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Abstract: The spread of flammable invasive grasses, woody plant encroachment, and enhanced
aridity have interacted in many grasslands globally to increase wildfire activity and risk to valued
assets. Annual variation in the abundance and distribution of fine-fuel present challenges to land
managers implementing prescribed burns and mitigating wildfire, although methods to produce
high-resolution fuel estimates are still under development. To further understand how prescribed fire
and wildfire influence fine-fuels in a semi-arid grassland invaded by non-native perennial grasses,
we combined high-resolution Sentinel-2A imagery with in situ vegetation data and machine learning
to estimate yearly fine-fuel loads from 2015 to 2020. The resulting model of fine-fuel corresponded
to field-based validation measurements taken in the first (R2 = 0.52, RMSE = 436 kg/ha) and last
year (R2 = 0.63, RMSE = 392 kg/ha) of this 6-year study. Serial prediction of the fine-fuel model
allowed for an assessment of the effect of prescribed fire (average reduction of −160 kg/ha 1-year
post fire) and wildfire (−520 kg/ha 1-year post fire) on fuel conditions. Post-fire fine-fuel loads were
significantly lower than in unburned control areas sampled just outside fire perimeters from 2015
to 2020 across all fires (t = 1.67, p < 0.0001); however, fine-fuel recovery occurred within 3–5 years,
depending upon burn and climate conditions. When coupled with detailed fuels data from field
measurements, Sentinel-2A imagery provided a means for evaluating grassland fine-fuels at yearly
time steps and shows high potential for extended monitoring of dryland fuels. Our approach
provides land managers with a systematic analysis of the effects of fire management treatments on
fine-fuel conditions and provides an accurate, updateable, and expandable solution for mapping
fine-fuels over yearly time steps across drylands throughout the world.

Keywords: dryland ecosystem; fuel treatment; invasive non-native grasses; Lehmann lovegrass
(Eragrostis lehmanniana); post-fire recovery; Sentinel-2A

1. Introduction

The risk of large and severe wildfires has steadily increased throughout the western
U.S., posing serious threats to human infrastructure and ecosystem values [1–4]. While
much attention has focused on wildfire in forests, grass- and shrub-dominated ecosys-
tems have shown capable of rapid fire spread and extreme fire behavior [5,6]. Although
wildfire is a regular disturbance agent in semi-arid grasslands, the spread of non-native
invasive grasses in the western U.S., such as lovegrasses (Eragrostis spp.), buffelgrass
(Pennisetum ciliare), and brome grasses (Bromus spp.) [7–9], have increased fine-fuel loads
that intensify wildfire activity [10]. Wildfire, in turn, further promotes the spread of these
invasive species, creating a positive feedback loop with wildfire [11–14] and elevating the
risk to natural resource values compared to historic conditions [15–17]. Woody plant en-
croachment has further changed wildfire regimes in western U.S. grasslands [18,19]. Shifts
in the abundance of invasive grasses and woody plants, and high interannual variability in
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precipitation, influence fine-fuel production in ways that require up-to-date assessments of
fuel loads across heterogeneous landscapes of the western U.S.

Changes in fuel and wildfire regimes present novel risks to highly valued assets in-
cluding infrastructure, hydrologic function, critical habitat, and endangered or threatened
flora and fauna [20]. Altered and novel fire regimes, along with annual changes to the
abundance and distribution of fine-fuels, present challenges to land managers implement-
ing competing management objectives. Comprehensive fire plans that include prescribed
fires and other fuel reduction techniques represent an accessible strategy for altering fuel
loads, mitigating fire risk, and generally influencing ecological trajectories. With dramatic
increases in wildfire activity throughout the western U.S., prescribed burning is a widely
advocated for but under-used approach to fuels reduction [21], with the potential to sup-
port resource priorities of land management agencies and concerns surrounding wildfire
management [22,23]. Furthermore, some management units have records of prescribed and
managed wildfires dating back decades [23–25], yet the effect of these fuel treatments, and
those of naturally occurring wildfires, on fuel load and their subsequent recovery remain
largely unknown and undescribed in non-forested areas.

The Buenos Aires National Wildlife Refuge (BANWR; Figure 1, [26]) located in south-
ern Arizona in the southwestern U.S., typifies a managed area that has experienced in-
creased risk of wildfire from invasion of non-native grasses. Composed largely of semi-arid
grasslands, BANWR has a storied history of land use and management, including the
refuge’s primary mission to reintroduce the federally endangered masked bobwhite quail
(Colinus virginianus ridgwayi) into its historical range [27]. In brief, commencing at the
turn of the 20th century, there were periods of intensive livestock grazing resulting in near
fire exclusion and shrub encroachment, followed by a cessation of grazing, and active
fire management beginning with refuge establishment in 1985 [26,28]. Previous studies
have addressed the growing concern of wildfire on the remaining masked bobwhite quail
habitat and direct and indirect management actions to improve population viability of
the reintroduced birds through fire management [25]. The BANWR maintains an active
prescribed burn program to ameliorate the threat of extreme wildfire events. The refuge is
composed of over 80 habitat management units, with 60 units designated for inclusion in
the prescribed burn plan that has operated since refuge establishment [25]. Wildfires ignited
by lighting associated with the North American Monsoon and anthropogenic sources play
an active role in shaping ecosystem function in BANWR and the surrounding Altar Valley.
Spatially explicit and updateable information on fine-fuels can assist wildlife biologists and
fire managers in developing wildfire mitigation actions that weigh the trade-offs between
quail conservation planning and fuel reduction.

Advances in remote sensing applications can capture interannual changes in fine-fuels
at high-resolution in broadly distributed semi-arid grasslands [22,29]. The increased variety
and availability of remotely sensed data provide a promising set of tools for assessing
how vertical and horizontal fuel bed and canopy structure are altered by fire management
actions [30]. A comprehensive review of relevant literature from 1986 to 2019 [22] of fuel
and fire risk in the southwestern U.S. shows an increasing body of work related to remote
sensing of invasive grasses and fine-fuels. Remote sensing assessment of fine-fuels can
reduce resources required to monitor fuel loads in the field [31] and is readily updateable
to assess rapid changes in fuel condition. Remote sensing imagery that is scalable to detect
the heterogeneity in fine-fuel loads in semi-arid grasslands may be particularly useful for
assessing the effects of management actions and provide spatial inputs required by wildfire
behavior models. We modeled fine-fuels over time (2015 to 2020) using the Sentinel-
2A system, which produces imagery at multiple spatial resolutions (60 m, 20 m, and
10 m) and has an enhanced spectral resolution over earlier Landsat, Moderate Resolution
Imaging Spectroradiometer (MODIS), and Satellite Pour l’Observation de la Terre (SPOT)
sensors [32] appropriate for detection of changes in fine-fuels. The advanced Sentinel-2A
system provided an effective and rapid way for detecting, spatial modeling, and assessing
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changes of fine-fuels in a semi-arid grassland and in response to prescribed management
treatments and wildfire at BANWR [33].

Figure 1. The Buenos Aires National Wildlife Refuge (BANWR) study area in southern Arizona, near
Port of Entry Sasabe, and the location of prescribed fires and wildfires from 2015 to 2020 used for
assessment of pre- and post-fire estimates of fine-fuels (NAD83(2011)/UTM-Zone 12N).

Our objectives were to: (1) develop and validate a yearly model of fine-fuel, or herba-
ceous vegetation biomass, over a large grassland area and (2) assess changes to, and
recovery times for, fine-fuels after wildfire and prescribed fire events. A quantitative
understanding of fine-fuel return intervals provides fire managers with a means for under-
standing near- and long-term impacts of management actions and insight on treatment
effects. In meeting our objectives, we demonstrate application of remote sensing to model-
ing fuel conditions in grasslands that are prone to future non-native plant invasion and
climate change.
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2. Materials and Methods
2.1. Study Area

For this study, we focused on the 47,000 hectare BANWR refuge, located in Pima
County of southern Arizona, adjoining the US–Mexico border near Sasabe, Arizona, and
stretching north through the Altar Valley (Figure 1; [26]). The refuge is flanked to the
west by the Baboquivari Mountains and to the east by the Atascosa Mountains [34].
Historically (pre-1900), the refuge and surrounding areas were dominated by native
perennial grasses (Bouteloua spp., Sporobolus spp., Aristida spp., Bothriochloa barbinodis,
and Digitaria californica), but the semi-arid grasslands that house these species have been
steadily invaded by mesquite trees [35], (Prosopis velutina), and non-native perennial grasses
(Eragrostis lehmanniana, E. chlormelas, and E. superba) fostered by periodic drought and land
use [26,28].

2.2. Fire Data

We characterized fine-fuel changes from 2015 to 2020 across the refuge and related
these changes to previous wildfire and prescribed burns following the analysis steps
outlined in Appendix A (Figure A1). We extracted records of fire locations, areal extent,
estimated perimeter, type (i.e., wildfire or prescribed fire), cause, dates, and total area
burned from the U.S. Fish and Wildlife Service’s Fire Management Information System
(FMIS). We assessed pre- and post-fire treatment effects on the recovery timeframe of
fine-fuels within perimeters of 12 fire incidents occurring between 2015 and 2020. To better
understand the context of climate in relation to fuel trends over the study period, we
obtained annual precipitation, mean annual temperature, and maximum annual vapor
pressure deficit from the 4-km Parameter-elevation Regressions on Independent Slopes
Model (PRISM) time series data [36,37]. Climate observations from the north and south
ends of BANWR cover an increasing precipitation and decreasing temperature gradient
from north to south. We compared these climatic trends against the annual trends in
fine-fuels developed from remotely sensed imagery.

2.3. Remote Sensing Data

We used the Sentinel-2 mission products [32] obtained from either the European
Space Agency’s Copernicus open access hub (https://scihub.copernicus.eu, accessed on 21
December 2020) or the USGS Earth Explorer (https://earthexplorer.usgs.gov, accessed on
21 December 2020) for development of imagery and data into serial models of fine-fuels.
While the Sentinel-2 mission is currently composed of 2 satellite vehicles (A and B) with
identically designed multi-spectral instruments, to maintain data continuity and consistent
viewing geometry we used image data from only the Sentinel-2A sensor. Launched in
2015, the Sentinel-2A satellite remote sensing system and multi-spectral instrument is
optimally configured for detecting plant productivity, with a total of 13 spectral bands,
6 of which are designed for capturing spectral response from vegetation [5,32]. Sentinel-2A
is engineered for assessing vegetation attributes and change with two red-edge bands
that record wavelengths in the transition zone between reflectance and absorption by
chlorophyll [38]. Spectral channels and reflectance information provide a means to model
fuels, assess fuel conditions over wide spatial extent with fine granular resolutions (10-m),
and over long periods of time that are otherwise cost prohibitive using ground-based
sampling [39].

We acquired consistent seasonal image dates corresponding to peak greenness of
vegetation (August) and autumn vegetation dormancy (November) periods from 2015 to
2020 with an ideal cloud cover threshold of less than 10%. We used 16-day averages of
MODIS normalized difference vegetation index (NDVI) from 2000 to 2020 to determine the
timing of peak vegetation greenness and vegetation dormancy of fine-fuels in our study
area (Figure A2). While the lowest NDVI values were recorded during January (Figure A2),
we opted to use autumn images to reduce likelihood of image contamination by clouds,
snow, and natural decomposition of fine-fuels. Inclusion of images from both these time

https://scihub.copernicus.eu
https://earthexplorer.usgs.gov


Fire 2021, 4, 84 5 of 22

periods highlights the difference in spectral responses of intra-annual fine-fuel production.
BANWR is geographically located along a seam between Sentinel-2A image footprints;
two images were required for each time period for a total of 4 images per year, or 24 images
over 6 years. We pre-processed level 1C products to level 2A using Sen2Cor software
v. 2.8 to convert top-of-atmosphere reflectance values to surface reflectance [40]. We
applied a cirrus correction, bidirectional reflectance distribution functions correction, and
a terrain correction using the shuttle radar topography mission (SRTM) digital elevation
model (DEM). Level 2A products were geometrically resampled (60 m and 20 m) to 10 m
resolution across all the bands, then subset to bands of interest for further processing
in ENVI Classic 5.5.3 (Exelis Visual Information Solutions, Boulder, CO, USA). Stacked
images of overlapping scenes for each unique date were mosaicked and radiometrically
normalized for consistency across time series to the 2015 baseline image. The intermediate
step in radiometric normalization of multivariate alteration detection was performed with
3rd party plug-ins [41]. This step provided the desired image consistency and spectral
band information for developing models of fine-fuels.

In all, 11 of the 13 total Sentinel-2A bands available for each image during the peak
greenness of vegetation and vegetation dormancy periods were included in the anal-
ysis. Two image acquisition dates per year, with 11 bands for each date, provided
a total of 22 spectral bands used as predictor variables, which were included in the
training and predictive portions of the analysis, as described below. Spectral band 1
(443 nm) and band 10 (1380 nm) were only used during the atmospheric correction
to reduce aerosol and cirrus effects. We used bands 2–9, 11, and 12 for our analysis
as described and provided by the European Space Agency [32]: band 2 (blue: central
wavelength = 490 nm, bandwidth = 65 nm), band 3 (green: central wavelength= 560 nm,
width = 35 nm), band 4 (red: central wavelength = 665 nm, width = 30 nm), band
5 (vegetation red-edge 1: central wavelength = 705 nm, width = 15 nm), band 6 (veg-
etation red-edge 2: central wavelength = 740 nm, width = 15 nm), band 7 (vegetation red-
edge 3: central wavelength = 783 nm, width = 20 nm), band 8 (near infrared 1: central
wavelength = 842 nm, width = 115 nm), band 8a (near infrared 2: central wavelength = 865 nm,
width = 20), band 9 (water vapor: central wavelength = 945 nm, width = 20 nm), band
11 (shortwave infrared 1: central wavelength = 1610 nm, width = 90), and band 12 (short-
wave infrared 2: central wavelength = 2190 nm, width = 180 nm). We exclusively utilized
spectral data in our analysis to simplify repeat processing and expand our ability to infer
model results across space and time.

2.4. Modeling Fine-Fuels

To model fine-fuels, we used 2015 seasonal image dates together with cover and
herbaceous biomass estimates from 20-m × 50-m field plots (n = 446) collected during
the growing season in 2012 and 2015 [25,42]. In each plot, herbaceous vegetation cover
was estimated using line-point intercept along six evenly spaced 20-m transects, with
intercepts occurring at 0.5-m intervals. These cover measurements were related to clipped
herbaceous biomass that fell within 0.5-m × 0.5-m quadrats spaced 5 m apart along the
six 20-m transects at a subset of plots. These field-based estimates of biomass of fine-fuel
(kg/ha) provided the dependent response variable for analysis. To align the models to the
field-based data, we subset and processed the 2015 Sentinel-2A images to the study area
extent and resampled images to spatially align image pixels. We then extracted average
spectral values from field plot locations for use as model covariates treating individual
bands as separate predictor variables. We randomly selected the field-based data, based on
an 80/20 percent split, for model training and testing, respectively. We fed the combined
spectral and vegetation information into program R statistical software v.3.6.3 [43] and
the Classification and Regression Training (caret) package [44] to capitalize on machine
learning methods. Recursive feature elimination was applied to reduce the set of potential
predictor variables based on a 10-fold cross validation of lowest root mean square error
(RMSE). Using the best predictor variables retained after recursive feature elimination, we
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developed spatial predictions of fine-fuel (kg/ha) with the random forest method in the
caret package. We used the 20% reserved field-based (observed) testing data to fit a linear
model against predictions for the training year (2015) and calculated the adjusted R-squared
to examine model fit and accuracy. Subsequently, we predicted fine-fuel abundance and
distribution for each year through 2020, based on the 2015 model, for the whole of BANWR.

2.5. Model Validation

To assess the accuracy and robustness of the fine-fuel models, we compared the
first predicted year (2015) and the last predicted year (2020) of the fine-fuel models to
temporally distinct field-based estimates of fine-fuels. For the first predicted year (2015),
we used the 20% testing group data to compare field estimates of biomass with spatial
predictions created by the random forest model with the caret package in program R. To
assess the robustness of the predictability of fine-fuels derived from Sentinel-2A imagery
and modeling over multiple years, we validated model results a second time with field-
based measurements collected at the end of the growing season in November 2020, our
final year of predictions of fine-fuels. To validate the last predicted year (2020), we stratified
the study area for sampling using our 2019 Sentinel-2A estimates of fine-fuel abundance
into low, medium, and high categories along with high to low topographic position index
derived from SRTM DEM [45]. We visited and geolocated (Trimble R6 RTK-GPS rover and
base station) two 80-m × 80-m field sites within each of the three fine-fuel strata for a total
of 6 field sites. We visually estimated percent canopy cover of herbaceous vegetation at
five or six 2-m × 2-m plots at each site (n = 35) based on 0.5-m × 0.5-m quadrats (n = 140)
nested within plots. We then used these 2-m × 2-m plot estimates of field-based fine-fuel
to validate the 2020 predicted fine-fuel models derived from the 2020 Sentinel-2A imagery
using linear regression.

2.6. Fine-Fuel Changes

The 2015 to 2020 annual estimates of fine-fuel, developed with 2015 Sentinel-2A
spectral characteristics and matching 2015 fine-fuels plots, were used to examine the effects
of wildfire and prescribed fire on fuel loads. To assess recovery of fine-fuels, we compared
fine-fuel from our Sentinel-2A derived model for pre- and post-fire years within burned
area polygons obtained from FMIS. Within each wildfire and prescribed fire perimeter
occurring between 2015 and 2020 (n = 12), we calculated the mean, minimum, maximum,
range, sum, and standard deviation of fine-fuel (kg/ha) for each pre- and post-fire year.
We then calculated the duration of time that elapsed until estimates of predicted biomass
of fine-fuel post fire met and or exceeded pre-fire estimates. These descriptive metrics of
burned area polygons were compared to fine-fuel metrics taken from unburned control
areas that were within a 1-km buffer area of the fire perimeter, offering evidence of fire
effects in a case-control design. We used a 1-km buffer to constrain our comparison to
areas that were close to the fire and representative of similar vegetation types that existed
within the burned area prior to the fire. Likewise, we constrained our analysis to only those
portions of the larger fires shown in Figure 1 that intersected BANWR. We calculated change
in estimated fine-fuels for annual time steps since year of fire and tested for cumulative
differences in changes of fine-fuels between burned and unburned control areas with a
1-tailed t-test.

3. Results

Since 1985, prescribed fires accounted for 65% of fire events recorded at BANWR in the
FMIS database (n = 133, average size = 646 ha) and wildfires (n = 71, mean size = 319 ha)
accounted for the remaining 35%. Since 2015, 8 of the 12 fires recorded in the FMIS database
were wildfires and 4 were prescribed fires (Table A1). Of the eight wildfires, half were ig-
nited by natural and half by anthropogenic sources. Three of the four prescribed fires were
conducted in March and one was implemented in June. One of the eight wildfires occurred
in May, one in June, two in July, three in August, and one in December (Table A1). Our
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2015 to 2020 study occurred during a period of fluctuating annual precipitation with record
low annual precipitation in 2020 (Figure 2a), high mean annual temperature (Figure 2b),
and high maximum annual vapor pressure deficit (Figure 2c) in both the southern and
northern part of the refuge, relative to the 1985 to 2014 historical record. Notably, in
2019, the study area experienced above average precipitation and cool temperatures that
promoted low-fire behavior. Two wildfires were reported in 2019, both of which repre-
sented the smaller acreages burned during the study timeframe. Conversely, in 2020, the
study area experienced record-setting low summer monsoon precipitation, above average
temperatures, and high vapor-pressure deficit (Figure 2).

Results from training of the 2015 fine-fuel model indicated an optimal RMSE of
500 kg/ha and an adjusted-R2 = 0.41 for the final random forest model based on internal
cross validation. The top five variables included in the 2015 training model included: band
11 (shortwave infrared) during vegetation dormancy, and band 5 (red-edge), band 4 (red),
band 8 (near infrared), and band 6 (red-edge) during peak greenness of vegetation, as
shown in Table 1. Variable importance values indicated the percent increase in RMSE with
predictors iterated in and out of the model. Of the 20 spectral variables included in the
model, 12 of 20 were from the time period of peak greenness of vegetation while the other 8
were from vegetation dormancy. Total variable importance from spectral bands measured
during peak greenness of vegetation accounted for 0.68 of overall importance, while
spectral responses measured during vegetation dormancy accounted for 0.32. Subsequent
spatial predictions for fine-fuel models from 2016 to 2015 were based on these variables.

Table 1. Scaled variable importance of spectral bands contributing to the random forest regression
model used to train, validate, and spatially predict fine-fuels across BANWR (off = vegetation
dormancy, on = peak vegetation greenness).

Spectral Band Importance

b11.off 100.0
b5.on 73.2
b4.on 72.6
b8.on 61.8
b6.on 60.5
b2.on 51.7
b12.on 51.2
b11.on 47.7
b12.off 45.3
b3.on 42.4
b4.off 39.3
b7.on 35.5
b2.off 34.1
b9.on 33.0
b8a.on 25.7
b1.off 17.4
b1.on 16.4
b3.off 12.7
b8.off 8.6
b9.off 6.6

When compared with the 20% reserved testing data that we withheld to validate and
assess model accuracy (separate from internal model training cross validation), the 2015
fine-fuel model (Figure 3a) had an adjusted-R2 of 0.52 (F = 93.62, p < 0.0001). The accuracy
of the 2020 fine-fuel model based on its relation to the 2020 field-based measurements
(R2 = 0.63, Figure 3b) was similar to that of 2015 and demonstrated the robustness of the
model over time. The fine-fuel models provided continuous estimates of fine-fuels from
lows of 200–400 kg/ha to highs of 2600–2800 kg/ha throughout BANWR (Figure 4). The
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annual series of Sentinel-2A derived models was used to map the yearly abundance and
distribution of fine-fuels (kg/ha) at a 10-m resolution for BANWR (Figures 4 and 5). For
all years, fine-fuel data layers generally showed increasing values in a north to south
direction, which was associated with increased elevation, increased precipitation, and
cooler temperatures in the southern portion of the study refuge (Figure 2). The minimum
and maximum amount of fine-fuel per year were generally within ±200 kg/ha of each
other. Across the study area, fine-fuel was visibly reduced within fire perimeters following
a fire event or treatment.

Figure 2. Climate variables from Parameter-Elevation Regressions on Independent Slopes Model
(PRISM) data showing (a) annual precipitation, (b) mean annual temperature, (c) and maximum
annual vapor-pressure deficit in the northern (gray solid lines) and southern (black solid lines) parts
of BANWR since the establishment of the refuge (1985) and launch of Sentinel-2A (2015), indicated
with vertical dashed lines. Long-term (1985–2014) historical averages of climate variables are shown
by horizontal dashed lines.
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Figure 3. Validation of Sentinel-2A models of predicted fine-fuels (kg/ha) vs. observed field estimates
of fine-fuels (kg/ha) for (a) 2015 validation test data (n = 90) and (b) 2020 validation data (n = 35)
using general linear models (solid line); 1:1 line forced through the origin (dashed line) shown
for reference.

Figure 4. Serial model of fine-fuels (kg/ha) estimated from 2015 to 2020 with Sentinel-2A imagery
across BANWR.

Close examination of two fire events, the 3-Hills wildfire (Figure 5a–c) and 2016 Airport
prescribed fire (Figure 5d–f), showed high fine-fuel loads prior to ignition (Figure 5a,d),
with visible reductions in the first-year post fire (Figure 5b,e). The 2016 Airport prescribed
fire resulted in an average reduction of −660 kg/ha the first-year post fire, while the
3-Hills wildfire produced an average reduction of −480 kg/ha. The prescribed fire showed
a homogeneous burn pattern and nearly complete overall reduction in fuels. Careful
examination also revealed intentional and strategic prescribed burn patterning with greater
reduction of fuels along ridge tops and benches, whilst lower reductions were achieved
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in areas of lower topography. The third-year post fire clearly showed a recovery of fuels,
although not to the extent of pre-fire conditions (Figure 5c,f).

Figure 5. Change in fine-fuels associated with 3-Hills wildfire (red polygons) in July 2016 and the
Airport prescribed fire (blue polygons) in June 2016 within BANWR based on Sentinel-2A estimates of
fine-fuels showing (a,d) pre-fire year, (b,e) first-year post fire, and (c,f) fuel recovery in the third-year
post fire.

When 2015 to 2020 fires were compared to controls by year, wildfires tended to show
greater impacts to fine-fuels than prescribed fires with greater difference between averages
(Table A1) and greater differences between standard deviations (Table A2) in estimates
of fine-fuel. Annualized since time of fire, there were greater average reductions due to
wildfire (−516 kg/ha) compared to prescribed fire (−152 kg/ha) in the first-year post fire
(Figure 6, Tables A3 and A4). In contrast, unburned control plots in the first-year post
fire showed virtually no change in fine-fuel estimates (−8 kg/ha). From 2015 to 2020,
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average values of fine-fuels estimated within burned areas tended to be lower (Table A1),
and with lower variation (Table A2), than unburned reference plots. Notable exceptions
to the expected reductions of fine-fuel included both the 2019 High Peak wildfire and the
2019 East Gate Border Patrol prescribed fire in which both had increases in estimates of
fine-fuels the first-year post fire (Table A4 and Figure 6). Higher than expected fuel in 2019
was likely due to above average annual precipitation (Figure 2), as even the unburned
control plots increased by 220 kg/ha in 2019.

Figure 6. Changes in post-fire fine-fuel (kg/ha) for (a) naturally occurring wildfires (W; red) and
(b) prescribed (P) fires (blue), with comparable unburned control areas (C; black), surrounding burn
perimeters, in relation to time since fire (t1 = 1 year post fire) at BANWR. Average post-wildfire
(orange), average post-prescribed fire (green), average control of wildfire (CW; gray), and average
control of prescribed fire (CP; gray) fine-fuel. Note: t0 (not shown) = year of fire.

When grouped by years, the combined metrics of fuel reduction for prescribed fire
and wildfire showed a significant difference in post-fire fuel loads for up to 5 years post
fire based on a one-tailed t-test with unequal variances (t = 1.67, p < 0.00001). Following
the immediate reduction in fine-fuels one-year post fire (n = 12, µ = −394 kg/ha), there
was a gradual increase in fine-fuels with return to pre-fire levels between 3 and 5 years
(Table A4). Second-year post-fire average reductions (n = 11, µ = −288 kg/ha) in estimates
of fine-fuels were about 3/4 of first-year reductions. Average reductions of fine-fuels (n = 9,
µ = −294 kg/ha) in the third year were similar to second-year reductions and 3/4 of first-
year reductions, on average. Fourth-year estimates of average yearly changes in fine-fuel
surpassed initial pre-fire conditions (n = 8, µ = 54 kg/ha) with fifth-year estimates slightly
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below. Individually, some fire treatment areas showed recovery of estimated fine-fuels to
pre-treatment levels within 1–2 years and upwards of 5 years.

The individual effect of fires on burned area polygons varied due to treatment type, a
reflection of seasonality, timing, and burning objectives. Average reductions in fine-fuels
by wildfire events tended to be much greater on average than those of prescribed fires
(Table A4). Although, with a Bonferroni adjustment that shifted significant p-values from
0.05 to 0.0125 for multiple tests (4 years), there were no statistically significant differences for
prescribed fire and wildfire in post-fire years and the comparisons were hampered by low
and diminishing sample size over time. When fire types (prescribed fire and wildfire) were
grouped and burned areas were compared to unburned control plots, yearly differences
were significant. One-tailed t-tailed tests with Bonferroni adjustments revealed significant
differences in the first (t = −2.80, p = 0.006) and second year (t = −3.03, p < 0.0001) post
fire. Third (t = −1.73, p = 0.054), fourth (t = −0.55, p = 0.30), and fifth (t = −2.67, p = 0.01)
post-fire years were not significantly different with Bonferroni adjustments in average fuel
reductions due to fire; however, sample size was halved by year 5 and a greater proportion
of year 3–5 post-fire samples included 2019, a year of enhanced productivity.

4. Discussion

With increases in wildfire activity in recent decades [1,2], there is a growing need for
an accurate, updateable, and expandable model of fine-fuels. Our annual estimates of
fine-fuel across a wildlife refuge in southern Arizona provide spatially explicit information
for fire-risk mitigation strategies, wildlife management, and to further our understanding
of the ecological outcomes of wildfire and prescribed fire in non-forested ecosystems.
Determining the contemporary trends of fine-fuels and their response to fire on the refuge
can help inform fuel treatments in similar systems that have undergone invasion by non-
native grasses and experienced a legacy of different land uses. As expected, areas within
the refuge that experienced both prescribed fire and wildfire showed substantial reduction
in estimates of fine-fuels the first year following fire and recovered to pre-fire levels within
3–5 years. Our comparison with unburned control areas suggests that fuel conditions
may fluctuate less widely between years than previously expected, with wildfire having a
greater impact on fuel reductions (−520 kg/ha) than prescribed fire (−160 kg/ha).

Our study demonstrates that Sentinel-2A imagery can produce spatially explicit fine-
fuel estimates at relatively high spectral (13 bands) and spatial resolution (10 m) over a
broad spatial extent (40 km × 30 km). These improvements are necessary to assess pre- and
post-fire conditions and evaluate fuel treatment efficacy and longevity. Previous efforts
to map fuels in arid and semi-arid regions have typically relied on coarse to moderate
resolution imagery [42,46,47] or focused on generating high-resolution predictions within
a narrow study region of interest [48,49]. The increased resolution and spatial extent of
fuel estimates in our study are more suitable for fuel management planning and decision
making. The relatively high resolution of our fuel estimates is particularly important
for the patchy and heterogenous fine-fuel in semi-arid grasslands, which is in contrast
to the more traditionally studied continuous and homogenous fine-fuels of more mesic
systems [50]. Due to the ongoing, publicly available data collection by the Sentinel-2 mis-
sion, the methodology we implemented is updateable and applicable to other ecosystems
where improvements to fine-fuel monitoring is needed.

Our model estimates of fine-fuels showed positive linear agreement with validation
data in both 2015 (adjusted-R2 = 0.52) and 2020 (adjusted-R2 = 0.63) with some sources
of unexplained variation (Figure 3). The 2020 model showed slight bias towards over
predicting fine-fuel, which may be due to the acquisition of 2020 images 2 weeks later in
the growing season compared to the 2015 training year. Additional unexplained variation
may be attributable to a resolution mismatch between the image predicted (10 m) and field
observed (2 m) estimates of fine-fuel. Nonetheless, the number of variables we included in
model parameterization was far less than previous efforts [42], which reduces overfitting
of models, a potential drawback of machine learning methods that results in the inability
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to predict future observations reliably. Although additional variables such as vegetation
and soil indices may increase model accuracy, our multi-year validation allowed for the
reliable development of a time series of fine-fuel estimates. Key elements of our analysis
that allowed for this time series included rigorous image corrections and radiometric
normalizations to match spectral data across scenes and years. Our model results expand
on other remote sensing studies that show the importance of shortwave and near-infrared
bands for characterizing vegetation dynamics in grasslands and other drylands, especially
where biomass is largely composed of non-photosynthetic vegetation [51,52]. Our models
also show that considering spectral information during both peak vegetation greenness and
vegetation dormancy can improve estimates of fine-fuels in grasslands and other drylands.
Assessment of grassland fuels is particularly important in the context of invasive annual
and perennial grasses that may show high interannual variation in fuel hazard [53,54].
We found that the spectral range and frequent return interval of the Sentinel-2A vehicle
(10-day return interval) was compatible with yearly fine-fuel monitoring objectives and
expect the Sentinel-2B vehicle to achieve similar results, offering a combined 5-day return
interval of the Sentinel-2 mission.

Our fuel models can be readily employed to monitor fine-fuel changes over multiple
years, which is an improvement from a previous one-year assessment [42]. This progress is
necessary to detect fine-fuel changes attributable to climate, land-use, and fire conditions.
For example, our time series accommodated the large interannual climate variability of the
2015–2020 study period, which included wetter (2019) and much drier (2020) than average
conditions in consecutive years. This detection of year-to-year variation can largely be
attributable to conducting field validations in both wet (2015) and very dry (2020) years.
Our models will be useful moving forward as 2021 is one of the wettest summers on
record and will likely create high fine-fuel loads and additional wildfire risk, especially if
a subsequent dry year elevates flammability. Indeed, drier conditions interspersed with
periods of more intense rainfall is the forecasted trend for the southwestern U.S. [55,56]
and is likely to create additional fire risk that our models can help inform.

Our study area is widely representative of increasingly fire prone drylands throughout
the western U.S. and world [10,57] due to invasion by non-native grasses [7,17]. While we
did not specifically account for the differences in non-native and native grass contributions
to fine-fuels, our estimates of fuel load within 2015–2020 burn perimeters (1400–1800 kg/ha)
are twice the previous estimates of Lehman lovegrass invaded semi-arid grasslands in
southeastern Arizona in dry summers (900 kg/ha) and considerably higher than the
fine-fuel in native semi-arid grasslands in the region (300–700 kg/ha) (Cox et al. 1990).
Non-native lovegrasses, introduced to provide erosion control and forage, have proliferated
over vast parts of the refuge and semi-arid grasslands in the region over the last several
decades and have enhanced fire continuity and spread [58]. Their general high tolerance to
drought and livestock grazing [59], which is widespread in areas adjacent to the refuge,
indicate that they will continue to present wildfire risk in the future. Although the refuge
has not experienced livestock grazing since 1985, future studies can compare how fuel load
from native and non-native invasive grasses changes with grazing and other land-uses.

While our results indicate reductions in fine-fuel for up to three years due to prescribed
burning, previous studies have suggested that invasive lovegrasses may increase or show
no change, in relation to decreased abundance of native grasses, even when fire return
intervals are frequent [52,60,61]. Beginning one-year post fire, our analysis showed a
regeneration of fine-fuels after prescribed fire surpassing pre-fire fine-fuel estimates in
the third to fourth year post fire (Figure 6b). Future prescribed fires can balance the need
for a longer recovery time of native grasses, and the habitat requirements of masked
bobwhite quail, with the need to manage fire risk. Our results generally indicate areas
of patchy high fine-fuel abundance, which is consistent with the preference of Lehmann
lovegrass occurring on soils of high sand and low clay content [62] and the biophysical
relationships of fire distribution of grasslands in the southwestern U.S. [63]. These and other
environmental conditions that increase the abundance of Lehmann lovegrass and associated
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fine-fuels can be incorporated into future burn plans [64]. Further analysis of Sentinel-2A
imagery in the manner described herein may eventually allow for biophysical-spectral
mapping of Lehmann lovegrass dominated sites, allowing for greater quantification and
characterization of the threat of invasive grasses.

Our study demonstrated that wildfire decreased fuel by three times the amount of
prescribed fire and increased the length of time until fine-fuels approach pre-fire estimates
(Figure 6). This difference is largely because prescribed burning typically happens under
the cooler and relatively wetter conditions in the spring, which reduces the risk of unwanted
spread but leads to less fuel consumed than the hotter and drier conditions of summer
wildfires [65]. An exception was the 2016 Airport prescribed fire that consumed an amount
of fine-fuel comparable to most wildfires on the refuge due to its ignition in June. While
recent calls for more prescribed fire [21] may be necessary in many over-crowded forests
and grasslands encroached on by woody species, burn plans in drylands invaded by non-
native flammable species should carefully weigh the cost of increasing fire return interval
and continued spread of the non-native species. These invasions may result in unfavorable
wildlife habitat and lead to land degradation.

The range of 3 to 5 years needed for recovery of fine-fuels that we found in our
study is likely influenced by the seasonality and size of the burn and annual climate. For
example, the slight increase in fine-fuels the year following fire in 2019 was likely due to
above average precipitation, the late-winter timing of the prescribed East Gate fire, and
the limited areal extent of the High Peak (3.4 ha) fire. Winter burning combined with
favorable spring growing conditions promotes plant recruitment and growth, thereby
enhancing fine-fuels, especially with the presence of invasive grasses. The relatively short
recovery period of fine-fuels found in our study supports previous findings of semi-arid
grassland fires [16,66,67]. Although we expected higher interannual variability of fine-
fuels associated with climatic fluctuations, the variability was relatively low and might be
explained by the high resilience of grasses to fire, the dominance of perennial grasses in our
study area that have lower interannual changes than annual grasses, and the maintenance
of fuel through time by the highly productive invasive Lehmann lovegrass.

Our results provide a means for fire managers to prioritize strategic actions where
critical natural resource values, infrastructure, and human health are at stake. Updateable,
high-resolution fine-fuel maps allow for managers to move from a reactive approach to a
proactive data-driven approach that can be used in an adaptive framework [68] to better
understand and manage potentially hazardous fuels through time. Additionally, these
annual fuel layers can be overlaid with other data relevant to assessment of values at risk,
such as critical habitat for endangered species (e.g., masked bobwhite quail at BANWR) or
areas of high erosion potential, to help coordinate prescribed burning and other treatments.
Our fuel models represent an important testing and calibrating opportunity for verification
of simulations of fire behavior outputs [69] that have historically not performed well under
conditions of patchy and heterogenous fuels in drylands [50].

In particular, our fine-fuel model is geared toward use in next-generation fire simula-
tion programs such as the QUIC-Fire (Linn et al., 2020) tool for prescribed fire planning
that allows for inclusion of a continuous fine-scale model of surface fuels. Our fuel models
of BANWR represent an important testing and calibrating opportunity for wildfire sim-
ulations and an opportunity to implement an adaptive management approach to refuge
operations, including on-going efforts to improve the population viability of the masked
bobwhite quail. Past prescribed fires that have known ignition and spread patterns can
be analyzed to help calibrate forecasting tools to better inform future burning outcomes
based on fire weather and fine-fuel estimates. When observed versus modeled fuel and fire
simulations are iteratively tested, they can be used to plan future treatment scenarios with
otherwise unknowable outcomes. Our study provides an avenue for potential integration
of updateable fine-fuels across dryland ecosystems more broadly, to formulate a better
understanding of fire risk and fuel treatment outcomes in the western U.S. and throughout
the world.
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5. Conclusions

We demonstrated the development of high-resolution estimates of fine-fuel across a
semi-arid grassland to assess the effects of prescribed fire and wildfire through time. We
employed Sentinel-2A imagery in the vegetation growing and dormant seasons, and ma-
chine learning analyses, to predict annual increments of fine-fuels from 2015 to 2020. Using
field-collected biomass data in 2015 and 2020, we validated our predictions and found rea-
sonable agreement between predicted and observed estimates of fine-fuels (R2 = 0.52–0.63).
When our fine-fuel time series was overlaid with historical burns, we found one-year post-
fire reductions of −160 kg/ha and −560 kg/ha of prescribed fire and wildfire, respectively,
with subsequent recovery of fuel loads within 3–5 years. Our remote sensing-based method
can save on time and resources required to monitor fuel loads in the field and is readily
updateable to assess rapid changes in fuel conditions to support fire and natural resource
management at scales of 10s to 1000s of hectares on an annual basis. Further research can
expand the development of high-resolution models of fine-fuels across dryland landscapes
to support national and continental level mapping efforts.
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Appendix A

Figure A1. Analysis flowchart showing input data and processing steps for estimating changes of
fine-fuels (kg/ha) over time in relation to prescribed fire and wildfire.

Figure A2. Seasonal and annual normalized difference vegetation index (NDVI) patterns from the
Moderate Resolution Imaging Spectroradiometer (MODIS) satellite sensor, showing the timing of
peak vegetation greenness typically occurring in August (Julian date = 220) and post growing season
dormant period beginning in November at BANWR.
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Table A1. The yearly estimated mean (µ) of fine-fuels (kg/ha) within burn perimeters for wildfire
(W) and prescribed (P) fires at BANWR, with parenthesized boldface values indicating pre-burn
estimates prior to ignition (some ignition dates do not align with calendar date but rather to pre- or
post-imagery dates) against 1-km buffered control (C) areas around fire perimeters (parenthesized
italicized values reference ignition time period for unburned control samples).

CASE: Fire Name Type Year Date 2015 2016 2017 2018 2019 2020

2016 Airport P 2016 06.07 (1608) 952 1232 1264 1490 1276
Arivaca Cienega A P 2017 03.08 1662 (1520) 1448 1336 1348 1944
Arivaca Cienega B P 2017 03.08 1554 (1218) 1232 1162 1516 1858
RX-East Gate BP P 2019 03.05 1404 1312 1412 (1248) 1350 1294

Fourteen Fire W 2015 08.22 (1790) 940 1356 1314 1668 1894
Mordida W 2015 12.18 (1758) 892 1232 1002 1432 1338
Brown W 2016 06.17 (1284) 1254 1286 1136 1256 1296

Cumero W 2016 05.06 (1672) 1072 1296 1176 1574 1688
Three Hills W 2016 07.21 (1654) 1172 1376 1392 1554 1550

19 Fire W 2018 08.07 1492 1338 (1966) 1338 918 1064
High Peak W 2019 07.17 1458 1406 1182 (1232) 1504 1292

Arroyo Fire W 2019 08.31 1642 1466 2104 1770 (1914) 978

Average (µ) P - - 1556 1250 1332 1252 1426 1592
Average (µ) W - - 1594 1192 1474 1296 1478 1388

CONTROL Type Year Date 2015 2016 2017 2018 2019 2020

2016 Airport CP 2016 NA (1464) 1436 1406 1346 1602 1560
Arivaca Cienega A CP 2017 NA 1496 (1464) 1406 1354 1474 1738
Arivaca Cienega B CP 2017 NA 1154 (1262) 1130 1032 1012 1190
RX-East Gate BP CP 2019 NA 1376 1290 1426 (1186) 1682 1498

Fourteen Fire CW 2015 NA (1398) 1332 1590 1474 1666 1788
Mordida CW 2015 NA (1578) 1370 1462 1128 1596 1556
Brown CW 2016 NA (1304) 1214 1484 1356 1428 1538

Cumero CW 2016 NA (1644) 1462 1578 1176 1562 1688
Three Hills CW 2016 NA (1544) 1424 1772 1592 1694 1770

19 Fire CW 2018 NA 1226 1044 (1510) 1326 1464 1496
High Peak CW 2019 NA 1580 1440 1388 (1338) 1640 1722

Arroyo Fire CW 2019 NA 1378 1360 1682 1562 (1636) 1806

Average (µ) CP - - 1372 1364 1342 1230 1442 1496
Average (µ) CW - - 1456 1330 1558 1370 1586 1670

Table A2. The yearly estimated standard deviation (σ) of fine-fuels (kg/ha) within burn perimeters for
wildfire (W) and prescribed (P) fires at BANWR, with parenthesized boldface values indicating pre-
burn estimates prior to ignition (some ignition dates do not align with calendar date but rather to pre-
or post-imagery dates) against 1-km buffered control (C) areas around fire perimeters (parenthesized
italicized values reference ignition time period for unburned control samples).

CASE: Fire Name Type Year Date 2015 2016 2017 2018 2019 2020

2016 Airport P 2016 06.07 (344) 148 212 276 314 118
Arivaca Cienega A P 2017 03.08 218 (220) 176 196 256 362
Arivaca Cienega B P 2017 03.08 308 (202) 264 212 330 282
RX-East Gate BP P 2019 03.05 352 302 378 (288) 362 270

Fourteen Fire W 2015 08.22 (248) 170 144 106 78 386
Mordida W 2015 12.18 (456) 140 210 108 308 252
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Table A2. Cont.

CASE: Fire Name Type Year Date 2015 2016 2017 2018 2019 2020

Brown W 2016 06.17 (180) 232 172 326 232 296
Cumero W 2016 05.06 (320) 174 160 156 352 254

Three Hills W 2016 07.21 (396) 268 306 280 292 246
19 Fire W 2018 08.07 226 230 (304) 166 218 320

High Peak W 2019 07.17 104 156 104 (90) 110 198
Arroyo Fire W 2019 08.31 444 210 372 248 (204) 234

St. Dev. (σ) P - - 306 218 258 242 314 258
St. Dev. (σ) W - - 298 198 222 184 224 274

CONTROL Type Year Date 2015 2016 2017 2018 2019 2020

2016 Airport CP 2016 NA (280) 260 368 318 298 248
Arivaca Cienega A CP 2017 NA 282 (294) 278 294 338 374
Arivaca Cienega B CP 2017 NA 266 (346) 250 244 254 336
RX-East Gate BP CP 2019 NA 338 280 340 (156) 322 342

Fourteen Fire CW 2015 NA (330) 210 360 196 170 354
Mordida CW 2015 NA (392) 292 304 218 306 288
Brown CW 2016 NA (252) 270 342 246 326 320

Cumero CW 2016 NA (326) 236 304 178 328 320
Three Hills CW 2016 NA (372) 284 414 302 294 358

19 Fire CW 2018 NA 336 296 (450) 316 416 328
High Peak CW 2019 NA 144 132 190 (148) 140 238

Arroyo Fire CW 2019 NA 358 226 394 318 (230) 280

St. Dev. (σ) CP - - 292 296 310 278 304 324
St. Dev. (σ) CW - - 314 244 346 240 276 310

Table A3. The yearly estimated change (∆) of fine-fuels (kg/ha) within burn perimeters after wildfire
(W) and prescribed (P) fires at BANWR against 1-km buffered control (C) areas around fire perimeters
(some ignition dates do not align with calendar date but rather to pre- or post-imagery dates).

CASE: Fire Name Type Year Date 2015 2016 2017 2018 2019 2020

2016 Airport P 2016 06.07 - −654 −376 −344 −118 −332
Arivaca Cienega A P 2017 03.08 - - −72 −184 −172 422
Arivaca Cienega B P 2017 03.08 - - 16 −56 298 640
RX-East Gate BP P 2019 03.05 - - - - 102 46

Fourteen Fire W 2015 08.22 - −850 −434 −476 −122 104
Mordida W 2015 12.18 - −866 −528 −756 −326 −420
Brown W 2016 06.17 - −30 2 −148 −28 12

Cumero W 2016 05.06 - −598 −374 −494 −96 16
Three Hills W 2016 07.21 - −484 −278 −262 −102 −104

19 Fire W 2018 08.07 - - - −626 −1048 −900
High Peak W 2019 07.17 - - - - 270 58

Arroyo Fire W 2019 08.31 - - - - - −938

Average Change (∆) P - - - −654 −144 −194 28 194
Average Change (∆) W - - - −566 −322 −460 −208 −272

CONTROL Type Year Date 2015 2016 2017 2018 2019 2020

2016 Airport CP 2016 NA - −28 −58 −118 138 96
Arivaca Cienega A CP 2017 NA - - −58 −110 10 272
Arivaca Cienega B CP 2017 NA - - −132 −230 −250 −72



Fire 2021, 4, 84 19 of 22

Table A3. Cont.

CASE: Fire Name Type Year Date 2015 2016 2017 2018 2019 2020

RX-East Gate BP CP 2019 NA - - - - 496 314
Fourteen Fire CW 2015 NA - −68 190 76 268 390

Mordida CW 2015 NA - −208 −114 −450 16 −22
Brown CW 2016 NA - −90 182 54 124 236

Cumero CW 2016 NA - −180 −66 −466 −82 46
Three Hills CW 2016 NA - −120 228 48 152 226

19 Fire CW 2018 NA - - - −184 −46 −14
High Peak CW 2019 NA - - - - 302 384

Arroyo Fire CW 2019 NA - - - - - 170

Average Change (∆) CP - - - −28 −82 −152 98 152
Average Change (∆) CW - - - −132 84 −154 106 176

Table A4. Annual changes in estimates of fine-fuels (kg/ha) since time (t) of ignition for prescribed
fire (P) and wildfire (W) relative to control (C) areas from 2015 to 2020 at BANWR.

CASE: Event Name Event t1 t2 t3 t4 t5

2016 Airport P −654 −376 −344 −118 −332
Arivaca Cienega A P −72 −184 −172 422 -
Arivaca Cienega B P 16 −56 298 640 -
RX-East Gate BP P 102 46 - - -

Fourteen Fire W −850 −434 −476 −122 102
Mordida W −866 −528 −765 −326 −420
Brown W −30 2 −148 −28 12

Cumero W −598 −374 −494 −96 16
Three Hills W −484 −278 −262 −102 −104

19 Fire W −626 −1048 −900 - -
High Peak W 270 58 - - -

Arroyo Fire W −938 - - - -

Average W & P −394 −288 −294 54 −120
Average W −516 −372 −506 −134 −78
Average P −152 −142 −72 316 −332

CONTROL Event t1 t2 t3 t4 t5

2016 Airport CP −28 −58 −118 138 96
Arivaca Cienega A CP −58 −110 10 272 -
Arivaca Cienega B CP −132 −230 −250 −72 -
RX-East Gate BP CP 496 314 - - -

Fourteen Fire CW −68 190 76 268 390
Mordida CW −208 −114 −450 16 −22
Brown CW −90 182 54 124 236

Cumero CW −180 −66 −466 −82 46
Three Hills CW −120 228 48 152 226

19 Fire CW −184 −46 −14 - -
High Peak CW 302 384 - - -

Arroyo Fire CW 170 - - - -

Average CW & CP −8 62 −138 96 162
Average CW −48 108 −126 96 174
Average CP 70 −22 −120 112 96
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