Assessing Impact of Multiple Fires on a Tropical Peat Swamp Forest Using High and Very High-Resolution Satellite Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Inventory at Burned Areas of Multiple Fires
2.3. Processing and Classification of QuickBird Image
2.4. Characterisation of Burned Patches of Multiple Fires
3. Results
3.1. Comparison of Pixel-Based and Object-Based Land Cover Classifications
3.2. Impacts of Fire Frequency on Residual Forest Cover
3.3. Impacts of Fire Frequency on Forest Structure
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Page, S.E.; Rieley, J.O.; Banks, C.J. Global and regional importance of the tropical peatland carbon pool. Glob. Change Biol. 2011, 17, 798–818. [Google Scholar] [CrossRef][Green Version]
- Saatchi, S.S.; Harris, N.L.; Brown, S.; Lefsky, M.; Mitchard, E.T.; Salas, W.; Zutta, B.R.; Buermann, W.; Lewis, S.L.; Hagen, S.; et al. Benchmark map of forest carbon stocks in tropical regions across three continents. Proc. Natl. Acad. Sci. USA 2011, 108, 9899–9904. [Google Scholar] [CrossRef][Green Version]
- Phillips, V.D. Peat swamp ecology and sustainable development in Borneo. Biod. Conserv. 1998, 7, 651–671. [Google Scholar] [CrossRef]
- Brookfield, H.C.; Byron, Y.; Potter, L.M. In Place of the Forest: Environmental and Socio-Economic Transformation in Borneo and the Eastern Malay Peninsula; United Nations University Press: Tokyo, Japan, 1995; Volume 893. [Google Scholar]
- Aiba, S.I.; Kitayama, K. Effects of the 1997–98 El Nino drought on rain forests of Mount Kinabalu, Borneo. J. Trop. Ecol. 2002, 18, 215–230. [Google Scholar] [CrossRef]
- Page, S.E.; Siegert, F.; Rieley, J.O.; Boehm, H.D.V.; Jaya, A.; Limin, S. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 2002, 420, 61–65. [Google Scholar] [CrossRef]
- Lentile, L.B.; Holden, Z.A.; Smith, A.M.S.; Falkowski, M.J.; Hudak, A.T.; Morgan, P.; Lewis, S.A.; Gessler, P.E.; Benson, N.C. Remote sensing techniques to assess active fire characteristics and post-fire effects. Int. J. Wildland Fire 2006, 15, 319–345. [Google Scholar] [CrossRef]
- Morgan, P.; Keane, R.E.; Dillon, G.K.; Jain, T.B.; Hudak, A.T.; Karau, E.C.; Sikkink, P.G.; Holden, Z.A.; Strand, E.K. Challenges of assessing fire and burn severity using field measures, remote sensing and modelling. Int. J. Wildland Fire 2014, 23, 1045–1060. [Google Scholar] [CrossRef][Green Version]
- Meng, R.; Zhao, F. Remote sensing of fire effects: A review for recent advances in burned area and burn severity mapping. In Remote Sensing of Hydrometeorological Hazards; Petropoulos, G.P., Islam, T., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 261–283. [Google Scholar]
- Szpakowski, D.M.; Jensen, J.L. A review of the applications of remote sensing in fire ecology. Remote Sens. 2019, 11, 2638. [Google Scholar] [CrossRef][Green Version]
- De Santis, A.; Chuvieco, E. GeoCBI: A modified version of the Composite Burn Index for the initial assessment of the short-term burn severity from remotely sensed data. Remote Sens. Environ. 2009, 113, 554–562. [Google Scholar] [CrossRef]
- Kolden, C.A.; Smith, A.M.; Abatzoglou, J.T. Limitations and utilisation of Monitoring Trends in Burn Severity products for assessing wildfire severity in the USA. Int. J. Wildland Fire 2015, 24, 1023–1028. [Google Scholar] [CrossRef]
- Leon, J.R.R.; Van Leeuwen, W.J.; Casady, G.M. Using MODIS-NDVI for the modeling of post-wildfire vegetation response as a function of environmental conditions and pre-fire restoration treatments. Remote Sens. 2012, 4, 598–621. [Google Scholar] [CrossRef][Green Version]
- Phua, M.H.; Tsuyuki, S.; Lee, J.S.; Sasakawa, H. Detection of burned peat swamp forest in a heterogeneous tropical landscape: A case study of the Klias Peninsula, Sabah, Malaysia. Landsc. Urb. Plann. 2007, 82, 103–116. [Google Scholar] [CrossRef]
- Razali, S.M.; AA Nuruddin, A.A.; IA Malek, I.A.; NA Patah, N.A. Forest fire hazard rating assessment in peat swamp forest using Landsat thematic mapper image. J. Appl. Remote Sens. 2010, 4, 043531. [Google Scholar] [CrossRef]
- Vanderhoof, M.K.; Hawbaker, T.J.; Teske, C.; Ku, A.; Noble, J.; Picotte, J. Mapping wetland burned area from Sentinel-2 across the Southeastern United States and its contributions relative to Landsat-8 (2016–2019). Fire 2021, 4, 52. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Alencar, A.; Schulze, M.D.; Souza, C.M., Jr.; Nepstad, D.C.; Lefebvre, P.; Davidson, E. Positive feedbacks in the fire dynamic of closed canopy tropical forests. Science 1999, 284, 1832–1835. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.G.; Hargrove, W.W.; Gardner, R.H.; Romme, W.H. Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J. Veg. Sci. 1994, 5, 731–742. [Google Scholar] [CrossRef][Green Version]
- Holden, Z.A.; Morgan, P.; Smith, A.M.; Vierling, L. Beyond Landsat: A comparison of four satellite sensors for detecting burn severity in ponderosa pine forests of the Gila Wilderness, NM, USA. Int. J. Wildland Fire 2010, 19, 449–458. [Google Scholar] [CrossRef][Green Version]
- Meng, R.; Wu, J.; Schwager, K.L.; Zhao, F.; Dennison, P.E.; Cook, B.D.; Brewster, K.; Green, T.M.; Serbin, S.P. Using high spatial resolution satellite imagery to map forest burn severity across spatial scales in a Pine Barrens ecosystem. Remote Sens. Environ. 2017, 191, 95–109. [Google Scholar] [CrossRef][Green Version]
- Kachmar, M.; Sánchez-Azofeifa, G.A. Detection of post-fire residuals using high-and medium-resolution satellite imagery. For. Chron. 2006, 82, 177–186. [Google Scholar] [CrossRef][Green Version]
- Phua, M.H.; Tsuyuki, S.; Lee, J.S.; Ghani, M. Simultaneous detection of burned areas of multiple fires in the tropics using multisensor remote sensing data. Int. J. Remote Sens. 2012, 33, 4312–4333. [Google Scholar] [CrossRef]
- Ballhorn, U.; Siegert, F.; Mason, M.; Limin, S.; Limin, S. Derivation of burn scar depths and estimation of carbon emissions with LIDAR in Indonesian peatlands. Proc. Natl. Acad. Sci. USA 2009, 106, 21213–21218. [Google Scholar] [CrossRef][Green Version]
- Englhart, S.; Jubanski, J.; Siegert, F. Quantifying dynamics in tropical peat swamp forest biomass with mul-ti-temporal LiDAR datasets. Remote Sens. 2013, 5, 2368–2388. [Google Scholar] [CrossRef][Green Version]
- McPartland, M.Y.; Falkowski, M.J.; Reinhardt, J.R.; Kane, E.S.; Kolka, R.; Turetsky, M.R.; Douglas, T.A.; An-derson, J.; Edwards, J.D.; Palik, B.; et al. Characterizing Boreal peatland plant composition and species diversity with hyperspectral remote sensing. Remote Sens. 2019, 11, 1685. [Google Scholar] [CrossRef][Green Version]
- Cui, B.; Xie, X.; Ma, X.; Ren, G.; Ma, Y. Superpixel-based extended random walker for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3233–3243. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Leung, H.; Zhang, G. Super-resolution mapping based on spatial–spectral correlation for spectral imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2256–2268. [Google Scholar] [CrossRef]
- Chazdon, R.L. Tropical forest recovery: Legacies of human impact and natural disturbances. Perspect. Plant Ecol. Evol. Syst. 2003, 6, 51–71. [Google Scholar] [CrossRef][Green Version]
- Turner, M.G.; Baker, W.L.; Peterson, C.J.; Peet, R.K. Factors influencing succession: Lessons from large, infrequent natural disturbances. Ecosystems 1998, 1, 511–523. [Google Scholar] [CrossRef]
- Waide, R.B.; Lugo, A.E. A Research Perspective on Disturbance and Recovery of a Tropical Forest. In Tropical Forests in Transition; Goldammer, J.G., Ed.; Birkhäuser: Basel, Switzerland, 1992; pp. 173–189. [Google Scholar]
- Sabah Forestry Department. Klias Forest Reserve. Available online: https://ww2.sabah.gov.my/htan_caims/Class%20I/A_FR1/klias.htm (accessed on 20 August 2021).
- Manuri, S.; Brack, C.; Nugroho, N.P.; Hergoualc’h, K.; Novita, N.; Dotzauer, H.; Verchot, L.; Putra, C.A.S.; Widyasari, E. Tree biomass equations for tropical peat swamp forest ecosystems in Indonesia. For. Ecol. Manag. 2014, 334, 241–253. [Google Scholar] [CrossRef]
- Baatz, M.; Hoffmann, C.; Willhauck, G. Progressing from object-based to object-oriented image analysis. In Object-Based Image Analysis; Blaschke, T., Lang, S., Hay, G.J., Eds.; Springer: Berlin, Germany, 2008; pp. 29–42. [Google Scholar]
- Stehman, S.V.; Wickham, J.D. Pixels, blocks of pixels, and polygons: Choosing a spatial unit for thematic accuracy assessment. Remote Sens. Environ. 2011, 115, 3044–3055. [Google Scholar] [CrossRef]
- Congalton, R.G. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Jain, A.K. Global estimation of CO emissions using three sets of satellite data for burned area. Atmos. Environ. 2007, 41, 6931–6940. [Google Scholar] [CrossRef]
- Mitri, G.H.; Gitas, I.Z. Mapping post-fire forest regeneration and vegetation recovery using a combination of very high spatial resolution and hyperspectral satellite imagery. Int. J. Appl. Earth Obs. Geoinf. 2013, 20, 60–66. [Google Scholar] [CrossRef]
- Ye, S.; Pontius Jr, R.G.; Rakshit, R. A review of accuracy assessment for object-based image analysis: From per-pixel to per-polygon approaches. ISPRS J. Photogramm. Remote Sens. 2018, 141, 137–147. [Google Scholar] [CrossRef]
- Peña-Barragán, J.M.; Ngugi, M.K.; Plant, R.E.; Six, J. Object-based crop identification using multiple vegetation indices, textural features and crop phenology. Remote Sens. Environ. 2011, 115, 1301–1316. [Google Scholar] [CrossRef]
- Robson, B.A.; Nuth, C.; Dahl, S.O.; Hölbling, D.; Strozzi, T.; Nielsen, P.R. Automated classification of debris-covered glaciers combining optical, SAR and topographic data in an object-based environment. Remote Sens. Environ. 2015, 170, 372–387. [Google Scholar] [CrossRef][Green Version]
- Del Moral, R.; Bliss, L.C. Mechanisms of primary succession: Insights resulting from the eruption of Mount St. Helens. Adv. Ecol. Res. 1993, 24, 1–66. [Google Scholar]
- Taylor, D.; Saksena, P.; Sanderson, P.G. Environmental change and rain forests on the Sunda shelf of Southeast Asia: Drought, fire and the biological cooling of biodiversity hotspots. Biodivers. Conserv. 1999, 8, 1159–1177. [Google Scholar] [CrossRef]
- Lutz, J.A.; Larson, A.J.; Freund, J.A.; Swanson, M.E.; Bible, K.J. The importance of large-diameter trees to forest structural heterogeneity. PLoS ONE 2013, 8, 82784. [Google Scholar] [CrossRef][Green Version]
- Bradford, M.; Murphy, H.T. The importance of large-diameter trees in the wet tropical rainforests of Australia. PLoS ONE 2019, 14, 0208377. [Google Scholar] [CrossRef][Green Version]
- Chai, P.P.K. Seed Production Area in Klias Peat Swamp Forest, Beaufort District, Sabah, Malaysia; UNDP: Kota Kinabalu, Malaysia, 2005. [Google Scholar]
- Hamzah, K.A.; Ismail, P.; Ani, S.; Mohd Azahari, F.; Harry, Y.; Ihsan, S.K. Gonystylus Bancanus: Jewel of the Peat Swamp Forest; Forest Research Institute Malaysia: Selangor, Malaysia, 2010. [Google Scholar]
- Schindele, W.; Thoma, W.; Panzer, K. The Forest Fire 1982/1983 in East Kalimantan; German Forest Inventory Service Ltd.: Jakarta, Indonesia, 1989. [Google Scholar]
- Phua, M.H.; Ghani, M.A.A.; Cooke, F.M.; Tsuyuki, S. Evaluation of recovery potential of forest affected by multiple fires using QuickBird and multitemporal medium resolution satellite data. In Proceedings of the 31st Asian Conference on Remote Sensing, Asian Association of Remote Sensing, Hanoi, Vietnam, 1–5 November 2010. [Google Scholar]
(a) | Reference | ||||||
---|---|---|---|---|---|---|---|
Classification | Bare | Grassy vegetation | Forest | Young regenerating vegetation | User’s accuracy | ||
Bare | 4672 | 0 | 3 | 4 | 4679 | 99.85 | |
Grassy vegetation | 411 | 3423 | 267 | 61 | 4162 | 82.24 | |
Forest | 0 | 307 | 14,770 | 117 | 15,194 | 97.21 | |
Young regenerating vegetation | 102 | 55 | 276 | 2254 | 2687 | 83.89 | |
5185 | 3785 | 15,316 | 2436 | 26,722 | |||
Producer’s accuracy | 90.11 | 90.44 | 96.44 | 92.53 | |||
Total accuracy (%) | 94.00 | ||||||
Kappa accuracy | 0.90 | ||||||
(b) | Reference | ||||||
Classification | Bare | Grassy vegetation | Forest tree | Young regenerating vegetation | User’s accuracy | ||
Bare | 4393 | 0 | 0 | 0 | 4393 | 100.00 | |
Grassy vegetation | 696 | 3690 | 6 | 79 | 4471 | 82.53 | |
Forest | 0 | 87 | 15310 | 123 | 15520 | 98.65 | |
Young regenerating vegetation | 96 | 8 | 0 | 2234 | 2338 | 95.55 | |
5185 | 3785 | 15316 | 2436 | 26722 | |||
Producer’s accuracy | 84.73 | 97.49 | 99.96 | 91.71 | |||
Total accuracy (%) | 94.50 | ||||||
Kappa accuracy | 0.93 |
Bare | Grassy Vegetation | Young Regenerating Vegetation | Forest | Total | |||||
---|---|---|---|---|---|---|---|---|---|
(a) Burned-once | |||||||||
Patch | ha | % | ha | % | ha | % | ha | % | ha |
1 | 0.03 | 0.24 | 1.07 | 9.44 | 1.44 | 12.68 | 8.80 | 77.65 | 11.33 |
2 | 0.01 | 0.26 | 0.52 | 11.32 | 0.56 | 12.30 | 3.47 | 76.11 | 4.56 |
3 | 0.01 | 0.72 | 0.20 | 16.28 | 0.73 | 59.39 | 0.29 | 23.62 | 1.23 |
4 | 0.02 | 1.80 | 0.06 | 6.74 | 0.15 | 15.82 | 0.70 | 75.63 | 0.92 |
5 | 0.00 | 0.00 | 0.10 | 12.05 | 0.15 | 17.96 | 0.57 | 69.99 | 0.81 |
6 | 0.01 | 0.79 | 0.03 | 3.48 | 0.07 | 9.08 | 0.70 | 86.64 | 0.81 |
7 | 0.06 | 9.54 | 0.21 | 33.84 | 0.20 | 31.11 | 0.16 | 25.50 | 0.63 |
8 | 0.01 | 1.60 | 0.04 | 9.20 | 0.04 | 9.16 | 0.36 | 80.04 | 0.45 |
9 | 0.00 | 1.61 | 0.05 | 20.40 | 0.15 | 60.50 | 0.04 | 17.49 | 0.25 |
10 | 0.03 | 8.21 | 0.03 | 7.37 | 0.05 | 14.26 | 0.25 | 70.15 | 0.36 |
Total (ha) | 0.17 | 2.31 | 3.54 | 15.34 | 21.36 | ||||
(b) Burned-twice | |||||||||
Patch | ha | % | ha | % | ha | % | ha | % | ha |
1 | 9.70 | 33.41 | 3.36 | 5.09 | 23.90 | 36.23 | 29.02 | 43.99 | 65.98 |
2 | 0.02 | 7.15 | 0.04 | 10.34 | 0.09 | 24.43 | 0.22 | 60.87 | 0.36 |
3 | 0.00 | 0.00 | 0.02 | 6.30 | 0.16 | 57.71 | 0.10 | 35.98 | 0.27 |
4 | 0.04 | 52.14 | 0.04 | 15.89 | 0.10 | 38.40 | 0.08 | 30.05 | 0.27 |
5 | 0.03 | 28.73 | 0.05 | 19.22 | 0.08 | 29.63 | 0.11 | 39.74 | 0.27 |
Total (ha) | 9.79 | 3.51 | 24.33 | 29.53 | 67.15 |
(a) Unburned | |||||
---|---|---|---|---|---|
DBH Class | Mean DBH (cm) | Mean Height (m) | Mean Tree Density (no/ha) | Mean Basal Area (m2/ha) | Mean AGB (t/ha) |
10–20 | 14.84 | 15.92 | 216.41 | 2.01 | 6.05 |
20–30 | 24.18 | 18.24 | 70.00 | 2.92 | 14.47 |
30–40 | 33.93 | 25.07 | 36.81 | 3.04 | 36.29 |
>40 | 46.63 | 29.41 | 58.04 | 10.04 | 126.22 |
(b) Burned-Once | |||||
DBH Class | Mean DBH (cm) | Mean Height (m) | Mean Tree Density (no/ha) | Mean Basal Area (m2/ha) | Mean AGB (t/ha) |
10–20 | 14.08 | 14.75 | 79.17 | 0.13 | 8.77 |
20–30 | 24.50 | 20.17 | 18.75 | 0.62 | 6.85 |
30–40 | 35.33 | 17.67 | 9.38 | 0.92 | 9.91 |
>40 | 50.17 | 30.51 | 22.50 | 0.20 | 59.43 |
(c) Burned-Twice | |||||
DBH Class | Mean DBH (cm) | Mean Height (m) | Mean Tree Density (no/ha) | Mean Basal Area (m2/ha) | Mean AGB (t/ha) |
10–20 | 15.21 | 12.07 | 25.00 | 0.47 | 3.35 |
20–30 | 23.63 | 18.98 | 22.50 | 0.98 | 8.79 |
30–40 | 33.50 | 17.25 | 15.63 | 0.80 | 8.38 |
>40 | 52.00 | 31.00 | 12.50 | 2.67 | 35.32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Phua, M.-H.; Tsuyuki, S. Assessing Impact of Multiple Fires on a Tropical Peat Swamp Forest Using High and Very High-Resolution Satellite Images. Fire 2021, 4, 89. https://doi.org/10.3390/fire4040089
Phua M-H, Tsuyuki S. Assessing Impact of Multiple Fires on a Tropical Peat Swamp Forest Using High and Very High-Resolution Satellite Images. Fire. 2021; 4(4):89. https://doi.org/10.3390/fire4040089
Chicago/Turabian StylePhua, Mui-How, and Satoshi Tsuyuki. 2021. "Assessing Impact of Multiple Fires on a Tropical Peat Swamp Forest Using High and Very High-Resolution Satellite Images" Fire 4, no. 4: 89. https://doi.org/10.3390/fire4040089