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Abstract: As scientists and managers seek to understand fire behavior in conditions that extend
beyond the limits of our current empirical models and prior experiences, they will need new tools that
foster a more mechanistic understanding of the processes driving fire dynamics and effects. Here we
suggest that process-based models are powerful research tools that are useful for investigating a
large number of emerging questions in wildland fire sciences. These models can play a particularly
important role in advancing our understanding, in part, because they allow their users to evaluate the
potential mechanisms and interactions driving fire dynamics and effects from a unique perspective
not often available through experimentation alone. For example, process-based models can be
used to conduct experiments that would be impossible, too risky, or costly to do in the physical
world. They can also contribute to the discovery process by inspiring new experiments, informing
measurement strategies, and assisting in the interpretation of physical observations. Ultimately,
a synergistic approach where simulations are continuously compared to experimental data, and where
experiments are guided by the simulations will profoundly impact the quality and rate of progress
towards solving emerging problems in wildland fire sciences.
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The behavior of wildland fire and resulting ecological effects are exceedingly complex due to
multiple nonlinear interacting processes that occur across a range of spatial and temporal scales [1,2].
For over half a century, the development of wildland fire models has largely been driven by a
desire to support operational decisions and has thus emphasized developing tools that provide
faster-than-real-time predictions. The most practical path to progress in this regard was through the
development of point-functional empirical models based on observed correlations between mean
fire behavior (e.g., the forward rate of spread of a head fire) and environmental and fuel parameters
(e.g., fuel load, wind velocity, and topographic slope) from laboratory and/or field observations [3,4].
For many operational purposes, such models have played an important role in supporting decision
makers and advancing firefighter safety. However, as scientists and managers seek knowledge of
fire behavior in conditions that extend beyond the limits of our current empirical models and prior
experiences, we will need new tools that foster a more mechanistic understanding of the processes
driving fire dynamics (i.e., how fires start, spread and develop) and their ecological effects.
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Over the last several decades, processed-based simulation modeling has emerged as an invaluable
and effective technique for advancing our understanding of complex systems, across a range
of scientific disciplines (e.g., engineering, meteorology, hydrology, oceanography, soil physics,
and biology). Process-based models are not simply more complex descriptive or empirical models;
they differ in that they are designed to mimic the mechanistic behavior of a complex system by
explicitly representing the individual components and the known, or assumed, controlling physical
processes and their interactions with each other and the environment. In this way, these types of
models represent explicit working hypotheses about how processes and components within a system
work causally together to produce a given outcome. Within wildland fire sciences, process-based
model development has grown significantly since the 1990s owing to advancements in computing
technologies, computational fluid dynamics (CFD), and modeling of turbulent and reactive flows [1].
Examples of these types of models include the Wildland Urban Interface Fire Dynamics Simulator [5,6],
FIRETEC [7,8], and FireStar [9,10], among others (Figure 1).
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Figure 1. Example process-based model simulations: (A) Interacting firelines and crown damage
during prescribed fire operations in longleaf pine forests USA; (B) Fire behavior and effects in Sierra
Nevada forests USA based on 1929 stem maps; (C) Landscape scale fire spread in complex topography;
(D) Investigating of coupled fire/atmosphere interaction on fireline dynamics including the role of
buoyancy-induced flow on heat transfer and fire line rate of spread.

Here, we suggest that, much like in other scientific disciplines, these process-based wildland fire
behavior models are powerful research tools that offer unique capabilities that can help advance our
understanding of wildland fire dynamics and effects. However, we submit that, to realize the full
value of these models in advancing wildland fire science, it is necessary that they play a more integral
role in the discovery process [11,12], acting as a complement to experimentation and theory.

One way that process-based models can contribute to the discovery process is by viewing them as
“virtual worlds” that act as a new kind of experimental system [13–15]. The use of simulation modeling
as an experimental system has become increasingly important in the study of complex systems in
numerous scientific disciplines, including physics, biology, meteorology and engineering [16–18].
Although process-based fire models are idealized simplifications of how wildfires behave in the
physical world, they have a unique advantage because the coupled physical processes that drive
fire dynamics and effects are explicitly modeled and the evolution of state variables, which are both
symptoms and drivers of the numerous feedbacks, can be tracked throughout computational domains.
The user has complete control over the inputs, and theoretical basis of the model, which enables
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manipulation of virtual experiments to a much greater degree than possible in the physical world.
In this way, process-based models enable researchers to study aspects of fire dynamics and effects
using virtual experiments that would be impossible, too costly, time consuming or risky to study
in the real world [15]. Studies that utilize virtual experiments often incorporate many of the same
experimental, visualization and statistical techniques that are applied to physical experiments [14].
However, as suggested by Brodland [18], virtual experiments have several advantages over physical
experiments including being able to: (1) perform experiments from the same exact starting conditions
thus ensuring replication; (2) select any temporal frequency and spatial resolution of observation (at or
above the time step and grid resolution used in the simulation) without interfering with the system or
it components; and (3) manipulate any variable or process of the system with arbitrary magnitudes,
including ones that cannot be modified experimentally in the physical world.

The use of numerical experiments in wildland fire science has become particularly important in
situations where physical experimentation would be too risky or costly or, where simple models cannot
capture the complexity of these high-dimensional systems. For example, over the last decade there
has been considerable interest in improving our understanding of how fire behavior and effects
may be altered by bark beetle-caused tree mortality. Researchers hypothesized that the impact
of bark beetle-induced tree mortality on fire behavior and effects was due to changes in the fuels
complex, which was a function of time since disturbance (e.g., [19–21]). However, empirical studies of
wildfires in bark beetle impacted areas were not completely consistent with this hypothesis, leading
several researchers to suggest that other factors, including the intensity and severity of the outbreak,
fire weather, and host-beetle interactions may be additional important drivers. However, conducting
physical experiments that could control for this multitude of factors was not feasible, either in the
lab or in the field. Thus, researchers turned to numerical simulation experiments that allowed them
to overcome challenges associated with physical experimentation including the ability to hold some
factors (e.g., starting conditions and fire weather) constant and manipulate others. For example,
Hoffman et al. [22] explored the influence of varying tree mortality levels on fire severity while holding
other factors such as stand density and tree spatial arrangement constant. Hoffman et al. [23] examined
how fire behavior changed throughout the course of a bark beetle outbreak with different rates and
patterns of mortality. Sieg et al. [24] used a process-based model to explore the interaction between
time since disturbance, level of tree mortality, and fire weather (wind) on fire severity. Ultimately,
the exploitation of process-based models to conduct numerical experiments allowed these researchers
to investigate the potential couplings and feedbacks driving fire behavior and effects and develop
new insights and theoretical concepts related to fire dynamics and effects that would be difficult if not
impossible otherwise.

As researchers increasingly turn to process-based models to help gain insights into wildland fire
dynamics, it is important to recognize that the interrelationship between process-based modeling
and physical experimentation should be seen not as competitive but as complementary activities that
permeate throughout the scientific process. One of the prominent roles that process-based models
can play in this relationship is to suggest new experiments, that is, where the motivation for physical
experimentation is based on hypotheses and insights gained using process-based models. Examples
where findings based on simulations were used to suggest and ultimately carry out new physical
experiments are well documented across several other disciplines (e.g., molecular chemistry [25],
meteorology [26], physics [27], and biology [18]); yet this approach is still relatively rare (or at least
not as well documented) within the wildland fire modeling community. However, one could easily
see how hypotheses developed during a numerical experiment could serve as a basis for physical
experimentation. For example, Linn and Cunningham [28] and subsequently Canfield et al. [29] used
a process-based model to evaluate the dependence of the forward fire rate of spread in grass fuels on
wind speed and fireline length. While their results indicated that the forward rate of spread increased
with increasing ambient wind speed, as expected, they also found that fire spread rate and shape
were dependent upon the length of the fireline due to complex interactions between the ambient and
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buoyancy-induced flows. Clearly, one could imagine designing new physical experiments whereby
the length of fire ignition and wind speeds were varied, and the forward rate of spread and flow fields
could be measured along various points of the fire perimeter to provide new understanding of the
role of fire-atmospheric interactions in driving fire spread. Such numerical work can also be used to
highlight requirements for measurement strategies or critical characteristics of the heterogeneous fire
environment that can be used to help add context to physical observations.

As process-based models are increasingly used in wildland fire science, it is important to
continually evaluate how well such models approximate wildland fire dynamics and effects, and assess
their limitations and uncertainties through verification, validation and uncertainty quantification
(VVUQ). Although model validation has a long and often debated history, it generally involves
the comparison of modeling results with experimental or empirical results. However, as described
by Rykiel [30], validation can take many forms, ranging from qualitative assessments like “face
validity” and “visual comparisons” to quantitative assessments such as “predictive” and “statistical”
validation. Although historical empirical data sets have been, and will continue to be, useful
for process-based model validation (e.g., [2,6,28]), their use for quantitative assessments is often
constrained due to missing or incomplete information on critical input parameters or boundary
conditions, few measurements of the variable of interest and/or little or no estimation of measurement
or experimental error. We therefore suggest that new “validation” experiments that are co-designed by
modelers and experimentalists provide an opportunity to foster new capabilities, improvements and
understanding for both the modeling and experimental communities.

We suggest that the benefits of such validation experiments will be most effectively realized if
some guidelines are met. First, we propose that such experiments should be developed and conducted
within a hierarchical validation framework [17,31,32] that provides model assessment across the full
range of complexity contained within a process-based model. These assessments will likely range from
comparisons of the full model with large-scale field experiments (e.g., [2]) to comparisons of sub models
(e.g., convective and radiative heat transfer or drag) with highly controlled laboratory experiments
(e.g., [33]). Second, they should seek to estimate both measurement and experimental uncertainty for
all information required by the process-based model to simulate the experiment, including initial and
boundary conditions, material properties, and the fire behavior or physical metrics of interest. Finally,
these experiments should include a range of fire behavior and effects metrics that are relevant or of
interest to scientists and managers [30]. Such experiments should go beyond providing estimates of the
mean fire behavior characteristics, but also include estimates of spatial and temporal variability as well
as overall fire pattern. Ideally, all the information needed for VVUQ activities, including description
of the physical experimental setup, instrumentation, measurements and processing, boundary and
initial conditions and uncertainty estimates would be well documented and made available in a
database to the broad community for model evaluation. New validation experiments such as those
described here would not only lead to improved model evaluation, but often will, as Wimsatt [34]
(p. 56) suggested, “shade into the discovery process.” For example, the VVUQ process can help
identify model inputs with large uncertainties and inspire the development of new measurement and
experimental methods to reduce these uncertainties (e.g., new sensors or new sampling protocols).
As user confidence grows due to VVUQ efforts, these models can begin to take on expanded roles
such as helping researchers identify the potential parameter space and fine-tune measurements for
proposed experiments, and assist in the interpretation of physical experiments.

To advance wildland fire science, we must continue to seek an understanding of the complex
processes and feedbacks that drive wildfire dynamics and effects by leveraging all the tools and
resources at our disposal. We are now entering an era where our increased computational capacity and
massive data acquisition capabilities (e.g., LiDAR) have unlocked new opportunities to utilize models
within the discovery process in ways that were impossible only a decade ago. Process-based models
can play a particularly important role in advancing our understanding, in part because they allow their
users to evaluate the potential mechanisms and interactions driving fire dynamics and effects from
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a unique perspective not often available through experimentation alone. For example, such models
could play a crucial role in helping advance our understanding of fire behavior in increasingly novel
and dynamic environments [35] including those with a mixture of live and dead fuels [36], and the
mechanisms responsible for the spatial distribution of fire effects and mortality [37]. This is not to
say that process-based modeling is the answer to all scientific questions. Rather, the perspectives,
insights and knowledge gained with process-based models should be used with new experimental
work, field observations, and data collection networks to advance our understanding of wildland fire
dynamics and effects and to develop predictive models that provide meaningful answers to current
questions in fire dynamics and effects for the right reasons. Ultimately, we believe that a synergistic
approach where simulations are continuously and carefully compared to experimental data, and where
experimental designs can be guided by the results of simulations, will have a profound impact on the
quality and the rate of progress towards solving emerging problems in wildland fire sciences.
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