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Abstract: The panel performance of a prefabricated cabin-type substation under the impact of fires
plays a vital role in the normal operation of the substation. However, current evaluations of the
panel performance of substations under fire still focus on fire resistance tests, which seldom consider
the relationship between fire behavior and the mechanical load of the panel under the impact
of fires. Aiming at the complex and uncertain relationship between the thermal and mechanical
performance of the substation panel under impact of fires, this paper proposes a machine learning
method based on a BP neural network. First, the fire resistance test and the stress test of the
panel is carried out, then a machine learning model is established based on the BP neural network.
According to the collected data, the model parameters are obtained through a series of training
and verification processes. Meanwhile, the correlation between the panel performance and fire
resistance was obtained. Finally, related parameters are input into the thermal–mechanical coupling
evaluation model for the substation panel performance to evaluate the fire resistance performance of
the substation panel. To verify the correctness of the established model, numerical simulation of the
fire test and stress test of the panel is conducted, and numerical simulation samples are predicted by
the trained model. The results show that the prediction curve of neural network is closer to the real
results compared with the numerical simulation, and the established model can accurately evaluate
the thermal–mechanical coupling performance of the substation panel under fire.

Keywords: prefabricated cabin-type substation; panel; BP neural network; thermal–mechanical
coupling; machine learning; fire behavior; impact of fires

1. Introduction

With the development of the national economy, the demand for electricity, from all
walks of life, has increased. After a period of rapid development, large-scale centralized
new energy power generation has gradually extended in the direction of decentraliza-
tion and miniaturization. The requirements of new energy construction cannot be met
by conventional transmission substations. Technological development and the improve-
ment of prefabricated substations have become increasingly prominent. As a new type
of prefabricated substation [1–3], the prefabricated cabin-type substation is becoming an
important development direction benefiting from its high degree of integration and high
level of intensiveness. Fire has an important effect on the safety of buildings and struc-
tures [4,5], thus the performance of the prefabricated substation panel under impact of fires
is a guarantee of safety and plays a vital role in the normal operation of the substation. As
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a structural stress component of the substation panel, at the beginning of the design, the
fire safety of the panel needs to be considered to ensure the safety of the overall structure
of the substation. A high temperature causes the deterioration of the mechanical properties
of the substation panel material, which will bring about different degrees of damage to
the substation panel. Therefore, before the construction of the substation, it is necessary
to carry out a fire resistance performance test under fire on the panel to ensure the fire
resistance safety of the entire project in the event of a fire. Therefore, accurately describing
the fire performance of substation panels has become an important issue for the stability of
current substations.

Since the substation panels are mainly reinforced concrete structures, the fire perfor-
mance of the substation panels can refer to the fire resistance test [6–10] and numerical
simulation method to analyze fire behavior. Naser and Kodur [11] conducted an experi-
mental study on the fire behavior of composite steel girders subjected to high shear loading.
Hawileh et al. [12–14] predicted the performance of concrete beams using a finite element
model. Aguado et al. [15] used a 3D finite element model for predicting the fire behavior of
hollow-core slabs. However, the current research on the performance of substation panels
rarely considers correlations, with little consideration of the nonlinear relationship between
stress performance and fire resistance under impact of fire.

The neural network, a method of machine learning, is widely used in various fields [16–23].
Abuodeh et al. [24,25] used machine learning techniques to predict behavior of RC beams and
compressive strength of ultra-high-performance concrete. Liu et al. [26] established machine-
learning-based models to predict shear transfer strength of concrete joints. The neural
network also has a precedent in the application of substation [27–31]. Da Silva et al. [32]
proposed the use of artificial neural networks to solve the problem of fault location in
substations; Wang et al. [33] used deep learning methods to identify the switch status
of substations; Jiang Hongyu et al. [34] proposed an adaptive suppression method of
transformer noise in substations based on genetic wavelet neural networks for the problem
of transformer noise control; Oliveira et al. [35] carried out automatic monitoring on the
construction site of substations based on deep learning. Neural networks [36–38] with self-
learning, self-organization, and extremely strong linear fidelity capabilities can accurately
reflect the nonlinear relationship between input and output variables to maintain high
accuracy in short-term prediction. Therefore, machine learning is used to establish a
non-linear relationship between panel stress and fire resistance from the perspective of
thermal–mechanical coupling, which is a worthwhile means for evaluating the performance
of substation panels under impact of fire.

To solve the above problem, this paper proposes a machine learning method based on
the principle of BP (back propagation) neural networks to analyze the thermal–mechanical
coupling performance of substation panels under fire. The evaluation factors are selected,
such as the substation panel geometric data, mechanical performance parameters, and fire
resistance performance data. After the model training ends, the relationship between panel
mechanical performance and fire resistance is established. Finally, predictive samples are
input into the model to evaluate the fire resistance performance of the panel. Then, fire
resistance test and the stress test of the panel is carried out. A BP neural network model is
trained and built through a series of training the samples. Then, numerical simulation of
the fire test and stress test of the panel is conducted, and numerical simulation samples
is predicted by the trained model and compared with the real results. The results show
that predicted samples fit well with the actual output values and better than the result of
numerical simulation. Thus, the established model can accurately evaluate the thermal–
mechanical coupling performance of the panel under fire.

2. Research Methods and Contents
2.1. The Research Process for Thermal–Mechanical Coupling Evaluation of Prefabricated
Cabin-Type Substation Panel Performance

The key to the thermal–mechanical coupling evaluation process of a prefabricated
substation panel is to establish an evaluation model based on BP neural networks. By
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inputting the stress state data of the substation panel into the evaluation model, the corre-
sponding fire resistance parameters can be obtained. The thermal–mechanical coupling
performance of the prefabricated substation panel can then be evaluated. The research
process of the thermal–mechanical coupling evaluation of prefabricated substation panel
performance is shown in Figure 1.
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Figure 1. Research process of thermal–mechanical coupling evaluation of panel performance.

2.2. Thermal–Mechanical Coupling Evaluation Model of the Panel Performance Based on BP
Neural Networks
2.2.1. Establishment of Evaluation Factors

In theory, the performance state of the prefabricated substation panel can be better
described by the more comprehensive evaluation indexes. However, in practical engi-
neering, on the one hand, it is very difficult to collect data. On the other hand, the more
indexes there are, the more complex the nonlinear relationship of the thermal–mechanical
coupling evaluation of the prefabricated substation panel performance is. Therefore, the
determination of evaluation indexes cannot be simply generalized but should be analyzed
in specific cases. As a complex system, the thermal–mechanical coupling evaluation of
panel performance is affected by many factors. This study, adhering to the principles of
representativeness, integrity, and desirability, takes the geometric parameters, mechanical
performance, and fire resistance performance of the panel as evaluation factors of the
thermal–mechanical coupling evaluation of the panel’s performance.

1. The geometric parameters of the panel include length, width, and height.
2. The fire resistance performance parameters of the panel include the heating time, av-

erage furnace temperature, average temperature of the backfire surface, and pressure
parameters.

3. The mechanical performance parameters of the panel include time and bending load.

2.2.2. Construction of BP Neural Network

The BP neural network as a method of machine learning is suitable for addressing
complex nonlinear problems, such as the nonlinear relationship between the mechanical
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performance and the fire resistance performance of substation panels. The research process
of the BP neural network model for the thermal–mechanical coupling evaluation of substa-
tion panel performance is shown in Figure 2. Firstly, the data parameters are input into
the BP neural network for training. Secondly, the thermal–mechanical coupling evaluation
results of the panel performance can be obtained through the model after model training.
After that, we carried out numerical simulation of fire resistance test and stress test on the
panel. We used the curve data of numerical simulation as sample data to predict the sample
of numerical simulation. Finally, the correctness of the model is verified by comparing the
real results with the numerical simulation results and the neural network prediction results.
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substation panel performance. x1, x2, . . . , x5, respectively, represents input layer parameters of neural network; u1, u2,
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neural network; Ni represents output results of neural network; ω represents weights of neural network and θ represents
thresholds of neural network.

As shown in Figure 3, the BP neural network used for the thermal–mechanical cou-
pling evaluation training of the prefabricated cabin-type substation panel performance
is composed of three layers, representing the input layer, hidden layer, and output layer,
respectively.

The input layer has seven impact indicators corresponding to the identification in-
dicators, which are the length, width, height, heating time, average furnace temperature,
average temperature, and pressure of the backfire surface. The output layer represents
time and bending load. Therefore, there are seven input layer nodes in this model, six
hidden layer nodes, and two output nodes. Each node is a specific output function, and
each connection between two nodes represents a weighted value (weight) for the signal
passing through the connection. The learning rate determines the amount of weight change
generated in each cycle. The fixed learning rate in this research is 0.1, the training target is
0.00001, and the maximum number of learning iterations is 100. Through repeated iterative
calculations, the correlation coefficient and threshold are determined. After that, the learn-
ing and training process ends, which means the model is successfully established. After the
BP neural network model training, the actual value is compared with the predicted value.
In order to solve the problem of inconsistency in the units and magnitudes of the input
variables in the BP neural network, normalization is used to control the sample data to 0–1.
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substation panel performance.

The normalization formula is as follows:

Yi =
Xi − Xmin
Xi − Xmax

α + β (1)

In the formula, Xi and Yi represent the variables before and after normalization,
respectively; Xmin and Xmax are the minimum and maximum values of Xi, respectively; α
is a parameter with a value between 0–1, and β = 1 − α

2 .

3. Case Application Analysis
3.1. Substation Panel
3.1.1. Fire Resistance Test of Panel

The fire resistance test of panel refer to the requirements of GB/T 9978.1-2008 “Fire
resistance Test Methods for Building Components part 1: General Requirements [39]”
and GB/T 9978.8-2008 “Fire resistance Test Methods for Building Components Part 8:
Characteristics of non-load-bearing vertical dividers [40]”, as shown in Table 1. The test
conditions and test plan were formulated according to the requirements of GB/T 9978.1-
2008 [39] and GB/T 9978.8-2008 [40].

The length (m) width (m) × height (m) of the special panel for a box-type substation
is 2.0 × 1.0 × 0.12. Ten temperature measurement points are set on the backfire surface of
the panel with the vertical side on a free side, as shown in Figure 4.

According to the test requirements, the test uses vertical component fire test furnace
device in Beijing Gequ fire test laboratory. The device can meet the requirements of the
furnace temperature and pressure in Table 1. This device also can measure the temperature
and pressure change value of the panel specimen. The data changes during the test can be
visually displayed on the display screen of the equipment.
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Table 1. Reference standards for fire resistance.

Test Items Standard Clause Judgment Criteria

Fire resistance

Completeness

GB/T 9978.8-2008
Article 10

GB/T 9978.1-2008
Article 10.2.2 Article 8.4

The duration of the test specimen’s continuous fire
resistance performance in the fire test. Any one of

the following limited conditions of the test specimen
shall be considered as a loss of integrity:

(a) A cotton pad test is conducted, and the cotton
pad is ignited.

(b) A gap probe of 6 mm penetrates the specimen
into the furnace and moves 150 mm along the length

of the crack; a gap probe of 25 mm penetrates the
specimen into the furnace.

(c) A flame appears on the backfire surface and lasts
for more than 10 s.

Thermal insulation

GB/T 9978.8-2008
Article 10

GB/T 9978.1-2008
Article 10.2.3

If the duration of the fire resistance and heat
insulation performance of the test specimen in the

fire test as well as the temperature rise of the
backfire surface of the test specimen exceeds any of
the following limits, it is considered to have lost the

heat insulation:
(a) The average temperature rise exceeds the initial

average temperature of 140 ◦C.
(b) The temperature rise at any point exceeds the

initial temperature (including the moving
thermocouple) by 180 ◦C (the initial temperature

should be the initial average temperature of the back
surface at the beginning of the test).

GB/T 9978.1-2008
Article 12.2.2

If the “integrity” of the test specimen does not meet
the requirements, it is considered that the “heat

insulation” of the test specimen does not meet the
requirements.
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The experiment was terminated at 181 min. The test process was observed and
recorded. The test phenomena are shown in Table 2.

Table 2. Test phenomena.

Time Observation Record

0 Test start.

30 No significant change from the previous stage.

60 No significant change from the previous stage.

90 No significant change from the previous stage.

120 Concave deformation.

150 No significant change from the previous stage.

181 Integrity and thermal insulation are undamaged; test is stopped.

The fire resistance data of the panels are shown in Figures 5 and 6.
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3.1.2. The Stress Test of the Panel

The same panel specimen as Section 3.1.1 was used in this experiment. Static loading
is carried out by force control. A hydraulic jack was used for loading. During the test,
the load is acted on the mid-span position of the panel through the actuating head. Once
the specimen was destroyed, the test was over. The data of the stress test of the panel are
shown in Figure 7.
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3.2. Thermal–Mechanical Coupling Evaluation of Panel Performance

The values were recorded every minute from the origin of the coordinates.
Figures 5 and 6 show that the test specimen was damaged when heated to the 183rd
minute. Figure 7 shows that the test specimen was damaged under stress at 329.052 s.
The time from loading to failure was divided into 183 segments for the values recorded
every 1.798 s. The fire resistance and stress performance data of the panel are shown in
Appendix A. It should be emphasized that the temperature measured in Table A1 has
subtract the ambient temperature. The data of columns 1 represent the number of samples;
the data of columns 2 represent the heating time of panel; the data of columns 6 represent
the load time of the panel.

According to the BP neural network structure constructed in Section 2.2, the thermal–
mechanical coupling evaluation model of the panel performance was learned and trained:
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1. Initialize the BP neural network. We randomly selected 100 sets of data from Table A1
as the input node data of the training sample, and the remaining 84 sets of data in
Table A1 were used as prediction samples. Then, the weights and offsets of the neural
network were initialized. Finally, the sample data were normalized.

2. Train the BP neural network. The BP neural network was used to train 100 sets of
training sample data until the calculations at the end of the network training. The
thermal–mechanical coupling evaluation model of the panel performance based on
the BP neural network was obtained when the BP neural network converged after
learning and training.

3. Predict the BP neural network. The randomly selected 84 sets of test sample data
were predicted through the trained BP neural network to finally obtain the prediction
result output. The graph is drawn as shown in Figure 8.
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It can be seen from Figure 8 that the predicted output values of the 84 groups of
predicted samples fit well with the actual output values for the trend of the sample points
showing basically the same, which indicates that the thermal–mechanical coupling evalua-
tion model of panel performance based on a BP neural network is reasonable and accurate.

The mechanical performance data of the panel corresponding to the heating time of
the 162nd minute to the 183rd minute were collected, as shown in Figure 9.

It can be seen from Figure 9 that, when the test specimen reaches the maximum
bending load of 21.443 KN, the corresponding stress time of the substation plate is 294.888 s.
When the time is 325.456 s, the bending load drops sharply from 18.664 KN, which means
the material is damaged at this time. The prediction sample data of the fire resistance
performance of the substation are input into the thermal–mechanical coupling evaluation
model of the panel performance. The corresponding panel performance parameters can
then be obtained. The test specimen reaches the maximum bending load of 21.128 KN
when the predicted value of the neural network is displayed for 297.147 s. The bending
load drops sharply from 18.683 KN for the material being damaged at the time of 323.658 s.
By comparing the predicted value and actual value of the time and bending load, it is
found that the maximum bending load and the corresponding stress time from the thermal–
mechanical coupling evaluation model and actual test is very close, and the two values
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essentially satisfy the error requirements. This further demonstrates the accuracy and
reliability of the thermal–mechanical coupling evaluation model of the panel performance.
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3.3. Numerical Simulation

In order to verify the results of neural network calculation, we carried out numerical
simulation on the specimen. The length (m) × width (m) × height (m) of the special panel
for numerical simulation is 2.0 × 1.0 × 0.12, as shown in Figure 10. The fire resistance test
and pressure test of numerical simulation model are consistent with the actual situation in
Section 3.1.
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The numerical simulation results are shown in Figures 11 and 12.
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The curve of the fire resistance test and pressure test parameters for the panel is shown
in Figures 13 and 14. Each step in the diagram represents a unit of time.
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Figure 14. Stress curve of the panel samples. Bending load refer to a load that causes bending
deformation of a panel during a fixed strength test.

The failure time step of numerical simulation corresponds to the failure time of fire
resistance test and pressure test in real time, and the simulated result curve is also divided
into 183 sections. Corresponding values are recorded in each section and 184 sample data
of numerical simulation can be obtained.

According to the BP neural network structure trained in Section 3.2, we conduct
neural network learning, training and prediction using the sample data of numerical
simulation. According to the sample data of numerical simulation, the prediction results of
numerical simulation are obtained. By converting the failure time of the real stress curve
into the corresponding time step, we plotted the prediction curve of the neural network,
the prediction curve of the numerical simulation and the real stress test curve in the same
figure, as shown in Figure 15.
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It can be seen from Figure 15 that the curve of prediction result of neural network
and array simulation is basically consistent with the curve of real pressure test. The
force increases gradually and decreases rapidly after reaching the peak value. Numerical
simulation results show that when the time step is 15,850, the maximum bending load
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is 18.11064 kN. The neural network prediction results show that when the time step is
14,687, the bending load reaches the maximum value of 19.963 KN. The actual test results
show that when the time step is 15,889, the bending load reaches the maximum value of
21.443 kN. Compared with the results of numerical simulation, the prediction curve of
neural network is closer to the real pressure curve. The percentage error of the maximum
bending load calculated by numerical simulation is 15.5%, the percentage error of the
maximum bending load calculated by neural network prediction is 6.9%, and the error of
neural network prediction is about half smaller than that of numerical simulation. The
prediction result of neural network is better than that of numerical simulation. Thus, the
accuracy and rationality of the neural network prediction model can be proved.

3.4. The Functional Relationship between Fire Resistance and Stress Resistance

The relationship between the parameters of fire resistance and stress resistance can
be obtained by deriving the training parameters of the neural network, as shown in
Equations (2)–(5):

αh =
M

∑
i=1

vihxi + rh (2)

bh = f (αh) (3)

yj =
q

∑
h=1

whjbh + θj (4)

f (x) =
1

1 + e−x (5)

M refers to the number of nodes in the input layer, M = 7; xi (i = 1, 2, . . . . . . , M) refers
to length (m), width (m), height (m), heating time (min), average furnace temperature
(◦C), average temperature of backfire surface (◦C), and pressure parameter (Pa); h refers
to the number of hidden layer nodes, h = 6; q is the number of nodes in the output layer,
q = 2; yj (j = 1, 2) refers to the values of the time (s) and bending load (KPa), respectively.
v refers to weight parameters from input layer to hidden layer of neural network; rh refers
to threshold parameters from input layer to hidden layer of neural network; W refers
to weight parameters from hidden layer to output layer of neural network; θj refers to
threshold parameters from hidden layer to output layer of neural network.

v =



0
0

0
0

0
0

0 0 0
0 0 0

4.4136 −1.6295 −0.0460 −0.1070
0.8386 −0.7978 −2.0962 0.1305
−1.4522
0.1633

−1.0707
−0.3356

−0.3682 −0.0326
−0.6002 −0.0347

0
0

0
0

0
0

1.0436
1.1642

−0.0877
−0.2854

−0.4381
−0.3663

−0.0416
0.1397


rh =

[
−3.3526 −1.0328 −0.2724 0.6572 −0.1576 0.9250

]T
θj =

[
0.2891 −1.0308

]T
w =

[
0.0798 −0.1080 −0.0044 −0.7329 0.9450 0.2738
−1.4042 0.0712 −0.6059 −0.4502 0.7257 0.0036

]
4. Conclusions

Based on the evaluation factors such as the geometric data of the substation panel,
the stress performance, the fire resistance performance data, etc., a BP neural network, a
method of machine learning, was used to establish the nonlinear relationship between
panel performance stress and fire resistance under impact of fire. This model can quickly
predict the performance of the substation panel under fire. The prediction of the thermal–
mechanical coupling evaluation model is very close to the actual test, and satisfy the error
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requirements. Additionally, the specimen was verified by numerical simulation. Compar-
ing the neural network with numerical simulation, the result indicates the error of neural
network prediction is about half smaller than that of numerical simulation, the prediction
result of neural network is better than that of numerical simulation. The correctness and
reliability of the thermal–mechanical coupling performance evaluation model is verified. If
meeting the requirements of the test itself and the amount of data required by the structure
of the neural network, the thermal–mechanical coupling evaluation model constructed
in this study can be directly used for similar models. It does not need to conduct addi-
tional tests. As the types and quantities of data for training become richer, the models
we build will become more and more refined. Therefore, this can provide a reference for
exploring more thermal coupling evaluation models and complex functional relationships
of materials based on neural networks under different loading modes in the future.
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Appendix A

Table A1. Fire resistance and stress performance data of the panel.

Sample Heating Time
(min)

Average Furnace
Temperature (◦C)

Average Temperature
of Backfire Surface

(◦C)
Pressure (Pa) Time (s) Bending Load

(KN)

1 0 0 0 0 0.000 0

2 1 79.84 3.29 3.0577 1.798 0.0152

3 2 173.4 3.06 4.349 3.596 0.0619

4 3 267.91 3.12 5.4032 5.394 0.0949

5 4 360.6 4.9 5.8117 7.192 0.1097

6 5 433.88 2.36 5.1342 8.991 0.1888

7 6 468.52 3 11.858 10.789 0.287

8 7 504.38 2.5 6.7311 12.587 0.3562

9 8 535.65 1.09 8.499 14.385 0.4535

10 9 577.35 3.45 7.9913 16.183 0.5464
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Table A1. Cont.

Sample Heating Time
(min)

Average Furnace
Temperature (◦C)

Average Temperature
of Backfire Surface

(◦C)
Pressure (Pa) Time (s) Bending Load

(KN)

11 10 625 2.94 10.133 17.981 0.6664

12 11 634.44 2.04 11.221 19.779 0.8527

13 12 643.43 1.94 9.6595 21.577 0.9194

14 13 664.89 1.28 11.8 23.375 1.0552

15 14 690.58 1.9 9.017 25.173 1.1762

16 15 705.34 3.27 11.87 26.972 1.2974

17 16 721.01 3.77 9.6982 28.770 1.4346

18 17 734.37 3.24 8.1376 30.568 1.5541

19 18 742.72 2.88 11.704 32.366 1.7039

20 19 750.87 2.65 12.759 34.164 1.8248

21 20 757.59 3.6 10.145 35.962 1.9602

22 21 763.69 3.13 12.014 37.760 2.114

23 22 773 2.27 13.136 39.558 2.3759

24 23 780.88 2.33 15.751 41.356 2.5796

25 24 794.49 3.52 12.086 43.154 2.7826

26 25 802.42 2.67 14.159 44.953 2.9971

27 26 809.7 2.96 16.672 46.751 3.2553

28 27 817.29 2.32 13.244 48.549 3.4676

29 28 828.68 1.68 11.989 50.347 3.659

30 29 840.37 4.26 11.958 52.145 3.8044

31 30 844.53 3.45 14.878 53.943 4.0017

32 31 851.16 3.73 17.732 55.741 4.3081

33 32 857.39 4.34 15.323 57.539 4.5063

34 33 854.14 5.18 13.932 59.337 4.6692

35 34 861.78 6.84 13.22 61.135 4.9182

36 35 867.05 3.7 12.95 62.934 5.1096

37 36 871.16 6.4 14.14 64.732 5.3131

38 37 876.67 5.2 18.894 66.530 5.4892

39 38 881.12 5.24 15.398 68.328 5.7004

40 39 884.83 4.83 14.108 70.126 5.8432

41 40 887.87 4.21 13.907 71.924 5.9585

42 41 889.97 2.81 13.67 73.722 6.0633

43 42 893 1.73 12.992 75.520 6.4429

44 43 898.57 1.2 12.621 77.318 6.692

45 44 900.57 1.55 13.437 79.116 6.9692

46 45 905.35 1.64 14.015 80.915 7.1593

47 46 908.14 3.61 13.948 82.713 7.3998

48 47 910.72 2.79 13.949 84.511 7.6056

49 48 914.22 2.12 13.951 86.309 7.9198
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Table A1. Cont.

Sample Heating Time
(min)

Average Furnace
Temperature (◦C)

Average Temperature
of Backfire Surface

(◦C)
Pressure (Pa) Time (s) Bending Load

(KN)

50 49 914.51 4.92 13.954 88.107 8.1175

51 50 919.4 3.94 13.989 89.905 8.3583

52 51 922.69 6.19 14.364 91.703 8.634

53 52 925.51 6.38 14.84 93.501 8.8009

54 53 929.22 6.44 14.399 95.299 9.002

55 54 933.64 7.51 14.027 97.097 9.2243

56 55 938.97 9.24 14.843 98.896 9.3998

57 56 942.03 11.24 16.543 100.694 9.5576

58 57 944.37 12.45 18.004 102.492 9.7716

59 58 947.88 14.54 16.851 104.290 9.937

60 59 944.27 17.79 13.966 106.088 10.116

61 60 947.25 15.6 13.934 107.886 10.237

62 61 949.48 13.49 14.342 109.684 10.439

63 62 952.08 13.32 15.022 111.482 10.679

64 63 954.15 16.91 16.586 113.280 10.9

65 64 955.83 19.37 17.402 115.078 11.103

66 65 958.84 18.06 18.863 116.877 11.379

67 66 962.18 21.68 15.877 118.675 11.6

68 67 966.24 20.39 14.384 120.473 11.794

69 68 969.58 20.66 13.91 122.271 12.07

70 69 967.65 21.86 14.387 124.069 12.231

71 70 970.98 19.67 16.629 125.867 12.374

72 71 973.61 23.63 16.834 127.665 12.742

73 72 976.41 24.6 16.088 129.463 12.884

74 73 978.48 26.5 14.731 131.261 13.016

75 74 978.69 28.38 14.053 133.059 13.21

76 75 981.34 29.56 16.432 134.858 13.381

77 76 982.55 31.64 18.029 136.656 13.548

78 77 983.33 31.82 18.777 138.454 13.693

79 78 986 32.33 17.387 140.252 13.835

80 79 985.67 37.18 13.891 142.050 13.985

81 80 986.19 34.77 15.217 143.848 14.102

82 81 987.83 37.34 16.949 145.646 14.218

83 82 989.37 38.31 17.731 147.444 14.448

84 83 992.76 40.21 14.677 149.242 14.555

85 84 997.82 43.91 13.965 151.040 14.666

86 85 999.42 42.37 15.563 152.839 14.86

87 86 1001.8 47.47 16.311 154.637 15.123

88 87 1004 47.86 17.738 156.435 15.303
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Table A1. Cont.

Sample Heating Time
(min)

Average Furnace
Temperature (◦C)

Average Temperature
of Backfire Surface

(◦C)
Pressure (Pa) Time (s) Bending Load

(KN)

89 88 1005.8 50.86 16.551 158.233 15.469

90 89 1009.2 52.06 14.923 160.031 15.585

91 90 1006.1 45.67 16.52 161.829 15.71

92 91 1007.6 46.3 17.301 163.627 15.968

93 92 1008.8 48.17 16.862 165.425 16.002

94 93 1011.3 50.79 16.047 167.223 16.039

95 94 1013 55.77 15.029 169.021 16.167

96 95 1014.3 55.85 14.896 170.820 16.339

97 96 1016.1 57.01 15.814 172.618 16.428

98 97 1017.8 58.17 14.865 174.416 16.512

99 98 1020.6 56.41 14.865 176.214 16.596

100 99 1020.3 56.48 14.935 178.012 16.681

101 100 1022.5 58.42 16.329 179.810 16.74

102 101 1025.1 53.55 17.756 181.608 16.865

103 102 1026.3 56.35 15.992 183.406 16.986

104 103 1028.8 58.47 15.757 185.204 17.071

105 104 1029.3 61.61 17.863 187.002 17.123

106 105 1031.7 58.83 15.589 188.801 17.229

107 106 1031.5 60.25 14.911 190.599 17.369

108 107 1034.3 60.88 16.814 192.397 17.487

109 108 1036.5 60.93 14.881 194.195 17.605

110 109 1035.1 64.07 14.881 195.993 17.577

111 110 1037.6 65.42 16.92 197.791 17.662

112 111 1037.8 60 15.529 199.589 17.877

113 112 1038.9 58.92 14.885 201.387 17.853

114 113 1040.1 58.82 17.807 203.185 17.876

115 114 1042.2 58.58 15.499 204.983 17.968

116 115 1042.9 60.23 14.923 206.782 18.081

117 116 1043.3 59.86 16.86 208.580 18.181

118 117 1045.1 59.06 14.858 210.378 18.182

119 118 1046.5 58.54 16.83 212.176 18.27

120 119 1045.9 60.74 16.83 213.974 18.366

121 120 1047.3 64.13 16.83 215.772 18.392

122 121 1048.9 58.24 14.897 217.570 18.488

123 122 1051 58.63 17.819 219.368 18.58

124 123 1052.8 59.49 15.749 221.166 18.639

125 124 1054.6 59.2 14.052 222.964 18.655

126 125 1055.7 60.53 14.97 224.763 18.733

127 126 1057.5 60.28 15.006 226.561 18.916
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Table A1. Cont.

Sample Heating Time
(min)

Average Furnace
Temperature (◦C)

Average Temperature
of Backfire Surface

(◦C)
Pressure (Pa) Time (s) Bending Load

(KN)

128 127 1058.9 58.28 19.863 228.359 18.961

129 128 1060.6 57.76 15.857 230.157 18.998

130 129 1060.7 57 16.98 231.955 19.101

131 130 1063.2 57.95 16.98 233.753 19.139

132 131 1064.8 58.31 15.963 235.551 19.271

133 132 1066.1 57.56 17.866 237.349 19.345

134 133 1068.7 58.53 15.933 239.147 19.469

135 134 1066.8 58.26 18.854 240.945 19.456

136 135 1069.3 58.71 16.037 242.744 19.544

137 136 1070.3 58.68 16.853 244.542 19.677

138 137 1070.7 58.49 17.941 246.340 19.674

139 138 1072 58.11 15.973 248.138 19.672

140 139 1071.6 58.5 16.891 249.936 19.815

141 140 1073.3 59.79 15.738 251.734 19.827

142 141 1074 60.42 14.925 253.532 19.85

143 142 1077.2 59.75 15.367 255.330 19.961

144 143 1075.3 58.78 16.999 257.128 20.132

145 144 1077.2 59.56 16.185 258.926 20.111

146 145 1077.1 59.34 15.405 260.725 20.281

147 146 1077.6 60.26 14.863 262.523 20.4

148 147 1078 58.89 16.935 264.321 20.36

149 148 1077.2 60.51 15.918 266.119 20.547

150 149 1079.2 63.73 17.923 267.917 20.555

151 150 1081.2 61.49 15.921 269.715 20.593

152 151 1083.1 58.71 17.925 271.513 20.787

153 152 1086 58.99 15.991 273.311 20.758

154 153 1085.5 59.37 17.962 275.109 20.805

155 154 1087.8 59.31 15.892 276.907 20.912

156 155 1090 59.96 15.895 278.706 21.004

157 156 1090.9 59.23 15.895 280.504 21.061

158 157 1092.7 58.71 15.895 282.302 21.038

159 158 1089.6 58.42 15.93 284.100 21.135

160 159 1093.5 58.03 15.933 285.898 21.264

161 160 1095.2 60.64 15.933 287.696 21.275

162 161 1096.7 58.66 16.818 289.494 21.257

163 162 1098.2 58.48 15.868 291.292 21.402

164 163 1096 57.96 15.868 293.090 21.405

165 164 1098.5 58.82 15.868 294.888 21.443
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Table A1. Cont.

Sample Heating Time
(min)

Average Furnace
Temperature (◦C)

Average Temperature
of Backfire Surface

(◦C)
Pressure (Pa) Time (s) Bending Load

(KN)

166 165 1099.2 60.62 15.868 296.687 20.986

167 166 1099.9 59.08 15.943 298.485 20.603

168 167 1101.3 58.55 15.946 300.283 20.502

169 168 1099 59.65 15.946 302.081 20.263

170 169 1101 58.56 15.946 303.879 19.9

171 170 1101.8 61.27 17.916 305.677 19.858

172 171 1102.2 57.09 15.982 307.475 19.903

173 172 1102.4 56.92 19.039 309.273 19.868

174 173 1102.4 57.55 17.783 311.071 19.913

175 174 1104.5 58.75 15.985 312.869 19.827

176 175 1105 58.93 15.037 314.668 19.665

177 176 1106.2 60.01 16.871 316.466 19.445

178 177 1107 60.76 16.975 318.264 19.301

179 178 1107.5 60.35 18.946 320.062 19.131

180 179 1107.9 61.09 16.06 321.860 18.953

181 180 1108.2 61.39 19.016 323.658 18.834

182 181 1089.3 61.3 16.809 325.456 18.664

183 182 1089.2 61.44 10.868 327.254 16.174

184 183 1010.7 61.69 10.19 329.052 12.114
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