges
corresponding to mature stands located in high quality sites, whereas low CBH values were
located in very high altitudes (i.e., south and east limits of the study area, corresponding to
low quality sites) or younger stands (regeneration patches). As expected, we found a similar
pattern of CFL and CBD spatial variability distribution, which were highly dependent on
forest canopy cover (i.e., PFR metric) in accordance with model formulation.
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4. Discussion

This study confirms that low-density LiDAR data (1 p/m2) acquired from aerial
platforms to provide large-scale coverage at regional level can be effectively used to retrieve
models to estimate canopy fuel variables that are critical for fire behavior simulation.
Regression analysis indicated the best fitting model was found for CBH, followed by
CFL, with CBD being the canopy fuel variable more difficult to estimate. Our results in
a natural pure pine stand (Pinus sylvestris L.) are in agreement with previous findings
using very low pulse density (0.5 p/m2) in other conifer or mixed stands from temperate
and Mediterranean forest areas [4,27,37,45,46]. However, our study showed significantly
better results compared to previous regression models derived from low-density LiDAR
for the same pine species [46]. With higher return density, some authors reported similar or
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higher accuracy for CFL and CBD estimation compared to CBH [26,47] or higher for CFL
compared to CBH and CBD [28] in mixed or pure conifer forest stands.

Transferability assessment of the best fitted regression models for each type of formu-
lation to three different point cloud datasets in the same study area indicated varying level
of accuracy, depending on LiDAR pulse density (both higher and lower than the calibration
dataset) and model formulation (linear, power and exponential). Differences were also
observed regarding the canopy fuel attribute (CBH, CFL and CBD).

The best results were generally found for exponential models in all canopy fuel vari-
ables, both in the calibration phase with the 1 p/m2 LiDAR dataset and in the extrapolation
for model validation in independent LiDAR flights acquired in the same study area with
either lower (0.5 p/m2) or higher pulse density (1.7 and 4 p/m2). Linear models have
been traditionally among the most commonly used method in parametric regression mod-
elling to predict canopy fuels from airborne LiDAR metrics [4,26,27]. However, our results
highlight that direct transfer of this kind of models for canopy fuel mapping may result in
higher bias errors compared to other parametric regression forms, suggesting exponential
formulation as an alternative for model fitting with calibration datasets.

For all canopy fuel variables addressed in this study, our results indicated a better
model performance when transferred to a pulse density of 1.7 p/m2 compared to 0.5 and
4 p/m2, independently of the model formulation used. These findings highlight the effect
of LiDAR pulse density on canopy fuel model transferability, indicating that significantly
different results in accuracy could be found in direct extrapolation of previous models to
LiDAR datasets acquired with different conditions than the one used for model calibration,
even for relatively similar low pulse densities.

For example, positive bias (overestimation) was observed for CBH in the lower
(0.5 p/m2) and higher (4 p/m2) pulse density, whereas a negative bias (underestimation)
resulted in the intermediate pulse density (1.7 p/m2) independent of model formulation.
This are relevant result when applying models to map canopy fuels to be used in simula-
tion tools, as CBH overestimation may lead to unrealistic lower perception of crown fire
potential in forest stands. From a conservative point of view, fire prevention and manage-
ment actions based on simulation may benefit from fuel maps with CBH underestimation.
Similarly, for all model formulations CFL estimation showed positive bias (overestimation)
for the extrapolation to 0.5 and 1.7 p/m2, whereas a negative bias (underestimation) was
observed when models were applied to higher pulse density (4 p/m2). Conversely, CBD
model showed positive (overestimation) or negative (underestimation) bias for linear or
power and exponential formulations, respectively, when transferred to the lower pulse
density (0.5 p/m2). In the case of higher pulse density, bias was either negative (underes-
timation) for 1.7 p/m2 or positive (overestimation) for 4 p/m2 independently of model
formulation. In this sense, Mauro et al. [28] found a consistent overestimation in CBH, CFL
and CBD in parametric model transfer to pulse densities higher that the ones included
in our study (>8 p/m2). These authors reported better results in model transferability in
semiparametric models compared to parametric models, highlighting that calibration could
substantially reduce bias in the latter.

Despite the fact that CBH was the canopy fuel variable showing a stronger correlation
with LiDAR metrics in the calibration phase, error levels were higher compared to CFL and
CBD. Exponential formulation considerably reduced RMSE and MAPE compared to the
linear model. Transferability assessment indicated that the worse CBH model performance
was observed for the lower pulse density LiDAR dataset (0.5 p/m2). This finding may be
taken with caution as a propagation error due to CBH estimation in the 2009/2010 forest
inventory, where field data to directly retrieve this canopy attribute were unavailable, may
be affecting the results. Another potential explanation for the worse performance in CBH
model transfer to the PNOA-2010 LiDAR dataset could be due to the lower penetration
capacity of a laser pulse with 0.5 p/m2 compared to higher pulse densities, being unable to
get sufficient returns from the lower part of the canopy [30]. This effect may be more patent
in the metrics used in the CBH model where inputs in the calibration model combined
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return statistics (mean, skew) and lower strata return density (PRN_3-4), compared to CFL
and CBD models where inputs included percentage of first returns (PFR) suggesting that
this density metric may be less affected by laser attenuation in our LiDAR datasets. In
a previous study, Navarro et al. [35] highlighted the relevance of selecting stable metrics
to improve model transferability to different LiDAR data. Further research is required to
analyze the pulse density effect on different LiDAR metrics.

Exponential models fitted to estimate canopy fuel attributes with PNOA-2018 dataset
(1 p/m2) were used to generate high resolution maps (25 m pixel) of CBH, CFL and CBD
over the entire study area. These products increased reliability of previous cartography
in the area of interest, providing valuable spatial information to be used in fire behavior
simulation models to assess potential crown fire risk and severity in the forest stand and
support fuel treatment planning [1,2].

Further work is required to verify that exponential formulation provides more robust
results in terms of regression model transferability for canopy fuel mapping in other forest
species and LiDAR datasets (pulse density > 4 p/m2). More research is also needed to
test non-parametric model transferability to validate our results regarding the effect of
pulse density with machine learning techniques that are increasingly used to retrieve forest
stand and fuel attributes from LiDAR metrics [28,35,48]. Domingo et al. [34] found better
transferability with non-parametric regression to estimate different forest stand attributes.
However, the flexibility of these non-parametric methods, that impose no structure in the
model errors, makes it difficult to calibrate pre-existing models to new data collections [28].
Navarro et al. [35] suggested a new variable selection method to use stable metrics which
enhanced the transfer capacity of Support Vector Regression (SVR) models, demonstrating
that SVR models using stable metrics can be transferred not only to point clouds acquired
using the same technology (i.e., airborne LiDAR) but also between different technologies
(e.g., data from digital aerial photogrammetry) without a significant loss of accuracy to
estimate growing stock volume in forest stands. Future work may focus on testing these
methods in canopy fuel attributes. Mauro et al. [28] also suggest the use of semiparametric
models that combine flexibility in modelling nonlinear patterns of the non-parametric
methods with parametric assumptions about the structure of the model errors with the
possibility of calibrating predictions.

5. Conclusions

This study provides new models to estimate canopy base height, fuel load and bulk
density in pure Pinus sylvestris stands with low density LiDAR data. A transferability
assessment to three different LiDAR flights (0.5, 1.7 and 4 p/m2) acquired over the same
study area was also conducted. Our results highlight that direct transfer of parametric
regression models derived from airborne LiDAR data to generate canopy fuel maps may
result in significant bias error. Caution should be taken when extrapolating models to new
LiDAR datasets with different pulse density. Type of formulation may be also carefully
considered in calibration studies to increase model transferability for critical canopy fuel
attribute estimation with future LiDAR acquisition datasets.
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