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Abstract: Fire management is becoming increasingly relevant in our changing climate as fire fre-
quency and intensity increases both on a global scale and locally in Tasmania. The distribution
of fuel across the landscape has significant impacts on fire regimes, influencing connectivity and
flammability of fuel load. Remote sensing techniques are often used to assess current fuel loads, but
projections of future fuel distributions are necessary for longer term planning of fire management.
Eucalyptus species are an important, dominant component of many Tasmanian forests, influencing
fuel load and flammability. We modelled the current and future climate suitability for two Eucalyptus
species (E. delegatensis and E. obliqua), using a suite of species distribution models (SDMs) and global
climate models (GCMs) for mid (2041–2060) and end of century (2061–2080) time periods. The
implications these changes may have for the distribution of these important fuel species in the future
are discussed. All GCMs projected notable changes in potential distribution, with both species
contracting substantially in some areas and E. obliqua also exhibiting considerable expansions in the
west of Tasmania. On average, suitability for E. delegatensis expanded by 5% ± 1.8% (1658 km2),
contracted by 67% ± 22.7% (24,591 km2) and remained unchanged in 26% ± 7.8% (8783 km2) by the
end of the century. For E. obliqua suitability expanded by a much greater 17% ± 6.3% (24,398 km2),
contracted by slightly less at 55% ± 16.8% (81,098 km2) and remained unchanged in 45% ± 16.8%
(63,474 km2) by the end of the century. These changes in climate suitability have the potential to
cause changes in the composition and structure of Tasmania’s forests, impacting fuel loads. However,
the two species exhibited different responses, reflecting their current distributions and suggesting
that generalisations regarding species’ responses to changing climates are not appropriate, even
where the species are closely related. These results suggest that future fuel loads and flammability at
the landscape scale may change, requiring longitudinal, flexible and adaptive future fire manage-
ment. Assessing the specific effects of distributional changes and the mechanisms driving different
responses to climate change are highlighted as further research opportunities.

Keywords: fire; management; climate change; species distribution models; SDM

1. Introduction

Fire management, the planning, prevention and fighting of fires, is becoming in-
creasingly relevant in our changing climate as fire frequency and intensity increases on a
global scale [1]. In recent history shifts have been observed in bushfire occurrence [2,3]
as illustrated by the two extreme bushfire events in Tasmania in 2016 and 2019. The 2016
Tasmanian bushfires affected 126,800 ha across the state and triggered a bushfire and
climate change research project which concluded that the Tasmanian Wilderness World
Heritage Area (TWWHA) will face increased bushfire risk due to climate change [4]. In
2019, bushfires in Tasmania again burned vast areas (210,311 hectares) [5]. An increased
frequency of fire is expected to continue as climate change accelerates [6], including at a
local scale with predictions for broad increases to fire danger in Tasmania from 1961 to
2100 [7]. This highlights the need for well-informed, forward planning fire management.
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The earth’s climate is changing and this has a direct impact on fire regimes [8], but
it also affects which areas are suitable for species to live in [9–11]. Species distributions
determine what fuel is available at a site, with fuel type and load having significant impacts
on the extent, intensity, frequency and seasonality of fire [12]. This is in line with findings
that individual species traits impact fire characteristics [13]. The continuity of fuel is
also determined by species distributions, and influences a fire’s extent, intensity, burning
pattern, severity and duration [12]. Additionally, vegetation type has been shown to have
significant impacts on the response of fire to warming climates in the southeast of Australia,
with increases in fire frequency more likely for wetter, coastal temperate forests [3].

Species distributions are commonly studied using species distribution models (SDMs).
SDMs are a collection of algorithms designed to analyse species occurrence data alongside
environmental variables (e.g., climate and soils) to model the potential distribution of a
species based on environmental suitability [14]. SDMs are becoming an increasingly useful
tool in environmental research and are commonly and successfully used to define areas
of conservation significance [15]. Using data from global climate models (GCMs), species
distribution models can model potential future distributions under different emissions
scenarios [14]. This allows for the analysis of possible contractions, expansions and shifts in
species distribution. Such changes in species distribution affect the location of fuel which
is highly relevant to fire regimes, with fuel being one of the three key components affecting
fire activity [16].

Assessing the current state of fuel loads and distributions is useful for informing fire
management practices [17], and is currently often achieved using remote sensing tech-
niques [18]. While these techniques are highly useful and becoming more advanced [18],
they are limited to assessing current fuel loads and distributions. Because climate change
is a key driver of increasing fire risk, these static models of fuel loads may not be adequate
for informing fire management under future conditions. While they are useful for short
term purposes, techniques of assessing fuel loads with capabilities of future projection are
required for the formulation of effective long-term fire management plans. Species distri-
bution modelling is one possible method for assessing the state of both current and future
fuel load distributions and may be a valuable compliment to preexisting fuel assessment
methods.

Eucalyptus species are highly flammable [19,20] and dominant in many Australian
forests [21], making them an important determinant of fuel loads and a suitable subject for
studying fuel and fire management using SDMs. Eucalyptus species have been shown to
shift in their distribution under a suite of projected future climates [22], with significantly
less cover in the hottest, driest geographic areas, and significantly more in currently cooler
regions. This is in line with evidence that Eucalypts are facing increasing climate stress [23].
In a study of 830 Eucalyptus species across Australia, it was shown that within the next
few decades, entire populations of many Eucalypt species may be exposed to climatic
conditions outside their range of tolerance [24]. Several studies have noted the importance
of considering adaptability and dispersal when analysing projected changes in species
distributions [25,26]. This has been reported to be particularly relevant to Eucalyptus
species [26].

This study aims to model the environmental suitability of two Tasmanian Eucalyptus
species (E. delegatensis and E. obliqua), under current and future climatic conditions, to
assess the implications any potential changes to distribution may have on future fire
activity. We focus on E. delegatensis and E. obliqua because they are dominant species
in both dry and wet forests and their current distributions suggest different limiting
factors. The current distribution of E.delegatensis suggests that temperature is an important
determinant of this species’ distribution, as it is restricted to cooler, sub-alpine areas in
Tasmania and the Australian Alps [21]. In contrast, E. obliqua, with a broad south eastern
Australian range, appears not to be limited to areas with lower temperatures, and is more
moisture dependent [21]. As a result, they may exhibit contrasting changes to their future
distributions, potentially enabling general rules for application to other species to be
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identified. We test the null hypothesis that there will be no change in climate suitability for
E. delegatensis or E. obliqua over the next century in Tasmania.

2. Method

Environmental suitability under current and future climate conditions for two Euca-
lyptus species (E. delegatensis and E. obliqua), was modelled using an ensemble of Species
Distribution Models (SDMs) and Global Climate Models (GCMs). Areas where suitability is
projected to increase, decrease or remain unchanged between the time periods are mapped
and the extent of suitability for each species across Tasmania quantified.

2.1. Modelling Platform (The BCCVL)

All analyses were completed in the Biodiversity and Climate Change Virtual Labo-
ratory (BCCVL) [27], an online modelling platform which provides integrated tools and
datasets for climate change and species distribution analyses, with high powered computa-
tional and storage capacities.

2.2. Species Occurrence Data and Preparation

Species occurrence data for E. delegatensis [28] and E. obliqua [29] was imported from
the Atlas of Living Australia (ALA) (https://www.ala.org.au/). The ALA is a nationwide
database containing 9553 occurrence records for E. delegatensis, and 34,403 for E. obliqua.
These records were cleaned to remove potentially low-quality records—those from be-
fore 1960, situated outside Australia, listed as preserved specimens or of unrecognised
occurrence status and those flagged as an outlier for one or more bioclimatic layers. This
data cleaning process is crucial, as it reduces discrepancies in the definition of the climatic
conditions under which a species can occur caused by erroneous occurrence data [30,31].
Occurrence points arranged in rows indicative of human planting were retained in the data,
as they were unlikely to be receiving maintenance and not flagged as preserved specimens.
Species occurrence points nationwide, rather than a restricted Tasmanian subset, were used
in the training of the models so that the full range of environmental conditions under which
the species can survive and reproduce were best represented. After cleaning, 7639 records
for E. delegatensis and 30,788 for E. obliqua remained. The dataset has been published for
open access via Mendeley Data [32].

The current distribution of E. obliqua spans the coast of southeast Australia and is
widely distributed in Tasmania, particularly along the north and east coasts, while E.
delegatensis is restricted to subalpine forests in southeastern Australia and Tasmania.

2.3. Species Distribution Models

The distributions of the two Eucalyptus species under recent climatic conditions,
between the years 1960–1990, were modelled using the cleaned data. Three different SDM
algorithms were used to model the distributions, chosen to represent a range of algorithm
types. The two algorithm types used were machine learning models and statistical models
(listed in Table 1, with a description of their strengths and weaknesses). Default configura-
tions (see Supplementary Methods S1) and generation of pseudo absences were used for
each of the three models.

https://www.ala.org.au/


Fire 2021, 4, 1 4 of 17

Table 1. Details of the three species distribution modelling algorithms used with associated descrip-
tions, strengths and weaknesses.

Algorithm Description Strengths Weaknesses

Artificial Neural
Network (ANN)

A collection of models
consisting of

interconnected nodes
arranged in three layers.

Layer one is an input
layer with a node for
each environmental

variable (EV), layer two is
a hidden layer consisting

of different weighted
combinations of the EVs,
and the third layer is an

output layer representing
a prediction of presence.

The model learns by
calculating the difference
between the output layer
and known occurrences
and back propagating to
achieve more accurate

outcomes [33]

Powerful predictions;
Handles large

amounts of data;
Can model non-linear

relationships

Does not deal well
with missing or
outlying data;

Inefficient handling
of mixed data types;

Long processing
times

Maxent

Maximum entropy
modelling finds the most
uniform distribution that
falls within the limits of

the environments
observed at known

occurrence points. These
limits are implemented as
constraints of six types,
being linear, quadratic,

product, threshold, hinge
and categorical [34]

Does not require
absence data;

Compatible with
continuous and

categorical variables;
Considers

interactions between
variables;

Inbuilt mechanisms
to avoid overfitting

Provides suitability
rather than

probability of
presence

Multivariate
Adaptive

Regression
Splines (MARS)

A model that finds and
partitions at appropriate
points in environmental
data and builds a linear

regression model for each
partitioned section which
is then knotted together.
The model has built-in
pruning mechanisms to
avoid overfitting, and
makes no assumptions

about response-predictor
variable relationships (as
linear regression models

do) [35].

Handles many
variables;

Detects inter-variable
interactions;

Complex but fast;
Handles outliers well

Overfitting;
Difficult

interpretation;
Handles missing data

poorly

The outputs from the three algorithms were combined into an ensemble mean to
account for the variability associated with different SDM algorithms [36].

2.4. Climate Variables and Soil Parameters

Bioclimatic variables, derived from spatial interpolation of long-term mean monthly
data, are commonly used in ecological studies and species distribution modelling. There
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are 35 available bioclimatic variables, representing annual trends (e.g., mean annual temper-
ature and precipitation), seasonal trends (e.g., annual range in temperature or precipitation)
and extreme or limiting environmental factors (e.g., temperature of the coldest and warmest
month, precipitation for wettest or driest quarters) [14,37].

Variable selection can affect the results of SDMs, particularly when projecting into
future conditions [38], although this is less of an issue for long-lived sedentary plant species
such as Eucalypts [14]. In consultation with ecologists from the Department of Primary
Industries, Parks, Water and Environment (DPIPWE), bioclimatic variables were selected
that were uncorrelated and expected to influence Eucalyptus distributions in Tasmania.
Five variables representing seasonality in rainfall and temperature and the potential impact
of extreme heat and dryness were selected: Annual Mean Temperature (B01), Maximum
Temperature of Warmest Month (B05), Mean Temperature of Coldest Quarter (B11); Pre-
cipitation of the Driest Quarter (B17) and Isothermality (B03) (a measure of temperature
consistency, calculated by dividing the average range in monthly temperature (B02) by the
range in annual temperature (B07)) [39].

In addition to the bioclimatic variables, the model was trained with substrate data
from the dataset ‘Australia, National Soil Grids (2012), 9 arcsec (~250 m) [40]. Substrate
is a strong determinant of Eucalyptus distributions [21] and it has been shown that using
a combination of climate and landscape predictors results in more robust distribution
models [41].

2.5. Climate Data—Current and Future

Environmental suitability for each species was modelled under current climate condi-
tions and a range of projected future climate conditions. Statistically downscaled climate
data at a spatial resolution of ~1 km (30 arcsec) from the BCCVL data collection was used
(the ‘Australia, current and future climate’ dataset [39]). Data for the period 1976–2005
represents the current period, and two future time periods were chosen to represent mid-
century (2041–2060) and end of century (2061–2080). Twenty year means are typically used
when modelling future distributions to encompass a range of climatic variations that occur
on decadal scale [42].

2.6. Global Climate Models

The Climate Futures Tool [43] was used to select three Global Climate Models (GCMs)
with the aim of best representing the spectrum of plausible futures for Tasmania. Forty-
eight different climate models were sorted into categories based on changes in temperature
and rainfall, with a model from each of the three most common categories chosen, which
were: (i) “Very hot, very dry”, which comprised 19% of the Coupled Model Intercomparison
Project 5 (CMIP5) model archive (9 of 48 models); (ii) “Hot, little rainfall change”, which
made up 21% of the models (10 of 48), and (iii) “Hot and dry”, which represented 12% of
the models (6 of 48). We did not consider a “warmer and wetter” scenario, because only 3
of the 48 models fell in this category.

The models selected were ACCESS1.0, to represent a very hot and very dry future
(a temperature increase of >3 ◦C and annual precipitation decline of 15%); MIROC5
to represent a future with relatively low warming and little change in precipitation (a
temperature increase of 1.5–3 ◦C and −5% to 5% change in annual precipitation), and
CNRM-CM5, which projects a hot and dry future (a temperature increase of 1.5–3 ◦C and
−15% to −5% change in annual precipitation (Table 2).
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Table 2. Climate models selected to represent a range of plausible futures.

Climate Model Projection for 2100 in Relation to the CMIP5 Archive Mean

ACCESS1.0

A hot, dry future. Warming exceeds 2.5 ◦C across most of Australia, and
>3.5 ◦C in central Australia. Drying is projected over most areas, with
decreased annual precipitation of 15%. This model shows high skill in

modelling historical climate. Maximum consensus for many regions across
Australia.

MIROC5

Moderate warming and slight changes in annual precipitation, with
declines in north-east Queensland and south-west Australia; Relatively
low warming, wetter model, with a 1.5–3 ◦C temperature increase and

−5% to 5% change in annual precipitation.

CNRM-CM5
Hot/wet end of range in Southern Australia. A temperature increase of
1.5–3 ◦C and −15% to −5% change in annual precipitation. It also has a

good representation of extreme El Niño in CMIP5 evaluations [44].

2.7. Emissions Scenarios

Future climate suitability was based on the highest of the Intergovernmental Panel on
Climate Change’s (IPCC) four emissions scenarios (RCP 8.5), which represents a future in
which carbon emissions continue on our current trajectory without mitigation [45]. This is
the scenario we are currently tracking [46]. However, if global emissions were reduced,
similar patterns in climate trends are projected, but at a lower magnitude [42]. A single
emissions scenario is sufficient to describe the next two to three decades, a time period of
relevance to operational fire management, as the scenarios do not fully diverge until after
2040–2050 [42].

3. Results

The models reflected the known distributions of both species well (Figure 1), with E.
delegatensis currently distributed over areas of mid to high elevation across most of the state,
especially inland and to the east and E. obliqua exhibiting a relatively wide distribution
across Tasmania, concentrated along a wide section of the north coast and the southeast
quadrant.

The three models provided a similar pattern of environmental suitability for both
species, but there was some variation in the extent of suitable area. The Maxent model
produced the most restricted area for both species (Figure 1).

The projections showed that suitability for E. delegatensis may change notably over
time, with high consensus between the three GCMs at each time period (Figure 2). The
area with conditions suitable for E. delegatensis is projected to contract by 67% ± 22.7%
(81,098 km2) on average across the models by the end of the century (Table 3, Supplementary
Table S2), contracting to the areas of highest elevation within its original distribution
(Figure 2). A comparatively minimal expansion of only 5% ± 1.8% (1658) is expected to
occur in the same time period (Figure 2 and Table 3). This contraction was particularly
evident in the southern, eastern and northern edges of the original range of environmental
suitability, with the western boundary remaining largely unchanged (Figure 2).
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Figure 1. Environmental suitability for E. delegatensis and E. obliqua in Tasmania as modelled by SDM algorithms Maxent,
multivariate adaptive regression splines (MARS) and artificial neural networks (ANN). The ensemble displays the mean of
the three models. Black dots represent observed occurrence points.
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Figure 2. Environmental suitability for E. delegatensis in Tasmania as determined by an ensemble mean of 3 SDMs (Maxent,
MARS and ANN) under historical (1960–1990) and projected future climates for mid (2041–2060) and end of century
(2060–2081) according to global climate models ACCESS1.0, CNRM-CM5 and MIROC5, with ensemble mean of the 3 GCMs
for each time period.

Table 3. Change in species range for E. delegatensis according to the mean of 3 SDMs (Maxent,
MARS and ANN) and 3 global climate models (GCMs) (ACCESS1.0, CNRM-CM5 and MIROC5) as a
percentage of initial distribution and areal extent (km2).

2050 2070

km2 % km2 %

Contraction 18,763 56 ± 7.3 24,591 67 ± 22.7

No Change 14,500 44 ± 7.3 8783 26 ± 7.8

Expansion 2097 6 ± 1.4 1658 5 ± 1.8
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Similarly, the projections of environmental suitability for E. obliqua showed substantial
contractions in some regions over time (Figure 3), resulting in an average reduction of
55% ± 16.8% (81,098 km2) across all models by end of century (Table 4, Supplementary
Table S3). These contractions were largely limited to narrow areas around the coast,
concentrated in the north and northeast (Figure 3). Contrary to the changes observed in E.
delegatensis, the areas of environmental suitability for E. obliqua also expanded extensively
into the southwest of Tasmania with an average expansion of 17% ± 6.3% by end of century
(Table 4), resulting in a shift rather than a simple reduction in the geographic range of
the species.

Figure 3. Environmental suitability for E. obliqua in Tasmania as determined by an ensemble of
3 SDMs (Maxent, MARS and ANN) under historical (1960–1990) and projected future climates for
mid (2041–2060) and end of century (2060–2081) according to global climate models ACCESS1.0,
CNRM-CM5 and MIROC5, with ensemble mean of the three GCMs for each time period.

Table 4. Change in species range for E. obliqua according to the mean of 3 SDMs (Maxent, MARS and
ANN) and 3 GCMs (ACCESS1.0, CNRM-CM5 and MIROC5) as a percentage of initial distribution
and areal extent (km2).

2050 2070

km2 % km2 %

Contraction 59,264 40 ± 13.9 81,098 55 ± 16.8

No Change 85,342 60 ± 12.1 63,474 45 ± 16.8

Expansion 26,085 18 ± 5.1 24,398 17 ± 6.3
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The extent of contraction for E. delegatensis as predicted by SDM Maxent and the hottest
driest GCM ACCESS1.0 was projected to be 82% of the original potential distribution by the
end of century, with expansions projected for only 6% (Figure 4, Supplementary Table S2).
A smaller, yet still substantial, contraction in E. obliqua of 76% was projected as well as, in
contrast to E. delegatensis, a substantial expansion of 12% by the end of century (Figure 5,
Supplementary Table S3). This expansion in environmental suitability for E. obliqua was
greater at mid-century with a projected expansion of 19%, but suitability was then shown
to decline under conditions projected for the end of the century.

Figure 4. Environmental suitability for E. delegatensis in Tasmania, shown as a probability of occur-
rence, and change in species range projected under historical (1960–1990) and future climates for mid
(2041–2060) and end of century (2060–2081), as modelled by SDM Maxent and GCM ACCESS1.0.
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Figure 5. Environmental suitability for E. obliqua in Tasmania, shown as a probability of occurrence,
and change in species range projected under historical (1960–1990) and future climates for mid
(2041–2060) and end of century (2060–2081), as modelled by SDM Maxent and GCM ACCESS1.0.

An SDM response curve illustrates the relationship between an environmental variable
and the probability of occurrence of a species calculated by each algorithm, allowing an
assessment of the relative importance of each variable in the modelled distribution [47]. The
environmental variables shown to be the strongest determinants of species occurrence for
E. delegatensis according to the three models were Maximum Temperature of the Warmest
month (<25 ◦C), Precipitation of the Driest Quarter (100–400 mm), pH (>4), Annual Mean
Temperature (~8–12 ◦C) and Mean Temperature of the Coldest Quarter (>8 ◦C). Soil clay
content was shown to have little relationship and the models displayed mixed results for
Isothermality, Plant Available Water Capacity and Bulk Density (Supplementary Material
Figure S1). For E. obliqua there was more variation between the three models, with MARS
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indicating no relationship for some variables which ANN and Maxent identified as im-
portant (soil bulk density and plant available water capacity). The strongest determinants
of species range for E. obliqua were Soil Clay Content (>3%), Precipitation of the Driest
Quarter (>300/500 mm), Annual Mean Temperature (<15/12 ◦C), Mean Temperature of the
Coldest Quarter (7–10/15 ◦C) and Maximum Temperature of Warmest Month (~25–30 ◦C).
Two of the three models (ANN and Maxent) showed a suitability for Soil Bulk Densities
above 0.7 Mg/M3 and a Plant Available Water Capacity of >40% for E. obliqua. A minor
relationship was observed for pH (Supplementary Material Figure S2).

4. Discussion

This study has demonstrated that climate suitability for Eucalyptus species such as E.
delegatensis and E. obliqua may change substantially over time due to anthropogenic climate
change. Such changes have important implications for the potential distribution of these
species, and because they are widespread, dominant tree species in a range of forest types,
these changes are likely to have significant impacts for future fuel load and fire danger
across Tasmania.

4.1. Outcomes

All Global Climate Models (GCMs) presented notable changes in future climate
suitability for both species. The patterns of contraction and expansion for the two Eucalypt
species are most clearly illustrated in projections using the ‘worst-case’ scenario, based
on the most restricted SDM (Maxent) and the hot and dry GCM (ACCESS1.0) (Figures 4
and 5), which projected drastic contractions of up to 82% for E delegatensis and 76% for E.
obliqua. Suitability for the more widely distributed E. obliqua increased in some areas and
decreased in others, contracting in coastal areas and expanding in the west of the state. In
contrast, suitability for E. delegatensis contracted to areas of higher elevation with very little
expansion. This difference demonstrates that bioclimatic changes may pose a greater risk
to narrowly distributed species than their more widely distributed counterparts, which is
in line with previous findings that geographic range has a significant positive impact on
species survivorship [48].

The three GCMs displayed similar changes in species range over time; however, varia-
tion was observed between the models in the extent of suitability, with ACCESS1.0, the
hottest and driest of the models (with warming in excess of 2.5 ◦C by 2100), projecting no-
ticeably larger contractions, and MIROC5, which projects the lowest warming, suggesting
smaller contractions. This is in line with previous findings of Eucalyptus’ response to very
hot dry climatic conditions [22].

4.2. Potential Ecological Impacts

Changes to climate suitability, such as those projected here for E. delegatensis and E.
obliqua, have the potential to lead to shifts in distribution, with ecosystem-wide repercus-
sions, as is already being observed in natural systems globally [49,50]. As dominant species
in many forest types [21], changes in the distribution of E. obliqua and E. delegatensis are
likely to have substantial and cascading effects in forests across Tasmania. In areas where
climate suitability declines and the species may contract, competition will be reduced,
resulting in changing dominants, either to species that may already be present or new
species that are able to disperse to fill the vacated niche. Contractions may also lead to
declines in species where facilitatory relationships with the eucalypts occurred. In areas
where changing suitability may result in expansions (as projected for E. obliqua in the south-
west of Tasmania), competition with resident species could lead to population declines in
species which are unable to compete with the eucalypts. There is also the possibility that
the eucalypts will facilitate certain species to become more prominent or expand into the
area.

Research has shown that species can have non-additive effects on fire risk [19], which
makes these complex changes in vegetation composition even more important to consider
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when evaluating the implications that shifting eucalypt distributions could have on fire
management requirements. Such changes have the potential to substantially alter the
structure, litter accumulation and flammability of forests. As shifts in distribution start to
occur, historical knowledge of the fire attributes of different forest types will need to be
reassessed and management changed accordingly.

4.3. Modelled and Realised Distributions

Species distribution modelling can indicate the potential for future changes in the
distribution of species, but how changes are realised will be affected by many factors
in addition to climate [26,51]. Reasons that actual distribution may not be the same as
environmental suitability include expansions not being realised due to dispersal limita-
tions, lags in response to changing environments and the influence of other species and
their associated ecological interactions. Dispersal range can limit plants’ capacity to ex-
pand [51,52], especially where suitable habitat is fragmented [53,54]. There can also be
physical barriers to dispersal such as mountain ranges, which can substantially shape
and limit the distribution of a species [55]. The ability of E. delegatensis and E. obliqua to
expand into areas that become suitable in the future will also be limited by competition
and interactions with other species [54,56]. From this, it is evident that it is important to
consider what species are already at a site when assessing expansions in potential dis-
tribution, such as was projected for E. obliqua in the west of Tasmania. Another factor
that may cause variations between modelled suitability and actual species distribution
is a delayed response to changing bioclimatic conditions. There is expected to be a lag
between changes in environmental suitability and changes in observed distribution [57],
especially in tree species such as Eucalyptus which have relatively long lifespans [58]. This
means that contractions and expansions in actual distribution may occur much later than
projected changes in environmental suitability. This is especially relevant for cases such as
E. obliqua, where projected expansions were observed to be greater at mid-century than
end of century. Due to lag effects and Eucalyptus’ slow rate of expansion, it is unlikely that
the larger expansions projected at mid-century would ever be realised in the actual species
distribution of E. obliqua.

On the other hand, the magnitude of extreme events can exceed the conditions that are
projected to occur by the end of the century under the high emissions scenario (e.g., heat
events with daily temperatures more than 10 ◦C higher than the long-term mean) [59,60],
causing abrupt shifts in the composition and structure of forests decades before changes in
mean climate conditions start to influence distributions. Changes to the fire regime can also
lead to abrupt change, as has been seen in the E. delegatensis forests of the Australian Alps
following repeated intense fires with insufficient time between fires for recovery [61,62].
Extreme events can reset competitive interactions, opening niches that can be filled by range-
shifting species, facilitating the rapid movement of species. Such effects are increasingly
being observed in natural systems in Australia and around the world [63–65].

The influence of the many ecological factors affecting species distribution which are
not accounted for in species distribution models highlights the need for more complex
and wholistic models. There are several different approaches to address this, such as
combining landscape and climate predictor variables [41], using a multi-model framework
to assess the combined impacts of climate change on the distribution of a species [66], and
multi-species analysis [67]. Nevertheless, the outcomes from this study provide a good
insight into changes that may occur in the future, and clearly represent shifts in single
species range, from which implications and conclusions can be drawn.

4.4. Species Variation

The two Eucalyptus species exhibited different responses to changing climate in terms
of their distributions, suggesting that generalisations regarding the response of different
species to changes in climate, even when they are functionally and genetically similar, are
not always appropriate. These differing responses are likely to be the due to the differing
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climate conditions which limit the distribution of each species. For instance, E. delegatensis
is restricted to subalpine areas and areas in Tasmania with average winter temperatures
of less than 8 ◦C, whereas E. obliqua requires slightly warmer conditions (average winter
temperatures greater than 10 ◦C) (Supplementary Figures S1 and S2).

4.5. Model Evaluation

The response curves for both E. obliqua and E. delegatensis indicate some degree of
overfitting, where the model fits species distribution too strictly to the environments of
known occurrence points, overstating noise and resulting in a failure to accurately predict
occurrence [68]. This overfitting is especially evident in the Maxent algorithm, and more
prevalent in E. obliqua than E. delegatensis, possibly due to increased noise resulting from
the larger dataset of E. obliqua occurrences.

Multiple peaks in probability of occurrence were observed for some environmental
variables for E. obliqua (annual temperature, warmest month and coldest quarter) (Supple-
mentary Figure S2). This could possibly be explained by the existence of ecotypes, which
are a sub-unit of a species resulting from a genotypical response to habitat [69] as described
in [70]. This would be in agreement with previous research which has shown evidence for
the existence of E. obliqua ecotypes [71], and could provide further explanation as to why
the models projected differing responses between E. obliqua and E. delegatensis.

4.6. Implications for Fire Management

The projected shifts in environmentally suitable area for E. delegatensis and E. obliqua
indicate a change in fire risk and management requirements, due to shifting fuel type and
amount [12], and demonstrate the usefulness of SDMs as a complimentary tool in assessing
fuel loads and informing longitudinal fire management plans. This has implications for the
mapping and management of existing fuel and high fire danger areas as well as future fuel
loads, which cannot be assumed to be static. Locations that may be high or low fire danger
under present conditions may shift significantly over the next decades.

5. Conclusions

Species distribution modelling shows a shift in the climatic suitability for both E. obli-
qua and E. delegatensis over the next century, suggesting that these species may change their
geographic distribution in the future. This has implications for fuel loads and flammability
across the landscape, which could have a notable impact on fire management practices
as the areas of greatest concern to fire management shift over time. These observations
highlight the usefulness of SDMs as a complimentary tool for assessing fuel loads and
informing long-term fire management plans. The two Eucalyptus species show contrasting
responses to changing climate conditions, suggesting that generalisations regarding species’
response to climate change are not always appropriate, and that climate change may pose
a greater risk to narrowly distributed species than to those with wide distributions. The
findings of this study highlight a need for fire management plans to be regularly updated
as the climate continues to change, and for longitudinal plans to consider changing fire
risk associated with vegetation change over time.

There is much that can still be learned about the impacts that changing vegetation
distributions will have on fire management and how to best address these changes in
management plans. There are many opportunities for further study in determining the
complex ecological effects of contractions and expansions of a species, including the specific
effects these will have on fire regimes. Opportunities for further study also lie in assessing
what characteristics, such as breadth of original distribution, cause different species to
respond to climate change differently. The responses of other fire-sensitive species to
climate change is also a valid area for further research, due to this demonstration that there
is unlikely to be a uniform response across even genetically similar species. This study
provides an insightful initial step into the use of SDM as a tool for informing long term fire
management practices and highlights a range of potential areas for further investigation.
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