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Abstract: Fire is one of the significant drivers of vegetation loss and threat to Amazonian landscapes.
It is estimated that fires cause about 30% of deforested areas, so the severity level is an important
factor in determining the rate of vegetation recovery. Therefore, the application of remote sensing
to detect fires and their severity is fundamental. Radar imagery has an advantage over optical
imagery because radar can penetrate clouds, smoke, and rain and can see at night. This research
presents algorithms for mapping the severity level of burns based on change detection from Sentinel-
1 backscatter data in the southeastern Peruvian Amazon. Absolute, relative, and Radar Forest
Degradation Index (RDFI) predictors were used through singular polarization length (dB) patterns
(Vertical, Vertical-VV and Horizontal, Horizontal-HH) of vegetation and burned areas. The Composite
Burn Index (CBI) determined the algorithms’ accuracy. The burn severity ratios used were estimated
to be approximately 40% at the high level, 43% at the moderate level, and 17% at the low level.
The validation dataset covers 384 locations representing the main areas affected by fires, showing
the absolute and relative predictors of cross-polarization (k = 0.734) and RDFI (k = 0.799) as the
most concordant in determining burn severity. Overall, the research determines that Sentinel-1
cross-polarized (VH) data has adequate accuracy for detecting and quantifying burns.

Keywords: Amazon; polarization; absolute and relative predictors; burn ratio; radar forest degradation
index

1. Introduction

The consequences of a fire generally include the total or partial loss of vegetation,
leaving the soil exposed to erosion, flash flooding, and the release of greenhouse gases into
the atmosphere [1–3]. In addition, fire hazards continue after the event, depending on fire
severity. Therefore, it is necessary to assess the severity and vulnerability of fire-affected
areas for future management [3,4]. In Peru, and specifically in the Amazon region of
Madre de Dios, initiatives exist to respond to emergencies in burned areas. The Regional
Emergency Operations Center (COER) has the mission to mitigate fire consequences by
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quickly assessing the severity of fires and their implications for emergency stabilization and
subsequent management. However, its actions are not sufficient to eliminate fire threats.

Currently, the method for determining the severity of burns is through the use of
satellite imagery and remote sensing techniques, because they cover large areas and the
results are objective [3,5–8]. For this purpose, satellite images from optical sensor have been
widely used and have proven to be useful for mapping burned areas [3,6,7,9]. However,
there are questions about the detection and quantification of burned areas as mapping
products. Likewise, other studies show that the exclusive use of optical data for mapping
burned areas is limited by environmental conditions, biophysical characteristics, spectral
signature, and cast shadow [8,10]. In emergency situations, such conditions could result in
high costs in lives and property damage.

The severity of burns is generally determined by bitemporal indices based on the
normalized burn index (NBR) such as the differentiated normalized burn index (dNBR),
the relative dNBR (RdNBR), and the relativized burn index (RBR) [6–8]. The related mea-
sure, dNBR, refers to the difference between pre- and post-fire datasets. The results of the
absolute measure of change in vegetation do not consider the heterogeneity of the land-
scape, so the burn intensity could vary according to the size and density of vegetation per
pixel [5–8,11–13]. Furthermore, these are influenced by vegetation height, moisture content
in vegetation and soil, and the exposure of burned material. These characteristics behave
adequately for areas not affected or very affected by fire but exhibit lower effectiveness in
discriminating intermediate severity levels, where multiple factors interact [6–8,11,14–18].

On the other hand, synthetic aperture radar (SAR), as an active sensor, works noc-
turnally as well and can be used under almost any weather condition. The potential of
SAR technologies in mapping burns through active microwaves presents better detection
through cloud cover and less interference from weather conditions. Despite this, studies
report that backscattering on vegetation and burned areas depends on polarization (VV,
HH, VH, and HV), frequency (X, C, and L), soil moisture, and topography, obtaining preci-
sions lower than the optical ones in many studies [17]. The electric field orientations of the
electromagnetic wave are known as polarizations and are usually controlled between Hori-
zontal (H) and Vertical (V) (1. HH; Transmitted-Horizontally and Received-Horizontally,
2. HV; Transmitted-Horizontally and Received-Vertically, 3. VH; Transmitted-Vertically
and Received-Horizontally, 4. VV; Transmitted-Vertically and Received-Vertically) in terms
of where to incorporate the simultaneous orthogonal polarization component that allows
the electric field to be equal to the vector sum of the H and V polarizations based on the
phase difference (linearly, elliptically, or circularly) [17]. However, investigations of the
interferometric coherence of different bands and polarizations in burned areas indicate
a strong relationship of the severity of burning in a stable and dry environment, a situ-
ation that is appropriate to the seasonality of burning in the Amazon and needs to be
investigated [17,19–22].

In that sense, we use the C-band backscatter data from the Sentinel-1 sensor (with
a center frequency of 5.405 GHz and a length of 5.0 cm over a 250 km swath and a high
geometric resolution of 5 m by 20 m) to quantify and estimate the severity of burns. For this
purpose, we used absolute and relative predictors, as well as the Radar Forest Degradation
Index (RDFI) with C-band co-polarization (VV) and cross-polarization (VH), and length
patterns (dB) of vegetation and burned areas, validating the accuracy by means of the
Composite Burn Index (CBI) calculated from data collected in the field [18–25].

The objective of the study is to estimate the area and severity level of burns through
SAR Sentinel-1 in the southeastern Peruvian Amazon. Specifically, we focus on forests
during 2020 in the district of Tahuamanu, Madre de Dios. The specific objectives of the
study were: (a) to quantify the area of burns, and (b) to estimate the severity levels of
burns. The hypothesis of the study indicates that the area and severity level of burns using
SAR Sentinel-1 images can be determined through processing techniques employing the
absolute/relative predictors (VH) and RDFI, with a kappa accuracy greater than 0.70.
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2. Materials and Methods
2.1. Study Area

The study area comprises the district of Tahuamanu in the department of Madre de
Dios, in the southeastern Peruvian Amazon. The district of Tahuamanu encompasses a
total area of 15,079 km2 (Figure 1) and includes agricultural areas, timber, and non-timber
forest concessions, as well as indigenous lands [26]. It is located between parallels 9◦51′12′′

and 11◦55′56′′ south latitude and meridians 68◦59′18′′ and 72◦ 14′39′′ west longitude, with
an altitude between 200 m and 550 m above sea level [27–31].
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Figure 1. Location of the study area, Distrito de Tahuamanu, Madre de Dios—Perú.

The study area is in the tropical rainforest. The average annual temperature is 25 ◦C,
with maximum temperatures reaching 38 ◦C, and minimum temperatures dropping to 8 ◦C.
The coldest months are December, January, and February, while the warmest months are
June, July, and August [32,33]. A climatic phenomenon characterized by low temperatures,
due to cold air masses arriving from the American Southeast, is known locally as “friaje”
or “surazo” [34–36]. The average annual relative humidity varies from 70% to 85% [35,36].

2.2. Description and Data Processing
2.2.1. SAR Sentinel-1 (S1)

The European Space Agency (ESA), through the Sentinel-1 mission, provides world-
wide coverage of freely available dual or cross-polarized C-band SAR images (with Ground
Range Detected scenes) at a time interval of 6 days and from 1 to 3 days revisit rate, de-
pending on the orbits (ascending and descending) of the satellites (1A and 1B) and the
overlap (Table S2). All SAR images used in this study were acquired in Interferomet-
ric Wide (IW) mode, VV polarization (Figure S2), VH (Figure S3), and descending orbit
(Tables S1 and S2).

The type of study applied was correlational and predictive, with a transactional (cross-
sectional) design [37]. Sentinel-1 data were accessed through the Google Earth Engine
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(GEE) portal. Using the GEE processing engine, the complex data were converted into
radiometric and geo-coded terrain data, obtaining the co-registration of the scenes and
sensor track. Representative pixel corrections were performed, and speckle noise was
reduced. For this, spatial temporal weighting was performed, and speckle reduction
filters were applied to the detected image, while the multi-look reduced speckle at the cost
of resolution [3,38]. Geometric correction (geocoding) was performed to correct for the
satellite sensor’s topographical variations and tilt. The available algorithm, Range Doppler
Terrain Correction Operator, uses the digital elevation model (DEM) of the Shuttle Radar
Topography Mission (SRTM) for each pre-and post-scenario [3,38].

The mean backscatter values were initially evaluated before being spatially located
in the study area (before and after the fire) [3]. The analysis applied absolute, relative,
and RBR predictor equations by RDFI (Equations (1)–(9)) from the VV and VH backscatter
data [3,18,39] to quantify the area and severity of burnings:

Abs_VV=VVpre−VVpost (1)

Abs_VH=VHpre−VHpost (2)

Rel_VV_1=
VVpre−VVpost

VVpre
(3)

Rel_VH_1=
VHpre−VHpost

VHpre
(4)

Rel_VV_2=
VVpre−VVpost√

VVpre
(5)

Rel_VH_2=
VHpre−VHpost√

VHpre
(6)

σ0,dB=10× log10×σ0 (7)

where VV and VH represent the backscatter coefficients in unit σ0 (Sigma0) to be expressed
in decibels (dB).

The RBR involved the calculation of the post-fire ratio of backscatter coefficients in
units of power (Equation (8)):

RBRxy =
Postfireaveragebackscatterxy

Prefireaveragebackscatterxy
(8)

where xy is an individual polarization or radar index.
RBR was developed for each polarization (VV and VH) and for RFDI (Equation (9)),

which shows the strength of the double bounce and backscatter of the soil directly.

RDFI =
(VV−VH)

(VV + VH)
(9)

where VV and VH represent the backscatter coefficient in power units.
Equations (1) and (2) measure the absolute changes in the landscape after the fires,

while Equations (3)–(6) show the relative changes with respect to the initial condition of
the soil before the fire [3,18,39].

The absolute and relative parameters for measuring the severity level of burns (Abs_VV,
Abs_VH, Rel_VV1, Rel_VV_2, Rel_VH_1, and Rel_VH_2) used the criteria shown in
Table 1 [3,18,39].
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Table 1. Decision criteria for developing the SAR Sentinel-1 burn severity model using absolute and
relative values 1.

Decision Criteria Severity of Burns

Rel_VV/VH 1 ≤ 0.57; Evergreen = No; Abs_VV/VH ≤ 0.03 Moderate
Rel_VV/VH 1 ≤ 0.57; Evergreen = No; Abs_VV/VH > 0.03 High
Rel_VV/VH 1 ≤ 0.57; Evergreen = Yes; Abs_VV/VH ≤ 0.03 Low
Rel_VV/VH 1 ≤ 0.57; Evergreen = Yes; Abs_VV/VH > 0.03 Moderate

Rel_VH 1 > 0.57; Abs_VV/VH ≤ 0.19 High
Rel_VV/VH 1 ≤ 0.57; Abs_VV/VH > 0.19 Moderate

1 Adapted from Addison and Oommen [3].

On the other hand, to measure RBR by means of the RDFI from the backscatter data
VV and VH [3,18,39], the criteria shown in Table 2 were used.

Table 2. Decision criteria for developing the SAR Sentinel-1 burn severity model using RDFI 1.

Decision Criteria Severity of Burns

RDFI = −0.6 to −0.47 Low
RDFI = −0.47 to 0.04 Moderate

RDFI ≥ 0.04 High
1 Adapted from Tanase et al. [17] and Tanase et al. [18].

The final results were applied to post-classification by the majority/minority anal-
ysis method with a kernel size of 3 × 3 to rectify and reclassify each image pixel by
pixel [29,40,41]. The processing used SNAP ESA, GEE, ArcGis Pro 2.1®, and ArcGis 10.5®

provided by the Centro de Teledetección para el Estudio y Gestión de los Recursos Natu-
rales (CETEGERN) of the Universidad Nacional Amazónica de Madre de Dios [29] and the
Center for Amazonian Scientific Innovation (CINCIA).

2.2.2. Accuracy Assessment and Field Data

A surface area of 15,079 km2 was established for the field data collection, in 384 field
samples, selected using a stratified random sampling method and inclusion and exclusion
techniques (Figure S1) [42–44]. The sampled plots in the field had a minimum size of
30 m × 30 m and were distributed in a representative manner [44] among burn severity
categories: low (n = 128), moderate (n = 128), and high (n = 128) (Figures 2 and S1).

Data were analyzed using statistical procedures. We applied tests for the evalua-
tion of the predictive power of the absolute, relative, and index values with the actual
field information (CBI) and employed the confusion matrix and the kappa coefficient
(κ) [3,29,43,45–48].

The continuous in-class CBI proposed by Key and Benson [49], adapted and modified
for the study, was used in the field to measure fire severity among the following categories:
no change (CBI = 0), low severity (0 < CBI ≤ 1), medium severity (1 < CBI ≤ 2), and high
severity (CBI > 2) (Table 3).
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Table 3. Definitions of CBI severity categories for comparing absolute, relative values, and RBR by
RDFI from VV and VH backscatter data 1.

Category CBI Description

Unburned 0 The location did not experience any fires. This may also include a location that
recovers quickly after fires.

Low >0 to ≤1 Minimal vegetation consumption: vegetation fragments affected.

Moderate 1 to ≤2 The landscape exhibits transitional conditions between the low and high
severity characteristics described above.

High >2 Approximately 90% to total vegetation consumption. Sites typically exhibit
greater than 50% mineral soil cover or freshly exposed rock fragments.

1 Adapted from Key and Benson [49].

From the results of the statistical analysis, we determined the overall accuracy and
Cohen’s Kappa Index (Equations (10) and (11)), which measures the overall performance
of the model [48] and inter-observer concordance [29,50,51] in the correct identification of
the three burn severity classes.

Overall accuracy=TP+
TN
TP

+FP+TN+FN (10)

where TP is true positive, TN is true negative, FP is false positive, and FN is false negative.

Kappa(k)=
∫

0−
∫

c

N
−
∫

c (11)

where ƒ0 is the proportion of matching units, and ƒc is the proportion of units expected to
match at random.

3. Results
3.1. Estimation of Burned Areas Using the Sentinel-1 (S1) Sensor

To evaluate SAR burn severity according to local topography, the Composite Burn In-
dex (CBI) was used as a function of sensor type and orbit direction (S1A downward) (Table
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S1 and Figures 3 and 4). The reduction of weather effects was achieved through the acquisi-
tion of SAR images with VV and VH polarization in environmental conditions of minimum
humidity pre- (16 and 21 May 2020) and post-fire (1 and 6 October 2020) (Table S2). For
the Tahuamanu district, Abs_VVV, Abs_VH, Rel_VV_1, Rel_VH_1, Rel_VV_2, Rel_VH_2,
RBRxy, and RDFI (Equations (1)–(10)) were posed as quotients. The C-band backscatter
data from the Sentinel-1 sensor with a center frequency of 5.405 GHz and a length of 5 cm
over a 250 km swath and a high geometric resolution of 5 m by 20 m are useful for mapping
burn severity [3,17,18].
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burned areas.

C-band co-polarization (VV) and cross-polarization (VH) coherence were used to
measure the sensitivity of volume changes and the combustion of biomass (leaves and
branches) and consequently the damaged, thin, and dry vegetation resulting from the burn
generating less backscatter (Figures 3 and 4) [3]. Figures 3 and 4 show the spatial patterns
in decibels (dB) and indices of the vegetation and burned areas, such as the severity of
the burn (CBI), where the dark areas show the differential increase in polarization and the
greater influence of the surface properties of the burned area.
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3.1.1. Burn Quantification

The data shown in Figure 5 were characterized by the greatest difference in backscatter
between burned and unburned vegetation. The SAR Sentinel-1 VV and VH polarization
images were acquired under two climatic conditions: (1) late rainy season, and (2) high
temperature (Table S1). The co-polarized backscatter coefficient VV increased minimally
with burn severity with respect to the C-band VH polarization (Figure 3). This minimal
variation of the backscattering of the burned areas of VV over VH could be explained
with the decrease of the canopy and consequently the exposure of residual vegetation and
soil [17,18,39,52]. In that sense, the most intense and darkest zones (black and purple) show
the differential increase in polarization and the greatest influence of the surface properties
of the burned area (Figures 4 and 5).

The burns of the mapped vegetation in the forests of the district of Tahuamanu with
SAR Sentinel-1 images used absolute, relative, and RBR predictors by means of RDFI quan-
tified areas of 2963 ha (Ab_Rel_VV_1), 3108 ha (Ab_Rel_VV_2), 2920 ha (Ab_Rel_VH_1),
3972 ha (Ab_Rel_VH_2), and 3496 ha (RDFI_VVVH), respectively (Figures 6 and S4–
S8). These results showed differences in the spatial distribution and surface area of
burned areas, ranging from 1052 ha between the minimum (Ab_Rel_VH_1) and maxi-
mum (Ab_Rel_VH_2).



Fire 2022, 5, 94 9 of 18Fire 2022, 5, x FOR PEER REVIEW 9 of 19 
 

 

 
Figure 5. Sentinel-1 C-band burn quantification using absolute and relative values of VV, VH, and 
pre- and post-burn 2020 backscatter data: (a) relative absolute VV_1, (b) relative absolute VV_2, (c) 
relative absolute VH_1, (d) relative absolute VH_2, (e) RDFI VVVH. 

The burns of the mapped vegetation in the forests of the district of Tahuamanu with 
SAR Sentinel-1 images used absolute, relative, and RBR predictors by means of RDFI 
quantified areas of 2963 ha (Ab_Rel_VV_1), 3108 ha (Ab_Rel_VV_2), 2920 ha 
(Ab_Rel_VH_1), 3972 ha (Ab_Rel_VH_2), and 3496 ha (RDFI_VVVH), respectively (Fig-
ures 6 and S4–S8). These results showed differences in the spatial distribution and surface 
area of burned areas, ranging from 1052 ha between the minimum (Ab_Rel_VH_1) and 
maximum (Ab_Rel_VH_2). 

Figure 5. Sentinel-1 C-band burn quantification using absolute and relative values of VV, VH, and
pre- and post-burn 2020 backscatter data: (a) relative absolute VV_1, (b) relative absolute VV_2,
(c) relative absolute VH_1, (d) relative absolute VH_2, (e) RDFI VVVH.

Fire 2022, 5, x FOR PEER REVIEW 10 of 19 
 

 

 
Figure 6. Quantification of burned areas by absolute and relative values, and RBR by RDFI of pre- 
and post-fire 2020 VV and VH backscatter data; Equations (1)–(9). 

3.1.2. Burn Severity 
To determine burn severity, Sentinel-1 SAR backscatter was used by means of abso-

lute and relative predictors and RBR by means of RDFI according to the parameters pro-
posed in Tables 1–3. The results showed a strong association between backscatter and 
burn severity with co-polarization (VV) and cross-polarization (VH). Absolute/relative 
coefficient crossover and RDFI were used to determine and discriminate the relative 
strength of polarization and burn severity. The simultaneous use of co-polarized channels 
and cross-polarization allowed for the determination of the highest coefficients and the 
lowest errors for the C-band. The highest records in the C-band in units of decibels (dB) 
were related to the level of vegetation burn severity.  

Absolute and relative values of co-polarization and cross-polarization indices 
showed Abs_VV values from −18.71 to −0.03 (moderate/low), 0.03 to 0.19 (high), and >0.19 
(moderate); Abs_VH values <0.05 (moderate/low), from 0.05 to 0.09 (high/moderate), and 
from 0.09 to 0.16 (high); Rel_VV_1 values from −18.3 to 0.57 (moderate/high) and >0.57 
(high); Rel_VH1 with values from 0.76 to 2.92 (high); Rel_VH_2 from 0.41 to 0.57 (moder-
ate) and from 0.57 to 1.52 (high); and Rel_VH_2 from −18.37 to 0.57 (high/moderate/low), 
and >0.57 (high) (Figure 7). 

Figure 6. Quantification of burned areas by absolute and relative values, and RBR by RDFI of pre-
and post-fire 2020 VV and VH backscatter data; Equations (1)–(9).



Fire 2022, 5, 94 10 of 18

3.1.2. Burn Severity

To determine burn severity, Sentinel-1 SAR backscatter was used by means of absolute
and relative predictors and RBR by means of RDFI according to the parameters proposed
in Tables 1–3. The results showed a strong association between backscatter and burn
severity with co-polarization (VV) and cross-polarization (VH). Absolute/relative coeffi-
cient crossover and RDFI were used to determine and discriminate the relative strength
of polarization and burn severity. The simultaneous use of co-polarized channels and
cross-polarization allowed for the determination of the highest coefficients and the lowest
errors for the C-band. The highest records in the C-band in units of decibels (dB) were
related to the level of vegetation burn severity.

Absolute and relative values of co-polarization and cross-polarization indices showed
Abs_VV values from−18.71 to−0.03 (moderate/low), 0.03 to 0.19 (high), and >0.19 (moderate);
Abs_VH values <0.05 (moderate/low), from 0.05 to 0.09 (high/moderate), and from 0.09 to
0.16 (high); Rel_VV_1 values from−18.3 to 0.57 (moderate/high) and >0.57 (high); Rel_VH1
with values from 0.76 to 2.92 (high); Rel_VH_2 from 0.41 to 0.57 (moderate) and from 0.57 to
1.52 (high); and Rel_VH_2 from −18.37 to 0.57 (high/moderate/low), and >0.57 (high)
(Figure 7).
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Figure 7. Sentinel-1 C-band, burn severity using absolute and relative values of backscatter data
VV, VH, and pre- and post-burn 2020: (a) pre-burn, (b) post-burn, (c) absolute VV, (d) absolute VH,
(e) relative VV, (f) relative VH, (g) relative absolute VV_1, (h) relative absolute VV_2, (i) relative
absolute VH_1, (j) relative absolute VH_2, (k) RDFI VVVH, (l) relative absolute burn severity VV_1,
(m) relative absolute burn severity VV_2, (n) relative absolute burn severity VH_1, (o) relative
absolute burn severity VH_2, and (p) RDFI burn severity VVVH.

In the case of burned areas based on RBR with RDFI, the severity of burns was
quantified with values of indices from −0.6 to −0.47 at the low level, from −0.47 to 0.04 at
the moderate level, and from 0.04 to0.16 at the high level (Figure 8).
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Figure 8. Areas by burn severity level using absolute and relative values and Burn Ratio (RBR) by
Radar Forest Degradation Index (RDFI) from pre- and post-fire 2020 VV and VH backscatter data.

From the data, it was possible to detect and quantify the severity of the burns in
the images: (1) Ab_Rel_VV_1 with 586 ha (low), 1167 ha (moderate), and 1209 ha (high);
(2) Ab_Rel_VV_2 with 676 ha (low), 1223 ha (moderate), and 1208 ha (high); (3) Ab_Rel_VH_1
with 435 ha (low), 1277 ha (moderate), and 1208 ha (high); (4) Ab_Rel_VH_2 with 519 ha
(low), 1983 ha (moderate), and 1470 ha (high), and; (5) RDFI_VVVH with 536 ha (low),
1484 ha (moderate), and 1475 ha (high) (Figures 8 and S9–S13).

3.2. Accuracy Assessment

To measure the accuracy of burn severity at different co-polarization and cross-
polarization ratios, a coefficient of agreement analysis was carried out for nominal scales
(kappa), and a global accuracy matrix using field data on plot burn severity
(CBI) [1,5,12,44,51,53]. The proportion of plots (n = 384) with CBI values (Table 4) was
relatively significant. However, more detailed measurements of vegetation structure pa-
rameters are needed to increase the significance of the statistical analysis [17,18,39,51,54–56].

The SAR Sentinel-1 backscatter data detected k = 0.523 for VV_1, k = 0.516 for VV_2,
k = 0.477 for VH_1, k = 0.672 for VH_2, and k = 0.742 for VVVH, where more than half of
the joint judgments were in agreement (excluding chance). The marginals were such that
kM was 1.004 (VV_1), kM was 1.016 (VV_2), kM was 1.012 (VH_1), kM was 1.043 (VH_2),
and kM was 1.051 (VVVH), so a substantial part of the disagreement was a consequence of
marginal discrepancies (where kM is the maximun value of k). The probable population
value (at 95%)of x for VV_1 was estimated to be between 0.454 and 0.593, for VV_2 between
0.445 and 0.586, for VH_1 between 0.405 and 0.548, for VH_2 between 0.610 and 0. 734, and
of VVVH between 0.686 and 0.799, with moderate concordance strengths (0.41–0.60) for
VV_1, VV_2, and VH_1, while for VH_2 and VVVH there was a considerable concordance
strength (0.61–0.80) [51]. At the overall precision level, they reported values of 0.682,
0.677, 0.651, 0.781, and 0.828, respectively. The z-values for VV_1 (14.506), VV_2 (14.289),
VH_1 (13.207), VH_2 (18.602), and VVVH (20.568) measured the difference between an
observed statistic and its hypothetical population parameter in standard deviation units,
being significant at a probability of (p < 0.001) (Table 4).
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Table 4. Confusion matrix and kappa index of CBI test data (columns) versus SAR Sentinel-1 data of absolute and relative values of VV and VH backscatter data of
2020 burns. (a) Relative absolute burn severity VV_1; (b) relative absolute burn severity VV_2; (c) relative absolute burn severity VH_1; (d) relative absolute burn
severity VH_2, and (e) RDFI burn severity VVVH.

Category (a)
CBI

Category (b)
CBI

Low Moderate High ƒSAR Sentinel-1 Low Moderate High ƒSAR Sentinel-1

SAR Sentinel-1
(VV_1)

Low 88 (42) 23 15 126
SAR Sentinel-1

(VV_2)

Low 86 (41) 23 15 124
Moderate 24 83 (43) 22 129 Moderate 23 85 (44) 24 132

High 16 22 91 (43) 129 High 19 20 89 (43) 128
ƒCBI 128 128 128 384 ƒCBI 128 128 128 384

ƒo= 262 ƒc= 128 ƒo= 260 ƒc= 128
k= 0.523 kM= 1.004 k= 0.516 kM= 1.016
σk= 0.0356 σko= 0.0361 σk= 0.0358 σko= 0.0361
z= 14.506 Confusion matrix= 0.682 z= 14.289 Confusion matrix= 0.677

Category (c)
CBI

Category (d)
CBI

Low Moderate High ƒSAR Sentinel-1 Low Moderate High ƒSAR Sentinel-1

SAR Sentinel-1
(VH_1)

Low 79 (41) 25 19 123
SAR Sentinel-1

(VH_2)

Low 101 (43) 15 13 129
Moderate 27 83 (44) 21 131 Moderate 15 104 (46) 20 139

High 22 20 88 (43) 130 High 12 9 95 (39) 116
ƒCBI 128 128 128 384 ƒCBI 128 128 128 384

ƒo= 250 ƒc= 128 ƒo= 300 ƒc= 128
k= 0.477 kM= 1.012 k= 0.672 kM= 1.043
σk= 0.0365 σko= 0.0361 σk= 0.0316 σko= 0.0361
z= 13.207 Confusion matrix= 0.651 z= 18.602 Confusion matrix= 0.781

Category (e)
CBI

Low Moderate High ƒSAR Sentinel-1

SAR Sentinel-1
(VVVH)

Low 108 (44) 11 12 131
Moderate 13 111 (47) 17 141

High 7 6 99 (37) 112
ƒCBI 128 128 128 384

ƒo= 318 ƒc= 128
k= 0.742 kM= 1.051
σk= 0.0289 σko= 0.0361
z= 20.568 Confusion matrix= 0.828
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The reliability results determined the cross ratios of absolute and relative cross-
polarization values VH_2 (k = 0.734) and the RBR by RDFI (k = 0.799) to be the most
concordant to determine the severity of burns, showing considerable concordance strength
with respect to the moderate strength of the other ratios [1,5,12,44,51,53].

4. Discussion

Historically, burn-related forest disturbances in the Amazon have been associated
primarily with the conversion of natural forests to agricultural uses [28,30,57,58]. Vari-
ous attempts to establish policies and management instruments have existed to regulate
burning, but they have not worked due to the weak presence of the government in rural
areas [31,59].

An advantage, but not a determining factor, is the occupation of areas with forest
titles, titled agricultural lands, or indigenous communities, which guarantee some security
and protection against encroachment but are not free from burning. Despite all this, there
is evidence of invasions for agricultural purposes, where slash-and-burn activities are
carried out. In most cases, uncontrolled burning extends to agricultural fields, pastures,
pastureland, grasslands, secondary forests, and primary forests [22,60–63].

Another common situation in the study area is patch and edge burning. Most burns are
provoked by small and medium farmers by (1) slash and burn forestry, and (2) uncontrolled
logging, in which trees are affected by fire and then they are logged, even though these
forests are able to recover after forest fires [20,22,64,65].

Many studies show the potential of using radar and combined radar and optical
sensors to detect vegetation disturbance from burning [17,18,22,52,60,66,67]. We used
Sentinel-1 SAR with VV and VH polarizations to achieve a higher observation density and
to overcome the influence of environmental factors on the optical time series. The results
show that the vertical and horizontal sensitivities of SAR to changes in photosynthetic
and non-photosynthetic vegetation cover go beyond a binary detection (forest and burns);
therefore, its use can be very broad [3,22,39,52,55]. In this context, studies of burn patterns
identified in Amazonian regions such as Pando (Bolivia) and Acre (Brazil) are similar to
those in the Madre de Dios region [21,27,68].

The Sentinel-1 C-band SAR data with VV and VH backscatter were acquired under
two climatic conditions: (1) end of the rainy season, and (2) high temperature (Table S1).
The backscattering coefficient VV increased minimally with burn severity with respect to
VH polarization. This increase in the backscattering of burned areas is supported by the
reduced presence of canopy and exposure of residual vegetation and soil. Consequently,
the penetration of vertical waves generates a lower response. However, the dispersion and
spatial quantification of burn severity may vary in their behavior and present a better level
of detection with vertical and horizontal backscattering [17–19,39,52,54,55,67].

Areas not affected by burns showed 0 dB of change, with values around 1. Crossing
absolute and relative values of the cross-polarization VH, the coefficient Ab_Rel_VH_1
detected a slight underestimation in the quantification of burn severity relative to the other
ratios, as opposed to the predictor Ab_Rel_VH_2, where it exhibited a slight overestimation
with respect to the others. While the RDFI_VVVH showed much more consistent results,
this could be due to the dispersion of the use of co-polarization (VV) and cross-polarization
(VH) in the same quotient (Figure 7, Figures S8 and S13) [17,18,25,60,69], as well as the
wide opening of the vertical and horizontal waves in the detection of burns due to the
reduction of the canopy and, as a consequence, the exposure of residual vegetation and
soil [17–19,39,52,54,55,67].

The proportion of burn severity in the ratios used showed average ranges from
38% to 42% at the high level, from 39% to 50% at the moderate level, and from 13% to
22% at the low level. On the other hand, the increase in fire severity in Ab_Rel_VV_1,
Ab_Rel_VV_2, Ab_Rel_VH_1, Ab_Rel_VH_1, and RDFI_VVVH corresponds to the increase
in post-burn values. The highest values are due to a differentiated effect of the severity
of the burns and are recorded in the VV and VH polarizations, with VV backscattering
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showing a decrease due to the effect of the elimination of scattering elements, compensated
by an increase in surface scattering [3,63,69,70]. The burn ratios varied from unburned
to high severity levels, and the findings resemble those reported by other researchers, in
which the values were elevated by the presence of dispersant elements in Amazonian
forests [3,5,21,22,61–63,66,69–71]. However, the behavior is the opposite in coniferous,
temperate, or boreal forests [17–19,24,72,73].

Regarding the accuracy of burn severity at different co-polarization and cross-polarization
ratios, a coefficient of agreement analysis was carried out for nominal scales (kappa), and a
global accuracy matrix using field data on plot burn severity (CBI) [1,5,12,44,51,53]. Cross-
ratios of absolute and relative cross-polarization values VH_2 (k = 0.734) and the RBR by RDFI
(k = 0.799) were shown to be the most reliable for determining burn severity, showing consis-
tent overall accuracy and considerable strength of agreement [1,5,12,44,51,53]. The behavior
of the CBI in the field proposed by Key and Benson [49], adapted and modified for this
study, was significant (Table 4), and adequate responses to VV and VH polarizations were
obtained (Figures 2–4). We obtained a significant response to the VV and VH polarization
(Figures 2–4) because the CBI field protocol takes into account the sensor orientation
(downward), improving the canopy and understory attenuation layer consumption and the
indirect estimates due to the effect of soil exposure, and generating a high relative measure-
ment in the detection of burn severity by the sensor (Figures 2–4) [17–19,39,52,54,55,67].

Our results show a scientific basis for the use of active imagery such as C-band SAR
Sentinel-1 in the detection and quantification of burn severity in the Peruvian Amazon.
The results give VH cross-polarization using absolute/relative ratio and RDFI as the best
predictors. Future research should focus on further validating the behavior of burn severity
in different forest types in the Amazon region and generating monitoring methods on a
large scale. Likewise, the fusion of global optical images such as Sentinel-2 and Landsat
with SAR images should be studied to evaluate detection and accuracy versus independent
analysis of optical or SAR images.

5. Conclusions

The research provides knowledge about the use of 2020 Sentinel-1 C-band SAR im-
agery in the estimation of burn severity in the southeastern Peruvian Amazon. We applied
absolute, relative, and Burn Ratio (RBR) predictors by means of the Radar Forest Degrada-
tion Index (RDFI) and verified the accuracy with field data on plot fire severity (CBI).

The use of simple cross-polarization (VH) determined the absolute/relative predictor
(1. Ab_Rel_VH_2 = 3972 ha) and RDFI (2. VVVH = 3496 ha) with the best dispersion
responses, with accuracies of a kappa index (k) of 0.734 (1) and 0. 799 (2). The highest
occurrences and incidences were recorded at the moderate (43%) and high (40%) levels.

According to our analysis, the behavior of the co-polarization (VV) and cross-polarization
(VH) of the C-band SAR Sentinel-1 varied according to the terrain physiography and vegeta-
tion physiognomy. The backscattering of VH allowed for better detection at surface and depth,
while the co-polarization (VV) was more affected by scattering processes and demonstrated
a strong relationship of burning severity in a stable and dry environment that matched the
burning seasonality in the Amazon. On the other hand, the limitations of using co-polarization
backscattering and cross-polarization were minimized by the application of RDFI, which uses
VV and VH polarizations pre- and post-burning. In our case, the results were as expected
according to the theoretical basis of radar image backscattering. However, we suggest further
analysis for other reductions.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/fire5040094/s1, Figure S1: Distribution of samples to validate the
severity of burns in the district of Tahuamanu, southeastern Peruvian Amazon; Figure S2: Sentinel-1
C-band SAR images with VV polarization pre- and post-fire 2020; Figure S3: Sentinel-1 C-band SAR
images with VH polarization pre- and post-fire 2020; Figure S4: Determination of burned areas using
absolute and relative values of pre- and post-fire 2020 VV_1 backscatter data; Equations (1) and (3);
Figure S5: Determination of burned areas using absolute and relative values of pre- and post-fire

https://www.mdpi.com/article/10.3390/fire5040094/s1
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2020 VV_2 backscatter data; Equations (1) and (5); Figure S6: Determination of burned areas using
absolute and relative values of pre- and post-fire 2020 VH_1 backscatter data; Equations (2) and (4);
Figure S7: Determination of burned areas using absolute and relative values of pre- and post-fire
2020 VH_2 backscatter data; Equations (2) and (6); Figure S8: Determination of burned areas through
Burn Ratio (RBR) by Radar Forest Degradation Index (RDFI) from pre- and post-fire 2020 VV and
VH backscatter data; Equations (8) and (9); Figure S9: Burn severity using absolute, relative values
from VV_1 pre- and post-fire 2020 backscatter data; Equations (1) and (3); Figure S10: Burn severity
using absolute, relative values from VV_2 pre- and post-fire 2020 backscatter data; Equations (1)
and (5); Figure S11: Burn severity using absolute, relative values from VH_1 pre- and post-fire 2020
backscatter data; Equations (2) and (4); Figure S12: Burn severity using absolute, relative values
from VH_2 pre- and post-fire 2020 backscatter data; Equations (2) and (6); Figure S13: Burn severity
using Radar Burn Ratio (RBR) and Radar Forest Degradation Index (RDFI) of pre- and post-fire 2020
VV and VH backscatter data; Equations (7)–(9); Table S1: Sentinel-1 image acquisition information;
Table S2: Sentinel-1 satellite image characteristics.
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