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Abstract: There is increasing recognition that plant traits contribute to variations in fire behavior
and fire regime. Diversity across species in litter flammability and canopy flammability has been
documented in many woody plants. Grasses, however, are often considered homogeneous fuels
in which any flammability differences across species are attributable to biomass differences alone
and therefore are of less ecological interest, because biomass is hugely plastic. We examined the
effect of grass canopy architecture on flammability across eight grass species in short grass steppe of
New Mexico and Texas. To characterize grass canopy architecture, we measured biomass density
and “biomass-height ratio” (the ratio of canopy biomass above 10 cm to that of biomass below
10 cm). Indoor flammability experiments were performed on air-dried individual plants. As expected,
plant biomass influenced all flammability measures. However, biomass-height ratio had additional
negative effect on temperature exposure at soil surface (accumulation of mean temperature >100 ◦C)
in well-cured grasses, which is an important fire behavior metric predicting soil heating and meristem
survival. This canopy architecture effect, however, needs further investigation to be isolated from
biomass density due to correlation of these two traits. This result demonstrates the potential for
species-specific variation in architecture to influence local fire effects in grasses.

Keywords: grass flammability; canopy architecture; soil heating; meristem survival; grass fire
ecological impact

1. Introduction

Savannas, in which grasses coexist with scattered trees, are fire-dependent ecosystems: Recurrent
fires suppress tree density and maintain high light environments favorable to grasses. Grasses provide
fine, dead biomass that feeds recurrent fires, which are characterized by rapid rate of spread and short
residence time [1,2]. Such fires often result in little soil heating and therefore allow high survival of
surface and below-ground grass meristems [3,4]. However, such fires limit woody plants, because they
can kill or top kill woody plants. Although the role of fine grass fuels in suppressing woody savanna
plants has been well established [5–7], there has been less attention paid to how variation in grass
flammability traits may alter fire behavior, which in turn can affect damage to grasses themselves,
as well as change the ecological impact of grass fire on trees.

Plants vary in flammability through variation in their functional traits, but identification of such
traits has been better developed for woody fuels than for grass fuels. Identified flammability traits
include biomass, fuel moisture content, leaf dimensions, and chemical composition, and traits that
characterize plant canopy architecture such as biomass density and retention of dead biomass [8–16].
Whether grasses vary in flammability in response to trait variation, however, is still in dispute.
Some argue that grass fires are largely driven by total above-ground biomass [17–19]. Plant above-
ground biomass, however, is hugely plastic and, although there are species differences, biomass is
largely determined by environmental factors such as precipitation and herbivory. Such plasticity
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implies potentially weak species or ecotypic flammability effects. On the other hand, some grass
flammability studies found that although total biomass had a strong effect on flammability, plant traits
including leaf surface area to volume ratio and canopy architecture (biomass density) also influenced
grass flammability [20,21]. However, canopy architecture has only been examined on partial plant
canopies [21], which may not fully represent species variation in architectural traits.

Fire induced tree mortality is a complex process that involves both biotic and abiotic factors,
but an important effect of fire is tissue necrosis caused by exposure of plant cells to lethal temperature,
which can eventually lead to tree mortality through killing vegetative buds, the vascular meristem,
or roots and rhizomes [22–26]. Another direct impact of fire is xylem dysfunction and cavitation,
which also can cause tree mortality by reducing xylem conductivity [27–29]. Tree-killing fire
characteristics include fire intensity (measured by proxies such as maximum flame height and mass
loss rate, which predict canopy scorch [30,31]), total heat release near lower tree canopy (measured
by fire duration or an integration of temperature or heat flux over time which predict canopy and
bole tissue necrosis [32,33]), and heating near the soil surface (measured by integrated temperature or
organic matter loss, which predicts root, stolon, and rhizome injury [22,34]). Therefore, interspecies
variations in grass flammability traits that could influence below-ground and/or above-ground heating
have the potential to alter fire effects on trees.

Flammability is not a single axis of variation but is multidimensional [35,36]. Thus far, evidence
suggests that most variation occurs along two axes, a total heat release or duration of heating axis,
and an axis representing the rate of heat release. This view, however, is most strongly supported by
leaf litter flammability studies in which fuel load was standardized [37–39]. Each axis potentially
has distinct effects on tree mortality: “total heat release” (rarely measured directly but often inferred
from proxies such as biomass consumption or temperature integration over time) at different heights
relative to ground determines temperature exposure in important tree organs, while the rate of heat
release (usually measured as flame spread rate) influences fire extent and tree crown damage in part
due to its effect on flame heights. Biomass density can influence aeration and heat transfer during
fire. However, the direction of biomass density effect on flammability is fuel type dependent [35]:
It positively influenced fire intensity (measured as either rate of spread or maximum biomass-loss rate)
in canopy fuel and grass fuel and negatively influenced the rate of spread in litter fuel [21,37,40,41].
Another potentially important architectural trait is the relative distribution of biomass in relation to
height above the soil surface: Grass species vary in where biomass is held, and this could influence
relative heating near the surface versus heating at greater heights above the soil. Surface heating can
damage grass meristems at and below the soil surface, as well as damage tree roots. Heat release at
higher locations above soil surface should have a greater impact on shrub and tree crown damage.

We assessed the flammability of eight grass species of the short-grass steppes in northeastern
New Mexico and in northern Texas, USA and examined how canopy architecture influenced
putative tree-killing flammability measurements after accounting for any effect of total above-ground
biomass. Our overall interest is tree-grass interaction via fires in savannas, therefore, in addition
to consumability [42] (the amount of fuel combusted which represents total heat release in a single
experiment if we assume heat content of plant tissue remained constant), we also measured putative
tree-killing fire characteristics including maximum flame height, duration of heating, and temperature
integration above 100 ◦C near canopy (at 10 cm, 20 cm, and 40 cm height relative to the ground,
the mean temperature of these three above-ground temperature measurements was used to summarize
canopy temperatures) and at the soil surface. In addition to examining grass biomass density as
a canopy trait, we defined another simple canopy architectural trait: the biomass-height ratio (the ratio
of biomass above 10 cm plant height to the biomass below 10 cm plant height).

We asked two questions: (1) How does total biomass influence flammability? (2) Does grass
canopy architecture influence putative tree-killing flammability measurements after we account for
an effect of total biomass? Given the importance of fuel load found in previous studies [17,21,43],
we expect that total above-ground biomass should have positive effects on all flammability components,
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especially on total heat release. We then tested for additional effects of canopy architecture on
flammability measurements. We expected biomass-height ratio to decrease the surface cumulative
temperature and heating duration, because less biomass is available near the ground, but to increase
these measures in the canopy. We expected biomass density to positively influence fire intensity
measures, because porous grass fuel is well aerated; therefore, heat transfer will be faster when
biomass is more densely packed.

2. Materials and Methods

All species studied are found in the southern Great Plains and were collected from short grass
steppe of Kiowa National Grassland; northeastern New Mexico between 1400~1900 m elevation;
and Lyndon B. Johnson National Grassland, northern Texas between 270~310 m elevation, USA.
The study areas are dominated by C4 grasses with scattered trees. Juniperus monosperma (Engelm.)
Sargent, Pinus edulis Engelm, and Pinus ponderosa Lawson & C. Lawson are the most common tree
species in the Kiowa National Grassland. Woody species in the Lyndon B. Johnson National Grassland
are more diverse with the dominant families including the Fagaceae, Cupressaceae, and Salicaceae.

Plant samples were collected during summer (early June–early August) 2016 from eight grass
species: Aristida purpurea Nutt., Bromus inermis Leyss., Chasmanthium latifolium (Michx.) Yates, Eragrostis
curvula (Schrad.) Nees, Elymus elymoides (Raf.) Swezey, Hesperostipa neomexicana (Thurb. ex J.M.
Coult.) Barkworth, and Panicum anceps Michx., Pascopyrum smithii (Rydb.) Á. Löve. We chose these
species at random from all species present at the study region with typical canopy cover rates greater
than 10%. All but Eragrostis curvula are native species. Most are tussock grasses (i.e., bunchgrasses),
but Bromus inermis and Pascopyrum smithii are more sod-forming species. Because biomass-height
ratio is a destructive measurement, we collected samples in pairs so that both measurement groups
had a balanced and wide range of plant sizes within each species. Within a pair, the two plants were
within 3 m of one another and distinct pairs (samples) were separated by a minimum distance of 30 m.
For sod-forming grasses, we increased this distance to 100 m to avoid multiple pairs from the same
clone. We collected 8–15 pairs for each species. Plants were unearthed carefully to minimize damage
of plant architecture, labeled, and stored in collection bags. Geographic location was logged for each
sample using a GPS device. We then transported samples back to Texas Tech University and dried
them at 32 ◦C for 3 days in a sample drying room to standardize fuel moisture.

Before the burning experiment, we measured plant height, the number of tillers, and width at
the base and top of each plant including inflorescences. We measured biomass-height ratio for the
member of each pair designated not to be burned by cutting plants into two sections at 10 cm plant
height and weighing each section (soil surface to 10 cm section and above 10 cm section). To obtain
biomass-height ratio for the burned individuals, we built a linear model with data collected from
the unburned individuals. This model included the biomass above 10 cm as a dependent factor and
species, tiller number, and total biomass as predictors. We then predicted biomass above 10 cm for
the burned individuals. With total biomass and predicted biomass above 10 cm, we were able to
estimate biomass below 10 cm for the burned plants. Adjusted R2 was 0.98 for the above 10 cm biomass
prediction model. Biomass-height ratio was expressed as the ratio of biomass above 10 cm plant height
to biomass below 10 cm. Biomass density was calculated by dividing total above-ground biomass by
plant volume, and we treated the grass canopy as a truncated cone for the volume calculation.

We performed indoor burning experiments at the Lubbock Fire Department in a cement building.
This structure allowed full control of wind and partial control of temperature and relative humidity.
Due to constraints on sample collection (we had to collect different species at different times to avoid
collecting immature plants) and limited sample storage space, our flammability experiments were
not fully blocked by day, but we maximized the number of species on each burning day and each
species was burned on 2–3 different days except A. purpurea (in total we had 7 different trial dates
across June through early August). Before each burn, we recorded air temperature and relative
humidity with a Kestrel 3000 pocket weather meter (Nielsen–Kellerman, Co., Chester, PA, USA).
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Because most burning trials did not last longer than 10 minutes, we assumed that there was little
fluctuation in temperature or relative humidity during a single trial. Means and standard deviations
of measured air temperature and relative humidity before each burning trial across experiment dates
were 31.0 ◦C, 2.1 ◦C and 42.5%, 5.6%. We sampled 3–5 burned individuals of each species by taking
a 5 g subsample from each including both leaf and culm to measure fuel moisture content and recorded
initial weight of the sample (including the pot and soil) immediately before the burn trial. Figure 1
depicts the instrumentation for the burning trials. We ignited each plant at the base by first igniting
a cotton ball (about 0.6 g each) to which 1 mL of 50% ethanol solution was added and then placing
the burning cotton ball at the plant base. We removed the cotton ball immediately once ignition
occurred. To characterize flammability, we measured maximum flame height (cm, visually assessed
by using a ruler as a reference). We also measured flame temperature every second at four heights:
the soil surface (two replicates of each reading), at 10 cm, at 20 cm, and at 40 cm above the soil surface
(◦C, read by K type thermocouple temperature sensors with 0.8 mm diameter, Omega Engineering,
INC, Norwalk CT). We measured combustion over time by recording the sample biomass every second
(g) on a balance (with 0.01 g readability) via a connected laptop. After each burn, the final weight of
the pot, soil, and residual plant material was recorded before the residual biomass (charred material,
ash, and any unburned biomass) was removed. Then, we removed the residual above-ground biomass
and weighed the pot again (pot, soil, and below-ground biomass).
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Figure 1. Experimental apparatus for flammability experiments. Temperature was read every second
at soil surface (locations a & b), 10 cm, 20 cm, and 40 cm relative to ground by k-type thermocouple
temperature sensors that were placed at the center of plant. A metal ruler was placed by the plant as
a reference for maximum flame height assessment. A cardboard tray caught biomass that fell during
combustion. The balance was connected to a computer to record every second during combustion
(code at https://github.com/schwilklab/serial-balance).

All data analysis was conducted in R [44]. We fit a negative exponential model predicting
remaining biomass as a function of time for each trial and extracted the coefficient, λ, as maximum
biomass-loss rate when p-value for fitted coefficient was less than 0.01. This parameter represents
the rate of heat release (fire intensity) if we assume similar tissue specific heat content across all
species [45,46]. Duration of heating at soil surface was calculated as the period during which mean
temperature of soil surface was above 100 ◦C. Cumulative temperature to which plant tissues were
exposed at the soil surface was calculated as “temperature integration”, which corresponded to the
sum of the mean temperatures over every second during the same period (◦C·s). Past studies have
shown that this measurement correlates well with the “heat release” axis of flammability and is
generally independent of flame-spread rate [37,39]. We calculated duration of heating and temperature
integration for the canopy-height temperature sensors as well. Because we measured temperature
at multiple locations above the soil (10 cm, 20 cm, and 40 cm) and these measurements were

https://github.com/schwilklab/serial-balance
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highly correlated, to control experiment-wide error rates, we averaged all above-ground temperature
measurements at each second when summarizing temperature at canopy level. We labeled the canopy
measurements according to their average height and refer to “duration of heating at 25 cm” and
“temperature integration at 25 cm” hereafter for simplicity. We used total mass consumed to represent
total heat release during a single flammability experiment (based on the assumption that tissue-specific
heat content is similar across all grass species [45,46]).

Although results from litter flammability studies suggested that total heat release and rate of
heat release, which are our putative tree-killing fire characteristics, are two independent axes of
flammability variation [37–39], it is not clear if and how they covary in grasses, especially when prior
experiments controlled for fuel load while we specifically did not in order to examine direct effects of
above-ground biomass. To deal with collinearity, we conducted principal component analysis (PCA) on
four tree-killing flammability measurements (duration of heating, temperature integration, maximum
mass-loss rate, and total mass combusted) to guide data selection for further analysis. We did not
include maximum flame height in our PCA, because this measurement showed a strong non-linear
saturation relationship when compared with other proxies for fire intensity.

The fuel load effect on fire behavior is better established than are architectural effects [17,21,43] but
is of less interest to us; therefore, we used a residuals-based approach to preserve power to investigate
potential architectural effects. First, we built linear models with total biomass as the only predictor
for each of the flammability measurements. One observation of E. curvula had extreme high total
biomass. To avoid bias, we conducted analyses with and without this observation and obtained the
same conclusion. We then used the resulting biomass-corrected flammability (residuals of first model)
for further analysis investigating canopy architecture effects on flammability. To explore whether
and how biomass density and biomass-height ratio influenced flammability, we built linear mixed
models based on first principles with R package “lme4” [47]. We standardized all predictors to be
mean-centered with unit standard deviation to make the effect sizes of each predictor comparable.
We included both canopy traits and their interaction as predictors and biomass-corrected flammability
as the dependent variable. We included relative humidity as a main effect covariate but not air
temperature, because these two predictors were tightly correlated, and daily variation in relative
humidity was larger than variation in that across different trial dates. In addition, including either
air temperature or humidity did not change our conclusion. Species was a random effect in our
models. To choose between random intercept-only models and those with a random slope term by
species as well, we did a single selection step as recommended by Zuur [48]. We included species as
a random intercept term and then compared the resulting model fit to a model, which included the
same fixed effects but with a term for random slopes by species for each architecture trait and chose
the model that had the lowest Akaike Information Criterion [49]. We examined the significance of
fixed effects using the “mixed” function from the “afex” package in R [50]. To avoid unacceptable
Type 1 error rates during the calculation of approximate degrees of freedom and p-values, we used the
Kenward-Roger approximation [51], which is suggested by Luke [52]. Data and code are available at
https://github.com/XiulinGao/Grass-Flammability.

3. Results

Principal component analysis indicated that the first two axes account for 87.0% of total variation
in flammability metrics (Figure 2). The first axis mainly captured duration and total heat release with
high loadings for total mass loss, duration above 100 ◦C, and temperature integration. The second
axis represented rate of heat release, with maximum mass-loss rate having the highest loading value.
We chose temperature integration at soil surface and 25 cm, and maximum mass-loss rate, as dependent
variables for further analysis, as these were the highest loading variables on each axis.

https://github.com/XiulinGao/Grass-Flammability
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Figure 2. Principal component analysis biplot of flammability measurements. Flammability measurements
include duration of heating above 100 ◦C at 25 cm, temperature integration above 100 ◦C at 25 cm,
total mass combusted, and maximum mass-loss rate. The first two axes account for 87.0% of
total variance.

Total above-ground biomass had a strong positive linear effect on temperature integration above
100 ◦C at the soil surface and at 25 cm (Figure 3). Adjusted R2 for the model of temperature integration
at soil surface was 0.58 (p < 0.0001) and for the model of temperature integration at 25 cm was 0.59
(p < 0.0001). We then examined if grass canopy architecture influenced biomass-corrected temperature
integration at the two locations and found an additional effect of canopy architecture on flammability
(Figure 4). Biomass-height ratio had a negative linear effect on temperature integration at soil surface
(Table 1, p = 0.038). Neither biomass density nor relative humidity had additional effects on temperature
integration at either location.
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Figure 4. Relationship between biomass-height ratio and biomass-corrected temperature integration
above 100 ◦C at soil surface across eight grass species. The line indicates the best fitted linear mixed
model with species as random intercept effect (p = 0.038). Small points in background are individual
observations, and large points are species means.

Total above-ground biomass had a weak negative linear effect on maximum mass-loss rate
(Figure 5, p = 0.02, adjusted R2 = 0.04). We did not find any additional effect of grass architecture or
relative humidity on maximum mass-loss rate. Architecture trait and flammability means are listed
in Table 2.
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Table 1. The contribution of biomass-height ratio, biomass density, and relative humidity to biomass-corrected flammability measurements as determined by
linear mixed-effect models. Values in table represent model estimates of slopes and corresponding approximate p values. All predictors were standardized to be
mean-centered with unit standard deviation. Significant terms (p < 0.05) are in bold face. For detailed model results, see Supplementary Materials.

Biomass-Height Ratio Biomass Density (g cm−3) Biomass-Height Ratio: Biomass Density * Relative Humidity (%)

Temperature integration at 0 cm (◦C·s) Estimate −28,600 12,500 −24,000 11,500

p value 0.038 0.194 0.081 0.071

Temperature integration at 25 cm (◦C·s) Estimate −1910 2260 2880 −2790

p value 0.577 0.311 0.317 0.296

Max mass-loss rate (s−1)
Estimate 0.008 −0.002 −0.002 0.008

p value 0.325 0.655 0.287 0.546

* Biomass-height ratio: Biomass density is the interaction term of two measured traits.

Table 2. Mean ± standard deviation of measured plant traits and flammability components of studied species. Shade tolerance information of each species was
obtained from United States Department of Agriculture (USDA) plants database (https://plants.usda.gov/java/).

Species Shade Tolerance Total Mass (g) Biomass-Height Ratio Biomass Density
(g cm-3)

Surface Temperature
Integration (◦C·s)

Canopy Temperature
Integration (◦C·s)

Max Mass-Loss
Rate (s−1)

A. purpurea Intolerant 54.06 ± 21.39 0.86 ± 0.16 0.0040 ± 0.0016 184,750 ± 118,090 33,770 ± 9303.3 0.03 ± 0.01
B. inermis Intolerant 25.94 ± 9.62 1.46 ± 0.24 0.0019 ± 0.0008 34,145 ± 21,426 26,127 ± 10,399 0.05 ± 0.02
C. latifolium Tolerant 29.50 ± 16.50 5.46 ± 0.64 0.0007 ± 0.0003 9434 ± 14,482 19,072 ± 10,061 0.06 ± 0.02
E. curvula Intolerant 127.75 ± 82.42 1.78 ± 0.42 0.0019 ± 0.0012 196,100 ± 155,930 57,213 ± 24,476 0.05 ± 0.02
E. elymoides Intolerant 33.37 ± 23.09 1.69 ± 0.55 0.0032 ± 0.0013 67,199 ± 90,330 31,029 ± 24,214 0.05 ± 0.03
H. neomexicana Intolerant 74.06 ± 40.20 1.14 ± 0.17 0.0038 ± 0.0019 137,490 ± 91,345 54,096 ± 26,103 0.05 ± 0.02
P. anceps Tolerant 23.88 ± 11.35 3.04 ± 0.10 0.0007 ± 0.0004 13,742 ± 49,547 12,561 ± 9814.1 0.07 ± 0.06
P. smithii Intolerant 23.35 ± 10.62 1.39 ± 0.10 0.0026 ± 0.0011 34,626 ± 38,135 22,540 ± 11,357 0.06 ± 0.04

https://plants.usda.gov/java/
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4. Discussion

Total above-ground biomass positively influenced temperature exposure, which is consistent
with previous grass flammability studies [17,18]. At identical low-fuel moisture content (average fuel
moisture content: 5 ± 0.005%), grasses that accumulate more above-ground biomass will result in
higher temperature exposure in plant tissues at both soil surface and at 25 cm above the ground.

Although total above-ground biomass had strong positive effects on cumulative temperature at
different locations, biomass-height ratio had an additional negative effect on temperature integration
at the soil surface. Larger biomass-height ratios indicated relatively less fuel near ground level and
therefore less heat release at the soil surface, causing lower temperature integration above 100 ◦C.
Much of the variation we observe occurs at the species level—biomass-height ratio is relatively
consistent within a species (Table 2). One species is an exception, however. C. califolium was variable
in biomass-height ratio (range of 4–7), and the within-species pattern supports the overall pattern.
Surface cumulative temperature predicts soil heating and meristem survival [53,54]. Biomass-height
ratio has the potential to influence the ecological effects of fire. Vegetative recruitment via surface or
below-ground meristems is an important reproduction method that contributes to the maintenance
and dynamic of grasslands. Recurrent grass fires can stimulate vegetative reproduction in grasses by
changing soil physical and chemical characteristics and increasing light availability while protecting
meristems via a relatively low soil surface temperature [3,4,55,56]. However, increased temperature
exposure in plant tissues at the soil surface, which is usually due to prolonged smoldering combustion,
because this type of surface fire moves slowly yet with relatively high total heat release, still can
suppress post-fire resprouting in grasses [53]. Grass-driven fire usually has a lower surface temperature
and shorter fire residence time compared to other fuels [3], but grass mortality can occur at accumulated
temperatures lower than many measured in our study. For example, mortality of Hesperostipa comata
can occur after 3.4 min at 72 ◦C (equivalent to 14,688 ◦C·s) [57]. Increased fuel load, especially fuel load
near ground, may push heat penetration into soil to surpass the lethal thermal threshold of surface
and below-ground meristems in some species. The architectural effect we report demonstrates that
even relatively low biomass species such as A. purpurea may cause tissue-killing soil heating if they
have low biomass-height ratios.

Cumulative temperature at 25 cm was driven by total above-ground biomass alone. We expected
that biomass-height ratio would increase canopy level heat release to cause higher temperature
exposure, but we did not find any such effect. Canopy heating predicts post-fire woody species
mortality by causing vascular cambium necrosis in bole and vegetative buds necrosis in the
crown [25,26,58]. Although plant responses to crown or bole heating also depend on bark thickness and
distribution of vegetative buds [59,60], with more heat release resulting in higher temperature exposure
in plant tissues, fires usually result in higher mortality rate [61,62]. Canopy heating may also contribute
to xylem dysfunction, and this is another pathway of fire-induced tree mortality [29,63,64]. Although
fuel load alone does positively affect cumulative temperature at 25 cm, an increase in fuel load did not
always lead to increased canopy temperature exposure in some species. We observed homogeneity in
temperature exposure at 25 cm in our two largest studied species: E. curvula (mean total above-ground
biomass 132.5 g) and H. neomexicana (mean total above-ground biomass 74.1 g) resulted in similar
mean temperature integration and duration of heating above 100 ◦C at 25 cm despite the difference in
fuel load (Table 2). Such homogeneity also occurred in small-sized plants, for example, A. purpurea
and E. elymoides. Because we did not find any weather effect on this flammability measurement,
it is possible that some unexamined plant traits such as leaf chemistry had influence on temperature
exposure at the canopy level. Canopy heating is largely determined by flaming combustion [33,65].
Flaming time, however, is negatively correlated with leaf nitrogen and phosphate concentration [66].
Tissue phosphate content also has a direct negative effect on total heat release during combustion by
favoring char formation [12]. In addition, although leaf effective heat of combustion was a weaker
predictor for grass flammability compared to fuel load, it negatively influenced flaming time at plant
level [21].
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We found a negative effect of fuel load on the rate of heat release without detecting any additional
canopy architecture or humidity effects. In prior grass flammability studies, fuel load positively affected
fire intensity, which was measured either by maximum combustion rate or by flame length [21,43].
The negative effect of fuel load on maximum biomass-loss rate, however, was mainly driven by the two
largest species in our study and fuel load only explained 4% of the total variation (Figure 5). Most of the
variation in maximum biomass-loss rate occurred across individuals and was pronounced among small
plants (total mass < 50 g, fuel density range: 0.0001 g cm−3–0.002 g cm−3). The lack of relationship
between rate of heat release and the measured traits, therefore, could result from the mass-loss readings
of small-sized plants being more easily affected by air currents. Future improvement in measuring
maximum biomass-loss rate is required.

In contrast with previous grass flammability studies, we examined canopy architecture effects by
burning whole individuals rather than partial canopies. However, there are two shortcomings in our
experiment. First, the two plant traits by which we characterized canopy architecture were correlated
with one another with a correlation coefficient of −0.51. Therefore, it is impossible to isolate the effects
of biomass density and biomass-height ratio. Fill et al [43] found a positive effect of biomass density on
smoldering time in Aristida stricta, which suggested that increase in biomass density could also lead to
prolonged soil heating. Thus, the observed canopy architecture effect on temperature exposure at soil
surface could result at least in part from interspecies variation in biomass density despite our model
results favoring biomass-height ratio. The second potential shortcoming in our work is that we burned
air-dried grasses to standardize fuel moisture content in order to better isolate canopy architecture
affects. However, as one of the most important fuel traits, fuel moisture content dampens combustion
by increasing the amount of energy required to preheat and dehydrate fuels [8]. Therefore, grasses with
higher fuel moisture content will combust inefficiently, which would lead to prolonged smoldering
combustion and produce smoke that can modify biomass density effects on aeration. Future work
needs to determine what grass traits can affect fuel moisture content, which in turn will influence
grass fire behavior. Some candidate grass traits include leaf dimension (which influences water
absorption and loss [67]) , fuel structure at the dormant stage (which influences water retention [68]),
and phenology [69]).

A hypothesis to test in future work is that grass flammability varies between shade-tolerant and
shade-intolerant species. Although fires can favor grasses by decreasing competition for light, in many
woodlands and savannas, grass species show local habitat differentiation, with some species being
restricted to open habitats and others persisting under tree canopies [70,71]. If enhanced flammability
is beneficial to grasses because it leads to reduced tree-cover and decreases competition for light,
we would expect the greatest benefit to shade-intolerant species. Thus, it is possible that shade
tolerance and enhanced flammability are evolutionary correlated or that enhanced flammability is
selected against in tree-associated grasses. Anecdotal evidence in support of this is that the two
shade-tolerant species (data from USDA plants database) in our study were the two least flammable
species (Table 2). In addition, top-heavy canopy architecture is associated with low light habitats:
Elongated internodes place photosynthetic leaves higher into canopy to reach more light [72,73].
Moreover, grasses growing underneath tree canopies tend to have higher fuel moisture content relative
to those persisting in open areas because of reduced solar radiation.

In fire-dependent savannas, hot and rapidly spreading grass fires suppress trees and favor grasses.
Therefore, grass-fueled fire is a positive feedback that can lead to alternative stable states (either prairies
or closed-canopy woodlands [74,75]). Researchers trying to understand such fire-mediated tree-grass
interactions usually tend to treat grasses as homogenous fuels, and less attention has been paid to
such interactions between different grasses and their woody competitors [7,76]. The observation that
the tree-grass mix in savannas appears to be unstable due to positive feedback has prevented the
explanation of long-term species composition stability [75,77]. The positive effect on soil heating
by bottom-heavy biomass allocation pattern in grasses, however, may influence this positive
vegetation-fire feedback on a fine scale depending on both post-fire recovery traits in trees and
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meristem allocation in grasses. For example, increased temperature exposure at soil surface could
have greater impact on trees with thin bark and have a lesser impact on grasses with meristems
protected underground. For such cases, low biomass-height ratio would strengthen the positive
grass-fire feedback. On the other hand, for trees that survive fires mainly through aerial resprouting
and are mostly susceptible to canopy heating, the effect we describe would have less impact. Our study
highlights the need to include species-specific variation in flammability traits in the understanding of
this process.

Supplementary Materials: The following are available online at http://www.mdpi.com/2571-6255/1/3/35/
s1. Table S1. Mixed-effect model table for predictors of biomass-corrected temperature integration at soil
surface. Approximate effective degrees of freedom, F-statistics, and p-values were calculated by Kenward-Roger
approximation [49] using the “afex” package in R [48]. Table S2. Mixed-effect model coefficients for predictors of
biomass-corrected temperature integration at soil surface. Results of linear mixed model fit with “lmer()” in the R
package “lme4” [45]. All predictors were standardized to be mean-centered with unit standard deviation. Table S3.
Mixed-effect model table for predictors of biomass-corrected temperature integration at 25 cm. Approximate
effective degrees of freedom, F-statistics, and p-values were calculated by Kenward-Roger approximation [49]
using the “afex” package in R [48]. Table S4. Mixed-effect model coefficients for predictors of biomass-corrected
temperature integration at 25 cm. Results of linear mixed model fit with “lmer()”in the R package “lme4” [45].
All predictors were standardized to be mean-centered with unit standard deviation. Table S5. Mixed-effect model
table for predictors of biomass-corrected maximum biomass-loss rate. Approximate effective degrees of freedom,
F-statistics, and p-values were calculated by Kenward-Roger approximation [49] using the “afex” package in
R [48]. Table S6. Mixed-effect model coefficients for predictors of biomass-corrected maximum biomass-loss rate.
Results of linear mixed model fit with “lmer()”in the R package “lme4” (Bates et al. 2015). All predictors were
standardized to be mean-centered with unit standard deviation.
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