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Abstract: In this study, we investigate a novel application of the photogrammetric monoplotting
technique for assessing wildfires. We demonstrate the use of the software program WSL Monoplotting
Tool (MPT) to georeference operational oblique aerial wildfire photographs taken during airtanker
response in the early stages of fire growth. We located the position of the fire front in georeferenced
pairs of photos from five fires taken 31–118 min apart, and calculated the head fire spread distance
and head fire rate of spread (HROS). Our example photos were taken 0.7 to 4.7 km from fire fronts,
with camera angles of incidence from −19◦ to −50◦ to image centre. Using high quality images with
detailed landscape features, it is possible to identify fire front positions with high precision; in our
example data, the mean 3D error was 0.533 m and the maximum 3D error for individual fire runs was
less than 3 m. This resulted in a maximum HROS error due to monoplotting of only ~0.5%. We then
compared HROS estimates with predictions from the Canadian Fire Behavior Prediction System, with
differences mainly attributed to model error or uncertainty in weather and fuel inputs. This method
can be used to obtain observations to validate fire spread models or create new empirical relationships
where databases of such wildfire photos exist. Our initial work suggests that monophotogrammetry
can provide reproducible estimates of fire front position, spread distance and rate of spread with
high accuracy, and could potentially be used to characterize other fire features such as flame and
smoke plume dimensions and spotting.

Keywords: wildfire modelling; fire behaviour; rate of spread; remote sensing; monophotogrammetry;
WSL monoplotting tool; georeferencing; oblique aerial wildfire photography

1. Introduction

Fire behaviour prediction is important to operational wildfire decision-making and fire
fighter safety [1]. Wildfire spread rates in conifer forests may vary from less than 1 m·min−1

to more than 100 m·min−1, while spread in grasslands and other open fuels may exceed
200 m·min−1 [2]. Fire spread rate relationships are used in both aspatial and spatial fire
growth models and are also incorporated in risk assessments [3,4]. Observations of the
position of the origin, head, flank and back of a fire over time, and the corresponding spread
rates, are important for developing empirical fire behaviour models, validating any kind of
fire behaviour model in real world conditions, and in wildfire cause investigations [5–7].

In the Canadian Fire Behaviour Prediction (FBP) System, for example, the predicted
head fire rate of spread (HROS) is estimated using nonlinear regression relationships
between observed HROS and the Initial Spread Index (ISI) of the Canadian Forest Fire
Weather Index (FWI) System obtained from several hundred experimental fires and wild-
fires in 14 different fuel types [2–8]. While estimates of HROS from experimental fires
using direct observation or indirect measures using electronic timers or imagery are most
accurate [9,10], such experiments are rare, and, when they do occur, are typically conducted
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during low to moderate fire danger conditions. As a result, spread measurements in high
danger conditions have been mainly obtained from wildfires [11]. However, obtaining reli-
able wildfire observations through research or operational activities is dilemmatic. While
researchers have used infrared sensors among other methods to obtain accurate wildfire
observations [12,13], they face many obstacles, including difficulty in getting to incidents
while notable fire activity is occurring or before suppression has influenced fire growth, or
getting into favourable positions to observe fire behaviour when response actions restrict
access. On the other hand, while firefighters and officers are often positioned to observe
noteworthy fire behaviour, they often lack the time, training or resources to make careful
observations or measurements while carrying out their main duties [14]. Thus, there is a
paucity of reliable wildfire spread observations to evaluate the FBP System HROS models,
or indeed all types of fire spread and growth models [15–17].

In this paper, we demonstrate a method to extract wildfire spread observations from
oblique aerial photographs taken during wildfire response in the province of British
Columbia, Canada. We focus on photographs that were obtained by observers in re-
connaissance aircraft accompanying air tankers to document evolving fire conditions and
airtanker operations early in the first burning period for training and accountability pur-
poses. The photographs were taken at close range (less than 1 km) and at varying angles,
providing unobstructed views of the fire front position and flame zone depth. The use
of these photos has the obvious advantage that airtankers and ‘bird dog’ spotter planes
are in the right place at the right time, and no additional resources are required. In a
previous study, Perrakis et al. [18] estimated fire spread from similar images. However,
the methods used to georeference points on the photos were difficult to reproduce and
contained unknown error. Therefore, our objectives in this study were as follows:

1. Develop an efficient, systematic, repeatable procedure to determine the geographic
coordinates of wildfire features captured in oblique photographs.

2. Demonstrate the use of the procedure to obtain estimates of wildfire spread rates and
validate fire behaviour models, using the FBP System models as an example.

To address these objectives, we investigated a novel application of a conventional pho-
togrammetric method called monoplotting to extract fire behaviour data from oblique aerial
images. Although the theory of monoplotting was first described in the early 1970s [19],
its application has been limited in the past due to the lack of computing power and the
availability of high resolution Digital Elevation Models (DEM) that are necessary to achieve
accurate results [20]. Advances in these areas led to several monoplotting software pack-
ages, but their limited flexibility, complicated user interfaces and closed-access platforms
prevented their widespread use [21]. More recently, Bozzini et al. [20] developed an open-
access monoplotting software package [22], the WSL Monoplotting Tool (MPT), at the
Swiss Federal Institute for Forest, Snow and Landscape Research WSL in Birmensdorf,
Switzerland that georeferences single oblique aerial images without the need for multiple,
and overlapping images that are typically required for conventional photogrammetrical
georeferencing practices [20]. The MPT has subsequently been used for a wide range of 3D
spatial measurements and analysis, including documenting avalanches [23] and extracting
ecological information from historical landscape imagery [21]. This paper extends the
application of the technique to the fire behaviour context.

A brief description of the monoplotting process and its implementation in MPT are
provided in Section 2. In Section 3, we document the application of the method to wildfire
image series in order to calculate the spread distance and HROS of five wildfires that
occurred in British Columbia, Canada between 2009 and 2014. In Section 4, we analyze
the accuracy of the georeferencing process and compare the observed fire spread with
predicted values. While our immediate goal was to investigate the utility and limitations
of this method to obtain observations to validate HROS models within the Canadian FBP
System, the method can be used to georeference oblique wildfire photographs for other fire
behaviour or management applications.
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2. Materials and Methods
2.1. Monoplotting Process

Mono-photogrammetry, also known as monoplotting, is the process of georeferencing
a single oblique photograph by relating it to a digital elevation model (DEM) [20]. This
process involves camera calibration which provides a reconstruction of the camera parame-
ters at the shooting time, thus allowing for matching of each point of the image with its
corresponding ground point (and vice versa).

In other words, georeferencing consists of positioning the camera, the image and the
DEM in such a way that, for each point on the image, the ray starting from the origin of the
camera and passing through this point intersects the DEM at the corresponding ground
point (Figure 1).
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Figure 1. Monoplotting principle, displaying the relationship between the camera, photo and DEM.

A monoplotting system requires a digital image, DEM, camera system parameters and
an additional georeferenced source, such as an orthoimage, from which Ground Control
Points (GCPs) are determined. GCPs are points for which both the position in pixels on
the image and the position in real world coordinates with respect to the DEM are known.
Examples of suitable points are building corners or other stationary landscape features.

The MPT software incorporates a camera calibration algorithm, which estimates
the intrinsic (image center, focal distance, radial and tangential distortion) and extrinsic
(Euler rotation angle corresponding to the camera orientation, camera position coordinates)
parameters of the camera system [20]. The camera calibration is an iterative process based
on the method of least squares after a linearization of the collinearity equations [20], that
relies on the identification of precise GCPs and high resolution input data and is essential
to the success and accuracy of georeferencing digital images using MPT. As noted by
Stockdale et al. [21], exact GCP placement in the 2D and 3D space, flawless DEM quality
and zero film or lens distortion would result in a perfectly georeferenced image; however,
this is rarely the case. Therefore, the camera calibration algorithm produces error values
for each GCP pair and utilizes these values to determine the best solution of the intrinsic
and extrinsic camera parameters that minimize the calculated errors using the least square
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method (Table 1). It should be noted that the calculated parameters correspond to the best
configuration of the camera according to the defined points, so it is possible that some
parameters (e.g., camera position, image center, etc.) do not correspond perfectly with the
actual values when the photo was taken. Figure 2 visually describes the camera calibration
algorithm and derivation of the error values used to calculate the final camera system
parameters [20,24,25].

Table 1. Summary of MPT camera calibration errors as shown in the software.

Error Unit Symbol Description

Pixels px d Distance from user defined image GCP (p) coordinates to MPT calculated image point
(p’) coordinates given in pixels

Angle ◦ α(r, r’) The angle between the two light rays (r, r’)
Radius m R Distance from MPT calculated ground point (P”) to user defined ground GCP (P)

World 3D m D Distance from MPT calculated ground point (P’) to the user defined ground GCP (P)
World 2D m D2d Projection of the World 3D error (D) on the horizontal plane
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During the camera calibration algorithm, the user first selects a location on the or-
thophoto (in combination with the DEM) to estimate the initial real-world coordinates
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of the camera position (O) and defines a precise GCP on the image (p) and GCP on the
corresponding DEM (P). Some additional elements help in evaluating the accuracy of the
camera calibration. ∏ is the image plane, ∏’ is a plane parallel to ∏ containing P. O and
P define the ray r, while O and P’ define r’. p’ (projection of P on ∏) is the pixel point
calculated from P. P” (intersection of r’ and ∏’) is the ground point on ∏’ calculated from p,
and P’ (intersection of r’ and the DEM) is the ground point on the DEM calculated from p.
Differences between the two rays (α), the MPT calculated points (d), and the user defined
GCPs (R and D) represent a matrix of error types that describe the overall accuracy of the
georeferencing (Table 1).

The iterative camera calibration process is based on the principle of monoplotting;
more specifically, the mathematical model in which two collinearity equations are used to
solve the intrinsic and extrinsic parameters of the camera system simultaneously:

x = −c × ((r11(XP − XC) + r21(YP − YC) + r31(ZP − ZC))/(r13(XP − XC) + r23(YP − YC) + r33(ZP − ZC))) (1)

y = −c × ((r12(XP − XC) + r22(YP − YC) + r32(ZP − ZC))/(r13(XP − XC) + r23(YP − YC) + r33(ZP − ZC))) (2)

where x, y are image coordinates; c is the focal length; XC, YC and ZC are the real world
coordinates of camera position; r11 − r33 are the coefficients of the rotation matrix defining
the camera rotation parameters; and XP, YP and ZP are the known coordinates of the
GCP [20,26]. Once the camera system parameters are estimated, the correspondence
between image and ground points are determined by MPT using Equations (1) and (2) and
the DEM (the DEM is needed for calculation from pixel to real coordinates).

2.2. Study Area, Image Selection and Data Compilation

The BC Wildfire Service (BCWS) has the primary responsibility to manage wildfires in
the province of British Columbia, Canada. On average, 1600 fires occur each year in the
province within a land area of about 94 million ha [27]. Airtankers are used in an initial
attack on an average of 15% of fires in BC when fire behaviour is beyond ground crew
capacity, or to initiate initial attack when the arrival of ground crews is delayed. BCWS Air
Attack Officers, who carry out an initial assessment from reconnaissance aircraft and guide
the air tankers towards the fire, take digital photographs of each incident to document
the fire behaviour and air tanker effectiveness. Photographs are typically captured with
consumer-grade hand-held cameras or smartphones (more recent images are of increasing
quality). Digital images acquired since 2000 are archived in a central database.

We selected ten images from five wildfires in the BCWS archive that occurred between
2009 and 2014 (Figure 3) within a wide range of landscape features and vegetation types
(Table 2). The selected photographs contained a suitable perspective of the fire front
location in successive images separated by at least 30 min, as well as landscape features
suitable for georeferencing (Figure 4).

As noted in Section 2.1, in order to georeference the photographs, the monoplotting
procedure requires GCPs visible in both the oblique photographs and in an orthoimage, and
a digital elevation model (DEM) [24]. We obtained a 25 m DEM from the British Columbia
Data Catalogue and orthoimages, all of which are under 0.5 m resolution, from various
satellite sources within the ESRI World Imagery layer [28,29]. The wildfire photographs and
orthoimages associated with each fire site are shown in Figure 4. Although the orthoimages
for Sites 1, 2, 4 and 5 were captured after the fires had occurred, the GCPs were not affected
by the fires.
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Table 2. Study Site descriptions, including landscape features and vegetation descriptions.

Site Number Landscape Features Vegetation Type

1 Flat riparian landscape, open areas with shrubs, patchy forest Engelmann spruce—Subalpine fir forest

2 Flat landscape, two building structures, open areas with shrubs,
forest and agricultural areas Ponderosa Pine—Douglas-fir

3 Moderately sloped landscape, open grass field with lone
standing trees Interior grassland, cured

4 Steeply sloped landscape, two buildings, patchy forested sections
with lone standing trees

Grassland—Ponderosa pine
forest transition

5

A: Moderately sloped landscape, many buildings, sports fields,
forested areas

B: Moderately sloped landscape, two buildings, densely forested with
open disturbance patches

Closed Douglas-fir forest
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Figure 4. Study site image pairs with their respective orthoimages. Images were captured at the
following Pacific Daylight times: 1A 14:31, 1B 15:13, 2A 18:16, 2B 19:13, 3A 18:33, 3B 19:04, 4A 14:56,
4B 16:09, 5A 13:48 and 5B 15:46.

2.3. Georeferencing Oblique Aerial Wildfire Images Using MPT

After assembling the oblique photo pairs, orthophotos and DEM for each site, we
selected 5 GCPs in each photo pair that could also be located in the corresponding or-
thophoto. To work effectively, GCPs need to be located in a dispersed pattern across the
oblique photos; when this is not possible, it is necessary at least to find the required control
points around the feature or features of interest in the [21,23,25]—in this case, the fire front
position. As suggested by Stockdale et al. [21], we avoided using GCPs on hill tops or
terrain breaks where there is a higher risk of points being displaced across large horizontal
distances (e.g., infinitely beyond the horizon line or on a mistaken hill peak beyond the
correct one). In addition, GCPs should be located close to the features of interest, as pre-
cision decreases with distance from the camera. We note that it is not necessary that the
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same GCPs be used in the successive images. We evaluated the accuracy of each selected
GCP and adjusted or replaced those with unacceptable accuracy where possible. GCPs
consisted primarily of individual identifiable trees, shrubs and building corners (Table 2).
A GCP was considered acceptable if it had a three-dimensional error (World 3D Error) less
than 5 m (i.e., the distance from MPT calculated GCP to the user defined GCP in real-world
space; Table 1). Furthermore, following Bozzini [24], the GCP must have an angle error less
than or near 0.01◦. Examples of GCPs with low error values are shown in Figure 5.
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Before determining the headfire position and HROS, we extracted the angle of in-
cidence of each image using their respective viewshed parameters and the real-world
coordinates of the image centre. Specifically, we calculated the angle between a ray from
the camera centre and the slope of a 10 m segment of ground at the image centre [21].

2.4. Headfire Position Interpretation and Rate of Spread Calculation

Our aim was to determine the Head Fire Spread Distance (HSD) and HROS in succes-
sive images. In order to make meaningful interpretations of HROS from HSD, images must
be selected where the fuels and topography are relative uniform between the successive fire
front positions. After georeferencing the digital images, we used the annotation feature in
MPT to digitize custom georeferenced vectors (polylines) on the digital image to represent
the fire front position. The head of a fire typically develops a curved front due to the
distribution of radiation ahead of the fire [30]. Where fire growth is approximated by the
elliptical model [31], the apex of the ellipse represents the head of the fire. Thus, there is a
point (the head) at the fire front where the HROS (and so the fireline intensity, flame length
and flame zone depth) are at a maximum, and the flame tilt towards the unburned fuel
is also at a maximum [32]. The location of the head fire (front) was determined visually,
based on the shape of the fire perimeter, the flame zone depth, flame height, angle and
smoke direction, when they could be observed (Figure 6). For the purpose of estimating
HROS, only the furthest leeward segments of fireline are required; in certain cases (e.g.,
Figure 6B), fire suppression actions or fuel discontinuities may determine which segments
of fireline produce subsequent fire growth.

The fire front positions were exported from MPT as individual shapefiles and imported
into ArcPro (ESRI, Redlands, CA, USA). The HSD was calculated using the ‘Near’ tool,
as the Euclidian distance between the heads on successive arcs and can be seen as the
perpendicular Hausdorff distance between two successive curves (the maximum of all
minimum distances between two curves). The HSD is typically normal to the head fire
front [32] (and the head fire front is typically normal to the spread direction). In cases when
it is difficult to identify the head based on flame zone properties, we estimated the position
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in relation to the smoke column base, tilt angle, and spread direction. Using the HSD, we
then estimated the headfire rate of spread as:

HROS = HSD/(T2 − T1) (3)

where HSD is the head fire spread distance and T1 and T2 are the times of photo capture.
To demonstrate the use of the data to validate fire spread models, we determined the
vegetation and FBP System fuel type associated with each fire from the BC Forest Service’s
vegetation resource inventory (VRI) data and fuel type layer [33] and obtained fire weather
information from weather station data. See the Appendix A for more information on the
FBP System HROS predictions.

Fire 2021, 4, x FOR PEER REVIEW 9 of 20 
 

 

 
Figure 6. (A) Start fire front position (green line); (B) end fire front position (red line) at Site #3. 

The fire front positions were exported from MPT as individual shapefiles and im-
ported into ArcPro (ESRI, Redlands, CA, USA). The HSD was calculated using the ‘Near’ 
tool, as the Euclidian distance between the heads on successive arcs and can be seen as the 
perpendicular Hausdorff distance between two successive curves (the maximum of all 
minimum distances between two curves). The HSD is typically normal to the head fire 
front [32] (and the head fire front is typically normal to the spread direction). In cases 
when it is difficult to identify the head based on flame zone properties, we estimated the 
position in relation to the smoke column base, tilt angle, and spread direction. Using the 
HSD, we then estimated the headfire rate of spread as: 

HROS = HSD/(T2 − T1) (3)

where HSD is the head fire spread distance and T1 and T2 are the times of photo capture. 
To demonstrate the use of the data to validate fire spread models, we determined the veg-
etation and FBP System fuel type associated with each fire from the BC Forest Service’s 
vegetation resource inventory (VRI) data and fuel type layer [33] and obtained fire 
weather information from weather station data. See the Appendix for more information 
on the FBP System HROS predictions. 

3. Results 
3.1. Fire Front Locations and Accuracy Assessment 

We used the monoplotting technique to estimate the position of fire fronts in 10 im-
ages of five fires in British Columbia. The estimated position of the fire fronts and the 
GCPs used to georeference each image are shown in Figure 7. The positional accuracy of 
the fire front locations (or of other features) depends greatly on the error in GCP locations 
and the camera angle of incidence. The error values of the GCPs for each image are shown 
in Table 3. 

Table 3. The GCP errors for each georeferenced wildfire image. 

Image # 
Aerial Image 
Time Stamp 

Mean Angle 
Error (°) 

3D Error (m) 
Min.  

3D Error (m) 
Max. 

3D Error (m) 
Mean 

1A 14:31 0.008 0.033 0.388 0.244 
1B 15:13 0.011 0.033 0.382 0.253 
2A 18:16 0.009 0.053 1.034 0.600 
2B 19:13 0.002 0.087 0.822 0.500 
3A 18:33 0.001 0.137 1.127 0.555 
3B 19:04 0.001 0.102 0.672 0.322 
4A 14:56 0.009 0.327 0.691 0.475 
4B 16:09 0.012 0.234 0.962 0.706 

Figure 6. (A) Start fire front position (green line); (B) end fire front position (red line) at Site #3.

3. Results
3.1. Fire Front Locations and Accuracy Assessment

We used the monoplotting technique to estimate the position of fire fronts in 10 images
of five fires in British Columbia. The estimated position of the fire fronts and the GCPs
used to georeference each image are shown in Figure 7. The positional accuracy of the fire
front locations (or of other features) depends greatly on the error in GCP locations and
the camera angle of incidence. The error values of the GCPs for each image are shown in
Table 3.

Table 3. The GCP errors for each georeferenced wildfire image.

Image # Aerial Image
Time Stamp

Mean Angle
Error (◦)

3D Error
(m) Min.

3D Error
(m) Max.

3D Error
(m) Mean

1A 14:31 0.008 0.033 0.388 0.244
1B 15:13 0.011 0.033 0.382 0.253
2A 18:16 0.009 0.053 1.034 0.600
2B 19:13 0.002 0.087 0.822 0.500
3A 18:33 0.001 0.137 1.127 0.555
3B 19:04 0.001 0.102 0.672 0.322
4A 14:56 0.009 0.327 0.691 0.475
4B 16:09 0.012 0.234 0.962 0.706
5A 13:48 0.014 0.133 2.030 1.197
5B 15:46 0.011 0.103 0.959 0.477

Mean or Extreme NA 0.008 0.033 2.030 0.533
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The mean and maximum 3D error of each of the five image pairs were all under
the initial requirement of less than 5 m indicating successful georeferencing. Six of the
images also met the angle error target of less than 0.01◦, with the remaining four images
not exceeding 0.014◦, which we considered to be within a reasonable range.
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The distance to fire front, elevation above ground level and camera angle of incidence
all vary from image to image (Table 4). The azimuth of each camera direction is provided
for clarity.

Table 4. The estimated camera characteristics for each georeferenced image.

Image # Approx. Distance
to Fire Front (m)

Elevation above
Ground Level (m)

Angle of
Incidence (◦) Azimuth (◦)

1A 1040 587.63 −42.02 85.44
1B 650 360.16 −43.40 290.86
2A 1725 836.29 −31.95 205.09
2B 3720 1443.46 −25.67 224.78
3A 1720 794.27 −36.32 114.35
3B 2130 516.12 −42.52 153.80
4A 1275 1024.43 −49.52 104.10
4B 2420 631.57 −31.54 332.08
5A 4665 810.97 −18.82 11.80
5B 1575 772.71 −37.09 352.91

Mean 2092 777.76 −35.89 NA

The distance to fire front, camera elevation and angle of incidence ranged between
650 to 4665 m, 365 to 1443 m and −18 to −49◦, respectively. There was a significant
correlation between the angle of incidence and the 3D accuracy (r2 = 0.63) but no significant
relationship between angle of incidence and angle error (Figure 8).

Fire 2021, 4, x FOR PEER REVIEW 11 of 20 
 

 

The mean and maximum 3D error of each of the five image pairs were all under the 
initial requirement of less than 5 m indicating successful georeferencing. Six of the images 
also met the angle error target of less than 0.01°, with the remaining four images not ex-
ceeding 0.014°, which we considered to be within a reasonable range. 

The distance to fire front, elevation above ground level and camera angle of incidence 
all vary from image to image (Table 4). The azimuth of each camera direction is provided 
for clarity. 

Table 4. The estimated camera characteristics for each georeferenced image. 

Image # 
Approx. Distance to Fire 

Front (m) 
Elevation above 

Ground Level (m) Angle of Incidence (°) Azimuth (°)

1A 1040 587.63 −42.02 85.44 
1B 650 360.16 −43.40 290.86 
2A 1725 836.29 −31.95 205.09 
2B 3720 1443.46 −25.67 224.78 
3A 1720 794.27 −36.32 114.35 
3B 2130 516.12 −42.52 153.80 
4A 1275 1024.43 −49.52 104.10 
4B 2420 631.57 −31.54 332.08 
5A 4665 810.97 −18.82 11.80 
5B 1575 772.71 −37.09 352.91 

Mean 2092 777.76 −35.89 NA 

The distance to fire front, camera elevation and angle of incidence ranged between 
650 to 4665 m, 365 to 1443 m and −18 to −49°, respectively. There was a significant corre-
lation between the angle of incidence and the 3D accuracy (r2 = 0.63) but no significant 
relationship between angle of incidence and angle error (Figure 8). 

 
Figure 8. Relationship between angle of incidence and mean 3D error, and angle error in 10 wildfire 
images. 
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3.2. Fire Spread Distance and Rate Estimates

Spread distances and HROS (Equation (3)) are shown in Table 5. Spread distances
ranged from 201 to 846 m over burning periods of 31 to 118 min, resulting in HROS values
from 4.7 to 27.3 m·min−1. The max total 3D error refers to the sum of the maximum 3D
error of each GCP (provided by MPT software) of both images. The max HROS error refers
to the maximum possible error associated each Site due to monoplotting and is calculated
by dividing the max total 3D error by fire spread distance.
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Table 5. Fire behaviour parameters determined from the georeferenced wildfire images.

Site # Fire Year Fire Spread
Distance (m)

Burning Period
(min)

Max Total 3D
Error (m)

Max HROS Error
(%)

HROS
(m·min−1)

1 2013 200.63 42 0.770 0.38 4.78
2 2009 581.13 57 1.856 0.32 10.20 a

3 2014 845.77 31 1.799 0.21 27.28
4 2014 377.42 73 1.653 0.44 5.17
5 2014 554.30 118 2.989 0.54 4.70

a See Appendix A for a recalculation of Site 2 based on a different starting segment.

We calculated the rate of spread predicted by the FBP System using the closest-match
FBP System fuel type for each fire, and the weather indices from interpolated surfaces [34].
The differences between the rate of spread in the oblique photos and the predicted spread
ranged between 1.0 to 6.10 m·min−1 with a % difference RMSE of 4.258 (Table 6). For Site 2,
the calculations were repeated using an initially unidentified spot fire (see below), which
reduced the fire spread distance considerably, improving the fit between observed and
predicted HROS. Details are provided in the Appendix A.

Table 6. The observed and FBP System predicted fire spread rates for the fire behaviour parameters
from the georeferenced wildfire imagery. HROSp and HROSO refer to predicted and observed rate of
spread. See the Appendix A for FBP System calculation details.

Fire Obs. # FBP Fuel
Type

HROSp
(m·min−1)

HROSO
(m·min−1)

Difference
(m·min−1)

Difference
(%)

1 C-2, C-3 5.80 4.78 +1.02 21.33
2 C-7 4.10 10.20 −6.10 −59.80 a

3 O1-b 22.0 27.28 −5.28 −19.35
4 C-7 (O1-b) 3.10 5.17 −2.07 −40.03
5 C-7 9.20 4.70 +4.50 +95.74

Notes: a Recalculated using spot fire start position, resulting in HROSO of 4.8 m·min−1, absolute difference of
−0.74 m and relative difference of −15.29%; see Appendix A for details.

At Site 3, retardant lines (visible in Figure 5B) were clearly effective at stopping fire
spread along the most active portion of the head. The resultant spread between A and B
images was due to the escape of a portion of the flank (green line in Figure 6A).

Additional fire behaviour characteristics can sometimes be observed in these images
and offer opportunities for measurement and documentation. The depth of the flaming
front, for example, is often visible in non-forested fire images (e.g., Figure 6, image 3B).
Figure 9 shows the flame front depth ranging from 4.76 m to 21.47 m. The flame residence
time [35] can also be calculated as the quotient of the flame front depth and HROS; for the
latter example with a 27.28 m·min−1 spread rate, this was approximately 47 s using the
average maximum fire front depth measurements from both images.

Many fires also exhibit short- or medium-range spotting (ember lofting; [36]), which
can also potentially be studied using monoplotting. For Site 2, we identified the develop-
ment of a secondary head caused by downwind spotting (Figure 10A) and measured the
minimum spotting distance, assuming instantaneous ignition (298 m; Figure 10B). See also
the Appendix A for a recalculation of HROS based on the spot fire positions.
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Figure 10. (A) Spot fires identified (red circle) on the Site 2 image at 18:16; (B) the headfire position at
image 2A (green line), image 2B (red line) and the spot fire position (orange line); spread distances (1,3)
and minimum spotting distance (2) are as indicated.

4. Discussion

The goal of this study was to evaluate the use of monoplotting to geolocate the fire
front position and estimate fire spread rates using oblique aerial photographs of wildfires.
While the potential uses for this process are numerous, our main intention is to provide real
world observations for validating and improving existing fire behaviour models. We made
novel use of the monoplotting software program MPT to georeference image pairs from
five wildfires, extracted fire front positions, and calculated the spread rate of the fire runs.
While the process is only semi-automated (i.e., GCPs are selected and the fire front position
is manually identified by a human interpreter), the systematic nature of the method should
yield relatively reproducible results between users. Although skill in matching GCPs in the
obliques and orthophotos, and in locating the fire front position will likely vary between
individual interpreters, the method also provides an estimate of the angular and positional
error of the GCPs that are indicative of the accuracy of each observation. The quality of
our wildfire images and resolution of our orthoimages and DEM yielded good results;
in our examples the total max 3D error of the observations ranged from 0.770 to 2.989 m
with spread distances of 200 to 846 m resulting in max HROS errors of approximately
0.21–0.54%, a very low degree of uncertainty for wildfire position data.

4.1. Factors Affecting MPT Accuracy

Previous research shows that the quality of the photographs, the angle of incidence
of the camera and the resolution of the DEM and orthoimage used in the monoplotting
process all influence the placement and precision of GCPs, and significantly affect the
accuracy of a georeferenced image [20,21,25,37]. However, because these factors were
very similar between our five sites, we were not able to evaluate their influence in this



Fire 2021, 4, 81 14 of 19

wildfire application. Rather, we examined the influence of landscape features, fuel type,
distance of camera to the fire front position, camera elevation above ground level and
camera angle of incidence (Tables 2 and 4). Our analysis suggests that the camera angle
of incidence (determined by the distance between the camera and the image centre, the
camera elevation above ground and ground slope in the DEM) strongly influenced the
accuracy of georeferencing among 10 images, which is consistent with earlier work [21,23].

The visible landscape in all of our ten images provided sufficient GCP locations (5) for
accurate georeferencing of the images. However, variation in the vegetation and landscape
features in the images often influence the availability of GCPs. In our sites, open non-
forested areas and areas of patchy forest in otherwise forested landscapes allowed for
individual trees or shrubs to be identified in both the oblique images and orthoimages with
a high degree of precision. The presence of built structures also provided precise GCPs,
particularly building corners. It is apparent that heterogeneous landscapes will yield more
precise GCPs than landscapes with continuous forest or grassland vegetation. Our tests on
a range of fire photographs also suggested certain cases (not shown) where images were
unsuitable or unreliable for analysis by monoplotting.

All wildfire images used in this study were taken from aircraft at moderate angles
of incidence, which likely contributed to their level of accuracy (Table 4). This finding
supports the relationship between angle of incidence and accuracy, because when the angle
of incidence increases, the overall accuracy of the georeferenced image increases [20,37].
The angle of incidence is dependent on the position of the camera and the DEM at which
it intersects; therefore, the angle of incidence can be heavily influenced by the terrain of
the landscape present in the image, as well as the height and angle of obliquity of the
camera when the image was taken. Due to this relationship, MPT works equally well
in mountainous or flat areas, provided photographs are taken from a high vantage with
a sufficiently oblique angle. For wildfire photography, this must be balanced with the
obvious advantages of an unobstructed view of the flame front (see below). In our study,
we observed that the mean 3D error increased as the angle of incidence decreased, but it
is difficult to be certain that this had a significant impact on the accuracy of each image.
Furthermore, the distance to fire front and elevation at which the wildfire images were
captured in this study had varying influences on MPT accuracy. Relative to the other
wildfire images, the camera closest to the fire front and at the lowest elevation above
ground level resulted in the lowest mean 3D error out of all ten images. In general, the
image resolution increased when the camera was closer to the fire front and at a lower
elevation, which resulted in less pixelation while ‘zooming in’ on unique landscape features.
This allowed the GCPs to be selected with greater precision, thus increasing the accuracy, a
finding that is consistent with previous research [21]. However, in some cases, within the
limits of the resulting image resolution, images with clearly identifiable GCPs, favourable
fire front locations and high incidence angles may reduce the impact of the distance and
elevation on MPT errors.

A unique challenge associated with monoplotting wildfire imagery involves the
obscuring effect of the smoke plume on the fire head. Note that some authors have
proposed a broader definition of the head that includes perimeter segments below the
maximum ROS, e.g., greater than 50% of maximum ROS, for fireline communication
and safety purposes [38]. Our focus, however, was on the single point of maximum fire
intensity and ROS (in relatively homogenous fuels and topography). In very high angle
(near-nadir) photographs, the position of the fire’s head is often partly or fully hidden; this
can undermine much of the precision gained from the high angle, as estimating fire front
position in these cases can be highly subjective. A camera angle of incidence near −45
degrees, aimed underneath the smoke plume appears to be a good compromise. However,
the best camera angle of incidence and position for a given fire will depend on the fire and
plume behaviour, and, on some fires (e.g., surface fires with very strong winds and smoke
plumes attached to the ground), identifying an accurate frontal position from photographs
will be difficult. Confidence can be increased when multiple photographs show the fire



Fire 2021, 4, 81 15 of 19

head from different vantage points within a short time span (few seconds to ~1–2 min).
Future studies will explore the use of infrared sensors and machine learning approaches to
assist with tracing the fire front and perimeter on oblique wildfire imagery.

The final step in our exploratory analysis involved comparing spread rates estimated
from the monoplotted fire position locations with FBP System predictions. Analyzing each
fire run included best estimates of fire environment inputs given the available data. While
the full details and sensitivity of these decisions are beyond the scope of this study, some
details are provided in Appendix A. The error between predicted and observed spread
rates in our fires ranged from 19% to 96%, which is not unusual for a small number of ob-
servations, particularly slower-spreading surface fires in conifer stands [39]. Interestingly,
three out of five examples were in fuel complexes most similar to the C-7 fuel type (‘Pon-
derosa pine—Douglas-fir’), a less well-documented type in the FBP System [2]. Assuming
a similar definition of HSD (i.e., the minimum Hausdorff distance between perimeters),
differences between observed and predicted values can result from five sources: interpreter
and methodological error in estimating the location of GCPs; interpreter error in observing
or locating the true fire front position; unobserved processes such as spotting that occurs
between photographs; model error in the prediction system (e.g., due to uncertainty in the
spread model); and error in weather and fuel moisture inputs, particularly the wind speed
and direction at the fire location. Other studies have discussed these uncertainties [14,16,39],
but they are not easily resolved post-hoc. It is not possible to have perfect knowledge of the
condition of fuels and the state of the atmosphere affecting wildfire fronts. As we improve
our techniques for measuring and characterizing the fire environment, so will we also
improve our fire behaviour models, using methods such as those described here [40,41] .

4.2. Recommendations for Future Research and Application

Based on our experience with applying the monoplotting method to oblique aerial
images of wildfires taken in the first few hours following an ignition, we recommend the
following practices:

1. When selecting wildfire images for monoplotting, the fire front position must be
visible or at least interpretable with a high degree of confidence and the visible
landscape and resolution of the images must permit precise location of at least five
GCPs. Monoplotting to determine the position of fire features will be most successful
in heterogeneous landscapes. Accuracy may be higher in mountainous terrain.

2. The accuracy of georeferencing increases with the resolution of the available orthopho-
tos and DEM as well as the distance from camera to ground and camera settings,
which influence the pixel resolution. The monoplotting method will be more accurate
in regions where orthophotos of half meter resolution and an underlying DEM of
at least 25 m resolution are available (for very irregular terrain a DEM with higher
resolution is recommended).

3. Images captured from close distance to the fire and at a lower elevation allow for more
precise location of GCPs. However, this also reduces the field of view and may restrict
the number of GCPs. We recommend a distance range between 650 and 2500 m,
and an elevation range of 350 to 1050 m to yield angles of incidence from about
−30 to −50◦ and a good field of view and perspective of the fire front. Ideally, the
view of the flaming front is unobscured by the smoke plume, although it is not always
possible. Bird dog aircraft attached to air tanker groups are often in this airspace and
can provide a good platform for acquiring wildfire spread imagery.

4. Care must be taken in locating fire fronts in oblique photos with regard to the depth
of visible flame, the shape of the fire front, the location of the smoke plume base
and direction of smoke spread; this requires some training and experience. Complex
fire spread patterns, particularly when fuels or terrain are highly heterogeneous or
spotting is a significant factor, may be georeferenced using monoplotting, but will be
much more difficult to relate to the fire environment. Such considerations are beyond
the scope of this article.
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Based on the success of this pilot study, we are currently expanding our research to
obtain more wildfire spread observations from the historic database. Consideration should
also be given to mounting dedicated cameras with overlapping IR sensors on operational
aircraft that would capture imagery in a more systematic manner, such as georeferencing
the standard image while extracting the fire front from the IR image. In addition, analysis
of GIS tracking data on airtankers would provide insights into the field of view from the
airtanker airspace [42].

With increasing severity and variability of wildfires, knowledge of wildfire behaviour
has never been more important. Monoplotting of oblique air photos of wildfires, often
acquired during the early stages of wildfire growth and response, can provide new and
accurate fire spread observations to inform fire behaviour prediction or other aspects of
wildland fire science.
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Appendix A. Summary of Canadian Fire Behaviour Prediction System Calculations

The main data used to calculate HROS for conifer forests in the FBP System presented
in Tables 6 and A1 include the following inputs: Fuel type, ISI, BUI and foliar moisture
content; degree of curing is also included for the grass fuel type. ISI in turn is calculated
and adjusted to represent the effect of slope relative to wind on spread based on the Fine
Fuel Moisture Code (FFMC), wind speed and direction, slope and slope azimuth. We
determined the fuel type at the fire locations from the BC provincial forest inventory layers
(fuel structure and FBP fuel type; [33] and the slope and slope azimuth from the DEM. The
daily FFMC and BUI were obtained from a dataset of FWI System station observations
interpolated to fire locations using procedures in [34]. Values interpolated from several
weather stations were used because fires can be up to 50 km or more from the nearest
station. However, we used the wind speed and direction observed at the nearest hour to
the time of the photographs at the nearest BC Wildfire Service weather station and the
interpolated daily FFMC to calculate ISI, which was then adjusted for slope effects. All
calculations were completed using RedApp 6.2.4, a software developed by the RedApp
Development Team in Canada [43]. We made a number of modifications to the general
procedure to reflect local site conditions and data availability for Sites 1–3 as follows:

Site 1. The fuel type at this location consisted of subalpine conifer forest of Engelmann
spruce and subalpine fir. Fire behaviour analysts in BC have observed that fire spread in
these stands tends to behave somewhere between the predictions of the C-3 and C-2 fuel
types, thus we used the mean of the predicted HROS for C-2 and C-3.

Site 2. After completing the main analysis, we noted spot fires ~300 m from the main
flame front that may have influenced the spread pattern between images; this would result
in a much lower spread distance and HROS than originally predicted. Spotting to 300 m is
close to the prediction (RedApp’s implementation of Albini’s model; [44]) of intermediate-
range spotting distance of 340–360 m from a surface fire (assuming downwind cover height
of 15–20 m and wind speed of 18.5 km·h−1). According to the Alexander and Cruz spotting
separation distance model [45], ember transport distances of 46–89 m would be required
to allow a new front to develop and spread that would not be overrun by the main flame
front (Calculations assume an ignition delay (ID) of 1–10 min, acceleration coefficient (aa)
of 0.115, observed HROS (assuming fire spread from the spot fires) of 4.84 m·min−1 and
steady state buildup time (Tss) of 30 min). Thus, we assume that the Site 2 spot fires would
generate a new independent front, and so we used their position to estimate HROS. The
spread rate based on the spot fire position (4.8 m·min−1) is much closer to the C-7 HROS
prediction (4.1 m·min−1).

Site 3. This fire was less than 10 km and at a similar elevation to a nearby weather
station; therefore, we used the hourly FFMC from that station rather than the interpolated
daily FFMC.

We further note that the Site 4 fire spread through open grassland on the lower slope
before spreading uphill into the very open Douglas-fir (C-7) stand. Although the analyzed
fire run only encompasses the forested portion of the slope, the fire environment is complex,
making estimation of FBP System inputs challenging. The fire environment includes a
steep slope with changing aspect, heterogeneous fuels and a significant body of water
directly below the slope (the Fraser River). Furthermore, nearby weather stations are more
than 40 km away and show different wind directions during the fire run. Considering
these factors, the 40% discrepancy between predicted and observed HROS (Table 6) seems
quite good. Alternative methods for estimating wind speed affecting fires could include
use of the length to breadth ratio [46] or using terrain-influenced wind models (e.g., [47]),
although these methods were not explored here.

Despite their importance, there are few validation studies of fire behaviour models.
In particular, further evaluation of the C-7 fuel type may be merited, as this type is based
on relatively few data points [2]. Monoplotting can be useful in providing precise and
unbiased estimates of the fireline position at different times. Estimating fire environment
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inputs is a necessary task in these efforts that can range from simple to complex depending
on the circumstance.

Table A1. Fire environment inputs and predicted headfire rate of spread for five example fires. ISIsw is the slope-wind
adjusted ISI; and HROSp is the predicted rate of spread.

Site # FFMC Wind Speed
(km·h−1);

Wind
Observation

(LST)

Distance
(km)

Slope,
Azimuth ISIsw BUI Fuel Type HROSp

1 89.0 14.5 1500 23 <5% 7.7 57 C-2, C-3 a 5.8
2 91.0 18.5 1900 28 <5% 12.6 42 C-7 4.1 b

3 93.6 c 1.8 d 1900 9 <5% 7.9 – O-1b 22.0

4 94.0 7.7 e 1500 46 32%, 215 e 10.0 94 C-7 (O-1b)
e 3.1

5 95.0 16.1 1400–1500 f 25 <5% 19.5 146 C-7 9.2

Notes: a Used ‘dual-fuel’ concept; ROSP is calculated from 50% of each C-2, C-3 (9.0 m·min−1,2.6 m·min−1); b Using spot fire location
as a starting point; see text for details; c Weather station was <10 km from fire and in the same valley; therefore, station hFFMC was
used; d Smoke plume characteristics suggest higher wind speed at the fire than at the station; e Variable wind speed and direction, aspect,
wind-slope vectoring and heterogeneous fuel type; ROSp was based on a single wind speed and direction (3◦) and single fuel type (C-7);
f Wind speed used was average of 1400 and 1500 (LST) readings.
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