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Abstract: This study sought an effective detection method not only for flame but also for the smoke
generated in the event of a fire. To this end, the flame region was pre-processed using the color
conversion and corner detection method, and the smoke region could be detected using the dark
channel prior and optical flow. This eliminates unnecessary background regions and allows selection
of fire-related regions. Where there was a pre-processed region of interest, inference was conducted
using a deep-learning-based convolutional neural network (CNN) to accurately determine whether it
was a flame or smoke. Through this approach, the detection accuracy is improved by 5.5% for flame
and 6% for smoke compared to when a fire is detected through the object detection model without
separate pre-processing.
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1. Introduction

In a fire, engineering approaches to reducing the spread of smoke and flames involve
compartmentalization, dilution, airflow, and pressurization [1]. These methods are very
important for extinguishing a fire in its early stages, but there is a problem in that the fire
has already begun to grow or become responsive after full development. Therefore, to
solve this problem, this study attempts an image-based fire detection method. In particular,
it aims to effectively respond to a fire by detecting all the flame and smoke that may occur
in the early stages of the fire. It is very important to detect smoke, not just flames, in a
fire, particularly considering that in general, smoke damage to human health occurs more
often than direct damage caused by flames. Smoke generated from such a fire can affect
the human body due to high temperatures, lack of oxygen, and carbon monoxide. In
addition to these direct factors, reduced visibility and subsequent psychological anxiety
may adversely affect evacuation behavior [2,3].

To this end, many studies on fire detection based on artificial intelligence have recently
been conducted. Existing deep learning computer vision-based flame detection studies have
included a method proposed by Shen et al. [4], in which flames were detected using a “you
only look once” (YOLO) model based on Tensorflow, without separate filtering of input
images. In this case, if additional image pre-processing was added, the accuracy would be
improved, as the unnecessary background area would be removed in advance, reducing
false negatives significantly. Another study was a fire detection method proposed by
Muhammad et al. [5], which classified fire or non-fire from the image in order to efficiently
detect fire in resource-constrained environments. However, in this case, the fire is judged
not only for the flame but also for the entire unnecessary image area. Nguyen et al. [6]
achieved 92.7% accuracy in detecting fire using a UAV-based object detection algorithm,
while Jeon et al. [7] achieved a 97.9% F1 score by detecting fire using a CNN based on a
multi-scale prediction framework, but both of these previous studies detected only flame.
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However, there is a problem of high error detection rate because there is no separate
filtering method. Therefore, in this study, the disadvantages of the existing image-based
fire detection methods were supplemented through color and dynamic characteristics.
In particular, when detection is difficult because the shape is not constant, such as with
smoke, detection is facilitated through an appropriate pre-processing method. In addition,
both of these previous studies detected only flame. Therefore, to supplement these fire
detection methods, this study proposes a method capable of detecting flame and smoke
in combination.

Therefore, and as shown in Figure 1, an effective image pre-processing method was
designed for each flame, as well as for the smoke from the input image, so that objects
that are not related to the fire can be filtered out in advance. In the case of a flame, when
a combustible gas generated by pyrolysis of a solid combustible material such as wood
is mixed with air and combusted, a flame may be generated. In addition, a flame may be
generated by evaporative combustion, in which the combustible liquid evaporates and
burns. When such flaming occurs, pre-processing was attempted in order to detect the
flame through its appearance-related characteristics. For this purpose, hue, saturation,
value (HSV) color conversion and corner detection were used during image pre-processing.
First, in the case of HSV color conversion, a color region where a flame is likely to exist is
detected. In addition, among the objects that remain after HSV color conversion, the flame
is found to possess the characteristic of a sharp texture of the object, resulting in a large
number of corners [8,9]. Based on this fact, if the Harris corner detector is performed on
the HSV color converted image, corners are generated intensively only in the flame, so that
filtering can be performed more precisely. Therefore, following the color conversion and
filtering, the region where the corners are gathered is detected as a flame candidate region.
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Figure 1. Flow chart of the proposed fire detection.

In this study, both the optical flow technique, which used the dark channel prior, and
the Lucas–Kanade method were used to effectively pre-process smoke. The dark channel
prior was originally proposed by He et al. [10] as an algorithm designed to remove haze
from the image. However, in this study, the smoke region in the image was detected
using these haze detection characteristics. The characteristic of the smoke region that was
detected using the dark channel prior was identified in pixels where haze or smoke does
not exist; here, at least one color channel among R, G, and B had a value close to 0, and
this pixel was defined as a dark pixel. The smoke region detected through these features
was additionally filtered using optical flow, based on the Lucas–Kanade method. This
allows the smoke to be effectively detected by filtering the background through dynamic
characteristics, in which the smoke moves in the upward direction. Optical flow is an
important technique for analyzing the motion of an object in computer vision, and includes
a differential method, a matching method, and a phase-based method. Although there
are various optical flow techniques, in this study the smoke motion characteristics were
detected using the Lucas–Kanade method [11].
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Finally, a CNN was used to detect fire with higher accuracy and reliability for the pre-
processed flame and candidate smoke regions. Among the CNN models, the Inception-V3
model was used for inference, and images related to flames and smoke were collected and
configured as a training dataset.

2. Image Pre-Processing for Fire Detection
2.1. Flame Detection

The first image pre-processing step employed for flame detection in this study was
HSV color conversion. The HSV color model can be used to identify the color of objects in
various applications other than image pre-processing. Hue and saturation components are
very useful because they are similar to how humans perceive color, which can be an ideal
method for developing image-processing algorithms. Hue represents the distribution of
colors based on red, and saturation represents the degree to which white light is included
in color. Additionally, value is used to control the intensity of light. The value can be
independent of a single component to control its range, thus creating algorithms that are
robust to lighting changes [12,13].

In Equation (1), it should be noted that when each pixel value is 1, it indicates a region
corresponding to a color space in which a flame can exist at an image location, and pixels
in the corresponding range are extracted as a candidate region. A pixel value of 0 means
that a pixel is classified as a non-flame.

RoIHSV(x,y)


(20 < H(x, y) < 40) and

1, (50 < S(x, y) < 255) and
(50 < V(x, y) < 255) and

0, otherwise

(1)

Figure 2 shows such HSV color conversion: Figure 2a is the original flame image, and
Figure 2b is the image of the result to which the HSV color conversion is applied.
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Figure 2. HSV color conversion of flame image. (a) original images; (b) HSV color conversion in the
specified range.

Even after HSV color conversion, the results of objects, including light yellow other
than flame, remain. To further filter this, Harris corner detector was used as the second
image pre-processing step. Among the remaining objects following HSV color conversion,
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the flame had a sharp texture, which resulted in a large number of corners. Therefore, in
a region where corners are intensively generated, it is highly likely that it is a flame, and
such a region is detected as a candidate region.

E(x, y) = ∑W [I(xi, yi)− I(xi + u, yi + v)]2 (2)

First, when there is a reference point (x, y) in the image, it can be expressed as
Equation (2). When the amount of change shifts by (u, v) from the reference point. I
represents brightness, and (x, y) represents points inside Gaussian window W. The region
moved by (u, v) can be organized as shown in Equation (3) below, using the Taylor series.

I(xi + u, yi + v) ≈ I(xi, yi) +
[
Ix(xi, yi)Iy(xi, yi)

][u
v

]
(3)

The first-order derivative in the x and y directions, Ix and Iy, could be obtained via
convolution arithmetic, using Sx, the Sobel x kernel, and Sy, the Sobel y kernel, as shown in
Figure 3. If Equation (3) is substituted for Equation (2), it can be expressed as Equation (4).

E(u, v) = [u v]

[
∑W(Ix(xi, yi))

2 ∑W Ix(xi, yi)Iy(xi, yi)

∑W Ix(xi, yi)Iy(xi, yi) ∑W
(

Iy(xi, yi)
)2

][
u
v

]
= [u v]M

[
u
v

]
(4)
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If M is defined M =

[
A C
C B

]
, properties such as Equations (5) and (6) are satisfied.

Finally, Equation (7) allows us to determine the edge, corner, and flat. k is an empirical
constant, and a value of 0.04 was used in this paper.

det(M) = AB− C2 = λ1λ2 (5)

trace(M) = A + B = λ1 + λ2 (6)

R(x, y) = det(M)− k(trace(M))2 (7)

Each pixel’s location will have a different value, and the final calculated R(x, y) will
be compared to the following conditions to distinguish between the edge, corner, and
flat [14–17].

• When |R| is small, which happens when λ1 and λ2 are small, these points belong to
flat regions;

• When R < 0, if only one eigenvalue of λ1 and λ2 is bigger than the other eigenvalue,
the region belongs to edges;

• If R has a large value, the region is a corner.

In these conditions, R has a large value and corresponds to a corner, and Figure 4 is
the result of visualizing pixels that satisfy this condition.
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Figure 4. Corner detection images. (a) the result of detecting the corner of the flame image; (b) the
result of detecting the corner of the non-flame image.

Figure 4a is the pre-processing result of the image without a flame, and Figure 4b is the
pre-processing result of the image where the flame exists; the pixels that satisfy the corner
condition in the HSV color conversion image are marked with green dots. In the case of
non-flame images, there are many pixels that have not been filtered even via HSV color
conversion, but when corner detection is performed, it can be confirmed that most corners
do not exist. In the case of the flame image, one result of intensively detecting a corner in
a region where the flame exists may be confirmed. Therefore, through this result, when
various objects exist in the image, only the flame region may be effectively pre-processed.
In addition, the region where these corners are clustered is used as a candidate region that
can be inferred through a deep-learning-based CNN.

2.2. Smoke Detection

If smoke occurs in a fire, it can cause negative physiological effects, such as poisoning
or asphyxiation, leading to problems in evacuation or extinguishing activities. In addition,
when smoke is generated, visibility is poor, the range of action for evacuation is narrowed,
and adverse effects such as the malfunction of fire alarm equipment can be caused. There-
fore, detecting smoke early in the event of a fire is important. To this end, in this study the
smoke region was detected using the dark channel prior and optical flow.

The dark channel refers to a case in which at least one channel with a low intensity
value among R, G, and B color channels exists in the case where an image has no haze.
Dark channels are algorithms that remove haze based on these characteristics, as proposed
by He et al. When haze or smoke exists in the atmosphere, some of the light reflected from
the object is lost in the process of being transmitted to the observer or camera, causing the
object to appear blurred. This can be expressed as Equation (8), based on pixel x [10].

(x) = J(x)t(x) + A(1− t(x)) (8)

J(x) represents an undistorted pixel, I(x) represents a pixel that has reached the actual
camera, and t(x) has a value of 1 when it reaches the camera completely without haze or
smoke with medium transmission. A is air light, and it can be assumed that all pixels in
the image have the same value. The operation of the dark channel existing in the pixel x in
the image can be expressed as Equation (9).

Jdark(x) = min
C∈r,g,b

( min
y∈Ω(x)

(JC(y))) (9)
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Here, Ω(x) is the kernel centered on pixel x, and C ∈ r, g, b represents the value of
each channel. Therefore, a case where the brightness value of at least one channel among
the R, G, and B values of Ω(x) is very low is defined as Jdark [10]. Using the characteristics
of these dark channels, it is possible not only to effectively remove haze or fog from the
image, but also to pre-process smoke regions that may occur during a fire. Figure 5 shows
the results of a thresholding set through the dark channel characteristics that exist in
the pixel.
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The smoke region detected through the dark channel prior is filtered once more
through the dynamic characteristics of the smoke. Combustion of solid fuels in a fire
usually entails heat in the adjacent material that burns or in the fuel itself. As a result, hot
volatile or flammable vapors are emitted, and when a fire column and gas accompanying
hot smoke are generated, they rise above the surrounding cold air due to the lowered
gas density [18–20]. Therefore, in order to pre-process the image with the smoke flow
characteristics, the motion of the smoke rising upward was detected using the optical flow
algorithm. Estimating the motion of an object through optical flow uses the change in
contrast from two adjacent images with a time difference [21,22].

The optical flow based on the Lucas–Kanade method makes appropriate assumptions
within the range that does not significantly deviate from the actual reality. Among them,
brightness constancy is the most important assumption with regard to the optical flow
estimation algorithm. According to the brightness constancy, the same part of two scenes
with a time difference from the video have the same or almost the same contrast values.
This brightness constancy is not always correct in reality, but it is based on the principle
whereby it can be assumed that the change in contrast of an object is not large in the short
time difference between image frames [23,24].

If the time difference between two adjacent images is sufficiently small, the following
Equation (10) is established according to the Taylor series.

f (y + dy, x + dx, t + dt) = f (y, x, t) +
∂ f
∂y

dy +
∂ f
∂x

dx +
∂ f
∂t

dt + . . . (10)

Assuming that is small, dy and dx, which represent the movement of an object, are
also small, so there is no significant error even if the quadratic term or higher are ignored.

As mentioned earlier, according to the assumption with regard to brightness constancy,
the new point f (y + dy, x + dx, t + dt) is formed by moving (dx, dy) during the time dt, so
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that f (y + dy, x + dx, t + dt) of the new point is the same as f (y, x, t) of the original point,
dy
dt = v, and dx

dt = u. Therefore, Equation (10) can be written as Equation (11).

∂ f
∂y

v +
∂ f
∂x

u +
∂ f
∂t

= 0 (11)

This equation is a differential equation and is called an optical flow constraint equation
or a gradient constraint equation. Although the motion of the object can be estimated
through this equation, the resulting value cannot be determined because there are two
unknowns, v and u. In order to solve two vectors that could not be obtained in the optical
flow estimation algorithm, the Lucas–Kanade algorithm, a local computation method, is
used. The Lucas–Kanade method solves the equation using the least squares method as
shown in Equation (12) below [25].

(
v

u

)
=

 ∑n
i=1wi

(
∂(yi ,xi)

∂y

)2
∑n

i=1wi
∂ f (yi ,xi)

∂y
∂ f (yi ,xi)

∂x

∑n
i=1

∂ f (yi ,xi)
∂y

∂ f (yi ,xi)
∂x ∑n

i=1wi

(
∂(yi ,xi)

∂y

)2


−1

×

−∑n
i=1wi

∂ f (yi ,xi)
∂y

∂ f (yi ,xi)
∂t

−∑n
i=1wi

∂(yi ,xi)
∂x

∂(yi ,xi)
∂t

 (12)

i corresponds to the coordinate values of all pixels, and the optical flow is calculated
based on the derivative value calculated in each pixel. The change in the direction of optical
flow can distinguish the smoke area by manually setting the threshold T.

Figure 6 depicts a scene where the smoke flow is detected using optical flow from the
smoke generated images. Using the optical flow algorithm, the vector change of the object
is calculated only for the area where the smoke extracted through the dark channel feature
is expected to exist, not the entire input image.
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The information obtained through this includes θi, which is the angle, as shown in
Equation (13).

θi(X, Y) = arctan
(

Yt+1 −Yt

Xt+1 − Xt

)
(13)

Candidate region =

{
1, 45◦ < θi(X, Y) < 135◦

0, otherwise
(14)

Considering that θi(X, Y) is the direction of the optical flow vector of the pixel at
position (X, Y) of the i-th frame according to Equation (13), dx and dy are the motion flow
vectors of the row and column, respectively. Among the values of the vectors obtained
here, the area that moved from 45 degrees to 135 degrees, as shown in Equation (14), can be
filtered. Through these pre-processing processes, a region with a high probability of acting
can be used as a candidate region and predictions can be made through a deep-learning-
based CNN.
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2.3. Inference Using Inception-V3

In order to detect fire with higher accuracy in the region of interest obtained during
image pre-processing, in this study, CNN was constructed as the last step toward finally
detecting whether a fire occurred. CNN is used in similar computer vision studies, such as
in image classification, object detection and recognition, and image matching. In addition,
from the simple neural networks of the past, complex and deep network-type models are
now being developed.

When training through deep learning, it is common to obtain high precision when
using it with a deep layer and a wide node. However, in this case, the amount of parameters
increases, and the computational amount increases considerably, and an over-fitting prob-
lem or a gradient vanishing problem occurs. Therefore, we made the connections between
nodes sparse and the matrix operations dense. Reflecting this, the inception structure in
Figure 7 makes the overall network deep but not difficult to operate.
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Therefore, the Inception-v3 model has the advantage of having a deeper layer than
other CNN models, but not having a relatively large parameter. Table 1 shows the con-
figuration of the CNN layer configured using Inception modules. The size of the input
image was set to 299 × 299, and a reduction layer was added between the inception mod-
ules [26–28]. With most CNN, the pooling layer is used, but it is constructed to solve the
representational bottleneck problem. Finally, softmax was used as the activation function
of the final layer is a classification problem for flame, smoke, and non-fire.

Table 1. Inception-V3 CNN parameter.

Layer Kernel Size Input Size

Convolution 3× 3 299× 299× 3
Convolution 3× 3 149× 149× 32
Convolution 3× 3 147× 147× 32
Max pooling 3× 3 147× 147× 64
Convolution 3× 3 73× 73× 64
Convolution 3× 3 73× 73× 80
Max pooling 3× 3 71× 71× 192

Inception module - 35× 35× 192
Reduction - 35× 35× 228

Inception module - 17× 17× 768
Reduction - 17× 17× 768

Inception module - 8× 8× 1280
Average pooling - 8× 8× 2048
Fully connected - 1× 2048

Softmax - 3

In addition, the dataset used for training this CNN model is shown in Table 2. Here,
the train dataset used for training and the test dataset for evaluating and reflecting the
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learning understanding of the training intermediate model were divided into about 8 to 2
ratios, and the training was conducted, and accuracy and loss did not change significantly.
Learning was ended at the converging 5000 steps. The train and test image dataset used
was obtained from Kaggle and CVonline as public materials for use in research.

Table 2. Composition of datasets for fire detection.

Classes of Image Datasets

Flame Smoke Non-Fire

Train set 6200 6200 6200
Test set 1800 1800 1800

3. Experimental Results

Images of flame and smoke that may occur in fires were pre-processed using appear-
ance characteristics and classified through an Inception-V3 model based on a CNN. Figure 8
visualizes the final detection of the flame region from the test images.

Fire 2022, 5, x FOR PEER REVIEW 9 of 13 
 

 

Average pooling - 8 × 8 × 2048 
Fully connected - 1 × 2048 

Softmax - 3 

In addition, the dataset used for training this CNN model is shown in Table 2. Here, 
the train dataset used for training and the test dataset for evaluating and reflecting the 
learning understanding of the training intermediate model were divided into about 8 to 2 
ratios, and the training was conducted, and accuracy and loss did not change significantly. 
Learning was ended at the converging 5000 steps. The train and test image dataset used 
was obtained from Kaggle and CVonline as public materials for use in research. 

Table 2. Composition of datasets for fire detection. 

 
Classes of Image Datasets 

Flame Smoke Non-Fire 
Train set 6200 6200 6200 
Test set 1800 1800 1800 

3. Experimental Results 
Images of flame and smoke that may occur in fires were pre-processed using appear-

ance characteristics and classified through an Inception-V3 model based on a CNN. Figure 
8 visualizes the final detection of the flame region from the test images. 

 
Figure 8. Flame detection results of input videos. 

If the candidate region detected through pre-processing is judged to be a flame, it is 
visualized as a red bounding box, and if it is an object not related to fire, it is visualized as 
a green bounding box. In addition, Figure 9 visualizes the detection of smoke from the 
input images, and similarly, in the case of the red bounding box, it is inferred to be the 
smoke region; in the case of the green bounding box, it is visualized as an object unrelated 
to fire. 

Figure 8. Flame detection results of input videos.

If the candidate region detected through pre-processing is judged to be a flame, it is
visualized as a red bounding box, and if it is an object not related to fire, it is visualized as a
green bounding box. In addition, Figure 9 visualizes the detection of smoke from the input
images, and similarly, in the case of the red bounding box, it is inferred to be the smoke
region; in the case of the green bounding box, it is visualized as an object unrelated to fire.

Accuracy, precision, recall, and F1 score were calculated to determine the objective
performance of the experimental results obtained through this study, where TP is the
number of true positives, FP the number of false positives, FN the number of false negatives
and TN the number of true negatives. The relationships among them are listed as shown
below. First, accuracy and precision were obtained via Equations (15) and (16), and recall
was obtained using Equation (17), while F1 score, which is the harmonic mean of the
precision and detection rate, was obtained using Equation (18).

Accuracy =
TP + TN

TP + TN + FP + FN
(15)

Precision =
TP

TP + FP
(16)
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Recall =
TP

TP + FN
(17)

F1 Score = 2 ∗ Precision ∗ Recall
Precision + Recall

(18)
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The performance evaluation was conducted using five videos featuring flames, five
videos with smoke, and five videos not related to fire. When carrying out the detection
method using optical flow, the performance should be evaluated through continuous
images—that is, by using videos, rather than a single still image. Therefore, 50 frames in
which inference was performed on the object were extracted from each test video, and
the result was calculated. In addition, a performance evaluation was performed in the
same way in the flame and non-fire videos. Moreover, to compare the results with the
model presented in this study, the deep-learning-based object detection model Single
Shot Multibox Detector (SSD) [29]–Faster R-CNN (Region proposal Convolutional Neural
Network) [30] was used.

The flame detection results are shown in Table 3, and for the model presented in this
study, the accuracy was 96.0%, precision was 94.2%, and recall and F1 score were 98.0% and
96.1, respectively. In the case of SSD, the accuracy was 89.0% and that of Faster R-CNN was
92.0%. The accuracy of the flame detection algorithm presented in this study was relatively
high. The frequency of false positives, in which non-flame objects are mis-detected as
flames, was decreased by more than 10% compared to other studies, which greatly affected
the overall increase in precision.

Table 3. Evaluation of flame detection results from each model.

Evaluation Indicator

Accuracy Precision Recall F1 Score

Our proposed model 96.0 94.2 98.0 96.1
SSD 89.0 86.8 92.0 89.3

Faster R-CNN 92.0 88.9 96.0 92.3

The smoke detection results were similar, and in the model presented in this study,
the accuracy was 93.0%, precision was 93.9%, and detection rate and F1 score were 92.0%
and 92.9%, respectively. In the case of SSD, the accuracy was 85.0% and Faster R-CNN was
89.0%, as shown in Table 4.
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Table 4. Evaluation of smoke detection results from each model.

Evaluation Indicator

Accuracy Precision Recall F1 Score

Our proposed model 93.0 93.9 92.0 92.9
SSD 85.0 84.3 86.0 85.1

Faster R-CNN 89.0 89.8 88.0 88.9

4. Conclusions

In this study, an appropriate pre-processing method was presented to detect both
flames and smoke that may occur during a fire in its early stages. To this end, color-based
and optical flow methods were used, and in order to make a precise judgment on the de-
tected candidate region, inferences were made using a deep-learning-based CNN. Through
this approach, it was possible to reduce false detections due to unnecessary background
regions while improving accuracy when detecting fire. Our tests of the proposed flame
detection method found that the accuracy was improved by 5.5% compared to the object
detection models without separate pre-processing. For the smoke detection method pro-
posed in this study, dark channel feature and optical flow were utilized, and accuracy was
improved by 6% compared to other object detection models. In future studies, a CNN
that can accurately detect objects with irregular shapes, such as flames and smoke, will
be developed or improved for future applications. In addition, research will pursue the
development of an intelligent fire detector that can be applied to low-specification systems,
and which can easily perform real-time detection by supplementing pre-processing meth-
ods. In addition, we will study a method that can accurately detect fire even from small
characteristics in images and develop a fire detection model with higher reliability than
can be achieved by human observation.
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