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Abstract: As open-cut coal mines progress towards closure, mining companies have an obligation to
provide certainty to stakeholders that their rehabilitated landscapes have the capacity to withstand
future disturbance impacts such as fire and drought. This paper describes the assessment of
fire severity and recovery using WorldView-3 spectral indices following an experimental fire in
a 19- to 21-year old coal mine rehabilitation in semi-arid Central Queensland, Australia. In a highly
heterogeneous reconstructed environment, the differenced Normalized Difference Vegetation Index
(dNDVI) outperformed the differenced Normalized Burn Ratio (dNBR) with an overall map accuracy
of 65% and 58%, respectively. The combination of red and near infra-red multispectral bands proved
more effective at classifying severity compared with the shortwave infra-red, particularly when
pre-fire imagery was dominated by highly cured grasses (>70%) and post-fire imagery contained
a high coverage of residual ash. Recovery trends using spectral indices demonstrate the trajectory
towards vegetation recovery, with 62% of the burnt site demonstrating high regrowth in the first
two years following fire. This is supported by in situ recovery trends of understory biomass
suggesting that under the study conditions, the rehabilitated site has the capacity to withstand
impacts from a wildfire and recover to pre-fire levels.

Keywords: pasture; fire exclusion; satellite; reclamation; resilience; mine relinquishment; Australia;
remote sensing

1. Introduction

Rehabilitation of open-cut coal mines in Queensland, Australia, is an obligation under state legislation.
Prior to lease relinquishment, mining companies are required to demonstrate that rehabilitation is
safe, stable, self-sustainable and non-polluting [1]. Considering that fire is a common, natural and
important occurrence in the Australian landscape [2], it is inevitable that at some future point, mine
site rehabilitation will be subject to wildfire disturbance.

In Central Queensland, mine managers in areas such as the Bowen Basin require methods to
manage fire risk, and demonstrate to regulators and future land-holders that rehabilitated ecosystems
have the capacity to withstand fire impacts. This is vital given that the risk of fire on rehabilitated areas
may be increased due to: (i) the widespread planting of high biomass pasture grasses such as buffel
grass (Cenchrus ciliaris L.) [3,4]; (ii) relatively steep sloping landforms (compared to pre-mining) to
minimize mine footprints [5]; and (iii) the general policy of fire exclusion leading to the accumulation of
unmanaged high fuel loads over more than 20 years [3,4,6]. As mines move towards closure and lease
relinquishment, it is therefore reasonable that mines demonstrate the resilience and ecological recovery
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of rehabilitated areas to disturbances using monitoring methods that are accepted as scientifically
robust, repeatable and valid.

Typically, ecological assessments of mine site rehabilitation have involved ground surveys of
multiple small plots (e.g., 400 m2) that are assumed to be representative of larger areas [7] but can be
costly and time-consuming to complete. While the application of remote sensing techniques to mine
site rehabilitation has been recognized [8,9], the number of peer reviewed studies is limited to a few
that demonstrate vegetation cover development [7,10–12] and fire severity using Unmanned Aerial
Vehicles (UAVs) [13]. To date, no studies have used high spatial, spectral and temporal resolution
satellite imagery to assess fire impacts and vegetation recovery on mine site rehabilitation at the
local or regional scale. As a consequence, rehabilitation managers have limited understanding of the
potential remote sensing techniques that may be applicable to demonstrate the stability and resilience
of rehabilitation to fire. By demonstrating this resilience, managers have the opportunity to reduce
reputational and financial risk and in some cases fast-track lease relinquishment at mine closure.

1.1. Remote Sensing Approaches to Fire Severity Mapping and Fire Recovery

Mapping the fire perimeter location and classifying fire severity using remote sensing was
first demonstrated using sensors on the early Landsat series satellites (Multispectral Scanner
(MSS)/Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+)) [14–16] and sensors such as
the Advanced Very High Resolution Radiometer (AVHRR) carried out by the National Oceanic and
Atmospheric Administration (NOAA) satellites [17]. Since then, published literature is dominated
with case studies using spectral indices such as the Normalized Burn Ratio (NBR) and Normalized
Differenced Vegetation Index (NDVI) from a variety of sensors to infer fire impacts and vegetative
recovery [18]. Importantly, definitions of fire terminology amongst remote sensing scientists and fire
ecologists have been a matter of ongoing discussion and debate [15,19,20]. While short- and long-term
fire effects on an ecosystem can be viewed as a severity and recovery continuum [20,21], it is generally
accepted that fire severity can be defined as the degree of environmental change caused by direct
fire impacts, and is a measurement of the immediate effects on an ecosystem. Additionally, burn
severity refers to the short- and long-term environmental change caused by the fire [15,22] and requires
extended assessments to quantify and characterize.

NBR is the normalized difference between the reflectance values of the near infra-red (NIR) and
the short wave infra-red (SWIR) bands [14,15], while NDVI is the normalized difference between the
reflectance values of the NIR and the red bands [23,24]. Although reflectance in the Red, NIR and
SWIR regions of the electromagnetic spectrum (EMS) is driven by different biophysical factors [25],
the NBR and NDVI can behave in a broadly similar way. For example, both indices show strongly
positive values when ground features are dominated by high biomass and green vegetation, while
values close to zero indicate that vegetation is sparse, dead, or highly cured. Conversely, negative
values indicate exposed soil and very low vegetation cover [15,26,27].

By extending the NBR and NDVI, bi-temporal indices such as the differenced Normalized Burn
Ratio (dNBR) and the differenced Normalized Differenced Vegetation Index (dNDVI) increase the
power to measure absolute changes by using imagery captured in pre-fire and post-fire dates [15].
Compared with the NBR and NDVI, the reflectance scale for the differenced rasters (dNBR and dNDVI)
is inverted. High raster values indicate a relatively greater change from pre-fire values (reduced
vegetation cover and drying of surface), while raster values around zero represent negligible fire
impacts. With extended temporal assessments, strongly negative raster values for dNBR and dNDVI
represent increasing vegetation regrowth [15,18].

The vast majority of remote sensing studies applying the fire indices dNBR and dNDVI have been
conducted in heavily forested environments in the northern hemisphere [18,28–30]. In the southern
hemisphere, Australian studies have demonstrated fire severity and recovery in a range of environments:
in tropical savannas [31,32], and in dry sclerophyll eucalypt forests in eastern [33–36] and Western
Australia [37,38].



Fire 2018, 1, 22 3 of 28

1.2. Spectral Responses to Fire

An understanding of the changes in magnitude of spectral reflectance within the EMS following
fire is fundamental to fire severity mapping using remote sensing [15,27]. While visible wavelengths
(Red, Green, Blue) demonstrate measurable changes [39], the largest post-fire changes occur in the
NIR and SWIR regions of the EMS due to the loss of vegetative cover and the exposure and drying of
underlying soil [14,15,31,32,40]. NIR shifts to a notably lower reflectance with a loss of vegetation while
SWIR reflectance values have been shown to increase with increasing fire severity [15,41]. However,
responses to fire across the EMS are highly variable depending on biogeographical region, vegetation
type and pre-fire vegetation condition [18,32]. The success of indices such as dNDVI and dNBR is
related to vegetation type [18], with forested environments generally producing greater map accuracies
and regression relationships when compared with results for studies conducted in grasslands [42,43],
swamps [34] and heathlands [36].

The SWIR bands most widely used for the NBR index are centered around 2100 nm (Band 7 on
Landsat TM/ETM+/Operational Land Imager (OLI) as this region shows the greatest variance within
burns [15]. The longer wavelengths sampled in the SWIR can be used to measure spectral responses
relating to soil exposure and changes in soil moisture [15,25] as well as a loss of vegetation moisture
through leaf water content loss [25,41,44]. While water content in vegetation is the primary driver of
spectral reflectance in SWIR [44], the loss of water results in the dominance of lignin and cellulose
(present in plant cell walls) as a key feature determining spectral reflectance (particularly in region of
2100–2300 nm) [45,46]. The loss of vegetation water content and the drying, curing and senescence
of grasslands results in higher reflectance in the SWIR region compared with green grass and green
canopies [26,31,32,42].

The spectral reflectance of post-fire ash has been directly related to fire intensity and combustion
of available fuels [43]. White ash indicates a high rate of combustion and is characterized by a high
reflective signature across the EMS. Black ash is generally depicted by a flat and featureless spectral
reflectance signature and represents a lower burn intensity and lower fuel combustion [43,47,48]. Other
studies have shown spectral variability of post-fire ash qualities depending on vegetation type, degree
of combustion and wildfire location [49].

In this study, we applied fire to a 19- to 21-year old rehabilitated mine site and measured the
vegetation response using spectral indices, along with ground assessments to validate imagery and
support remote sensing findings. Since remote sensing is currently underutilized by rehabilitation
practitioners, we aimed to demonstrate the most effective spectral indices to quantify disturbance
and vegetation recovery in the study region, and thereby encourage rehabilitation managers to
further employ remote sensing techniques in the pursuit of site relinquishment. The first objective
of this study was to assess the viability of using WorldView-3 spectral indices dNDVI and dNBR to
characterize fire severity and regeneration of post-mined landscapes at local scales (~1 m and ~7 m
pixels over <10 km2). The second objective was to investigate the resilience of mine site rehabilitation
to fire impacts, by demonstrating the site recovery trends using spectral indices NDVI and NBR
supported by vegetation recovery measured in field sampling. The third objective was to discuss the
effectiveness of NDVI and NBR within the study region by generating WorldView-3, 16-band spectral
signatures of selected ground features in the burn and control areas.

2. Materials and Methods

2.1. Study Area

The experimental site is located in the Bowen Basin, Central Queensland, 200 km west of
Rockhampton and 16 km north of the town of Blackwater (Figure 1). The climate in the region
is semi-arid, with a distinct wet and dry season, with an average annual rainfall of 533 mm [50],
predominantly falling in the summer months (December–March); the remainder of the year is relatively
dry with lower rainfall totals.
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Figure 1. Location of study area (a) Central Queensland study location; (b) aerial image showing mine
extent and (c) study site fire scar visible in post-fire WorldView-3 image (7-3-2 band combination).

2.2. Study Design

The study was designed to test and demonstrate vegetation resilience and recovery at the transect
scale (400 m2) and landscape scale (1–10 km2); and as such uses a combination of field sampling
and remote sensing techniques discussed below, represented schematically in Figure 2. Prior to
the fire, the study site was stratified into two different vegetation communities using ArcGIS 10.2
(ESRI, Redlands, CA, USA); herein called ‘grassland’ and ‘open woodland’ (Figure 3a). These areas
were defined by using: (i) historical aerial imagery (taken in 1996) showing topsoil distribution and
rehabilitation techniques; and (ii) a 2013 aerial image where grassland and open woodland vegetation
communities were clearly visible for digitization using digital aerial photographic interpretation
(API) [4]. Over the 19- to 21-years since establishment, areas that were rehabilitated using a cover of
100% topsoil across the landform developed into a grassland community, while areas that received
topsoil coverage in 10 m wide strips along the contour developed into open woodland communities.
Grassland areas were dominated by the invasive, high biomass buffel grass, while open woodland
areas consisted of a low density (<1000 stems ha−1) of predominantly two evergreen Acacia species:
Acacia stenophylla and A. salicina. Other evergreen canopy species found across the site included
Corymbia citriodora subsp. citriodora, Eucalyptus populnea, E. thozetiana and Casuarina cristata.

On 28 May 2015, a controlled experimental fire burnt 117 ha of 19- to 21-year old coal-mine site
rehabilitation. Field practitioners attempted to mimic wildfire conditions by burning a large area (>100 ha)
in a single fire event; with the fire able to move unhindered with the wind in order to create a mosaic
of severity outcomes. The resulting fire behavior and site conditions for the experiment are discussed
in previous studies [4]. WorldView-3 satellite imagery was captured for the time-series, including
three post-fire images (Figure 3). Color infra-red imagery shows the fire scar from the burn, as well as
the regrowth and greening of vegetation within the burn area and the control sites. The patterns of
ash within grassland areas indicate that these areas received a relatively homogenous burn of high
severity when compared with the open woodland areas that contained residual green canopies and
unburnt areas associated with bare areas (Figure 3c).
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Figure 2. Schematic work flow diagram illustrating the methods used to generate fire severity and
recovery maps following the fire and WorldView-3 image capture events.

(b) (c)

(d) (e)

(a)

Grassland Transect
Open Woodland Transect
Burn Perimeter
Grassland (Burnt)
Open Woodland (Burnt)
Grassland Control (Unburnt)
Open Woodland Control (Unburnt)

0 1 20.5 Km

´

Pre-Fire Post-Fire

12-Months Post-Fire 24-Months Post-Fire

Figure 3. Fire study site illustrating (a) grassland and open woodland vegetation communities
within burn perimeter, locations of monitoring transects and control areas outside of burnt perimeter;
and WorldView-3 color infra-red time-series images (7-3-2 band combination): (b) pre-fire captured the
day prior to the burn; (c) post-fire captured six days following the burn with fire scar clearly visible;
(d) 12-months post-fire and (e) 24-months post-fire.
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2.3. Field Sampling

The field sampling conducted throughout the experiment falls into two categories:

(i) Vegetation transects of 50 m × 8 m (400 m2) for repeat measurements of vegetation metrics
throughout the time-series.

(ii) Circular fire severity plots 10 m radius (314.16 m2) for one-off initial post-fire assessments to
validate fire severity maps.

2.3.1. Vegetation Transect Assessments

A total of ten transects were randomly assigned within the burnt perimeter, with five transects
allocated to grassland areas and five transects placed within the open woodland areas. Transects were
oriented downhill in order to capture any vegetation variation due to differences in topsoil coverage.
In order to test correlations with spectral indices and support remote sensing findings, the vegetation
metrics sampled included: (i) grass curing and (ii) understory biomass in 1 m × 1 m quadrats as
described in [4]. Data were collected on the monitoring transects during time periods that aligned with
the dates of image captures.

The grass curing assessment was based on a modified pole method [51]. A red colored laser
pointer was attached to a pole and held vertically at each meter along a 50 m transect. The uppermost
leaf of grass that was illuminated was visually characterized as being either ‘green’ or ‘dry’. The total
points for each transect were tallied (n = 50) and the proportion of dry hits were calculated to determine
a curing value for each transect.

Biomass assessments were based on a weight—rank method [52] using a scale of 1–10 at every
5 m along the 50 m transect by two observers using 1 m × 1 m quadrats (n = 10). Fifteen quadrat
standards across a range of ranks (0 to 10) were physically cut, weighed immediately, oven dried
(three days at 65 ◦C) and re-weighed to obtain the dry weight. Using these standards, a regression
curve was created (r2 = 0.83; residual standard error = 2.6 t/ha) and regression formulas were applied
to quadrat estimates to calculate tons per hectare dry weight (t/ha). Operator bias was minimized by
using the same two observers for the duration of the project, who both visually re-calibrated prior to
each monitoring period. Biomass data was collected at monitoring transects in pre-fire, post-fire, 3-, 6-,
12- and 24-months post-fire intervals.

2.3.2. Fire Severity Plot Assessments

Fire severity assessments were completed on 17–18 September 2015 (3 months following the fire).
A draft dNDVI severity map was generated (using raw digital numbers) and a total of 300 waypoints
were randomly generated (100 per class) within the burn perimeter. Two observers separately navigated
to waypoints and ranked fire impacts within a 10 m radius circular plot for the metrics listed in
Table 1. For the purposes of this study, each stratum was defined by the dominant growth forms [53].
Understory was defined as ground cover associated with grass life forms, typically dominated by
buffel grass; midstory entailed shrubs generally less than 2 m in height, mostly characterized by sparse
density of Senna spp.; upperstory was defined as trees and shrubs >2 m in height, mostly dominated
by Acacia spp., Eucalyptus spp. and Corymbia spp.

Plot centers were mapped using a Trimble Geo7x Global Navigation Satellite System (GNSS) and
mapped points were post-processed using the nearest base station Receiver Independent Exchange
Format (RINEX) data so that each point was <10 cm xyz. Three waypoints were excluded from the
assessment, since part of the plot fell outside the burn area, leaving a total of 297 plots. Although
fire severity assessments were completed 3 months following the fire, the re-sprouting of understory
vegetation was minimal and burnt areas were easily distinguished from unburnt areas. Residual ash
and burnt grass stubs were still present, and it was therefore possible to estimate the metrics listed
in Table 1.
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Table 1. Data captured though data dictionary in circular plots to assess fire severity.

Metric Data Collected Data Type

% Understory Burnt 0–100% Continuous
Average Grass Stub length Unburnt, >5 cm, <5 cm, <2 cm Root Crown Ordinal

% Midstory Scorched 0–100% Continuous
% Upperstory Scorched 0–100% Continuous

Average Char Height No trees, Unburnt, Bases <0.5 m, <1 m,<2 m Ordinal
Photos Captured facing south -

Comments General observations Text

2.4. Image Analysis

The remote sensing methodological processes followed throughout this study can be summarized
in the following order: (i) image pre-processing; (ii) calculation of NDVI, dNDVI, NBR and dNBR
indices; (iii) fire severity map validation; (iv) time-series recovery map and generation of recovery
trajectories; and (v) generation and analysis of spectral signatures for selected ground features
(Figure 2). DigitalGlobe’s WorldView-3 satellite was the preferred sensor for the project due to
the high spatial, temporal and radiometric resolution which were well suited to the small study site.
The satellite provided 1.2 m multispectral and 7.3 m SWIR spatial resolution and 11 bit and 14 bit
radiometric resolution respectively. The added advantage of eight multispectral and eight SWIR bands
enabled the generation of spectral signatures of selected ground features; this provided context for
the discussion around appropriate wavelengths to determine severity and recovery in the semi-arid
environment. Bands and associated wavelengths that were used in the spectral indices included: red
(630–690 nm), NIR1 (770–895 nm) and SWIR5 (2145–2185 nm) [54].

2.4.1. Image Capture

WorldView-3 imagery was successfully captured in cloud free conditions over the site in
four epochs (Table 2, Figure 3). The pre- and post-fire captures were timed to be within a seven-day
window of the fire, while the post-fire images aimed to be as close to the 12- and 24-month anniversaries
as possible to reduce phenological differences. The mean off-nadir viewing angles were variable for the
time-series and ranged from 12.1 to 22.8 degrees for the multispectral sensor and 11.7 to 23.2 degrees
for the SWIR sensor. Attempts were made for 6- and 9-month post-fire captures, but these were
unsuccessful due to cloud cover.

Table 2. Metadata for the WorldView-3 satellite image captures for the project (MS = multispectral).
The date of the fire was the 28 May 2015.

Epoch Image Dates Transect
Assessment Dates

Mean off-Nadir Viewing Angle (Degrees)

MS SWIR

Pre-Fire 27 May 2015 21–27 May 2015 16.4 16.0
Post-Fire 3 June 2015 30 May–1 June 2015 22.8 23.2

12-months post-fire 23 June 2016 19–26 June 2016 18.5 18.2
24-months post-fire 17 May 2017 15–19 May 2017 12.1 11.7

2.4.2. Geometric Corrections

Ten ground control points (GCPs) were mapped in the field using a Trimble Geo7x GNSS, then
post-processed using RINEX files from a local base station so that all points were <10 cm positional
(x,y,z) accuracy. These GCPs were used to geo-reference the June 2016 image, which was subsequently
used as a georeferencing base for other imagery (Table 3). Georeferencing errors were the result of a
number of factors including: (i) a highly heterogeneous (topography and vegetation cover) study site
due to landform design and rehabilitation methods at time of establishment; and (ii) large off-nadir
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viewing angles that were highly variable between captures, increasing the complexity of geometric
corrections for the study area. When root-mean-square error (RMSE) values were deemed excessive,
second order polynomials were used to reduce RMSE to acceptable levels without introducing excessive
warping in the imagery. While the SWIR geometric corrections resulted in sub-pixel accuracy, there
were locations within the multispectral images with an elevated RMSE. Despite this, we are confident
that the geometric corrections are suitable for the image differencing and time-series analysis.

Table 3. The georeferencing sequence for WV-3 time-series imagery.

Steps Image Wavelength Georeferenced to: # GCPs Polynomial Order RMSE (m)

1 12-months post-fire MS Field GCPs 10 1st 2.2
2 Post-fire MS 12-months post-fire 103 2nd 1.3
3 Pre-fire MS Post-fire 129 2nd 1.95
4 24-months post-fire MS 12-months post-fire 55 2nd 1.96
5 Pre-fire SWIR Pre-fire (MS) 21 2nd 3.21
6 Post-fire SWIR Post-fire (MS) 20 2nd 2.13
7 12-months post-fire SWIR 12-months post-fire (MS) 20 1st 2.29
8 24-months post-fire SWIR 24-months post-fire (MS) 10 1st 6.22

2.4.3. Radiometric and Atmospheric Corrections

Radiometric and atmospheric corrections were applied to each raster band according to
DigitalGlobe specifications [55]. Raw digital numbers (DN) for each band were converted to at-sensor
radiance according to Equation (1):

L = Gain × DN
(abscal factor)

(Effective bandwidth)
+ Offset (1)

where L is at-sensor radiance (W µm−1 m−2 sr−1) and Gain and Offset are annual calibration
adjustment factors specific to each WorldView-3 raster band. Absolute radiometric calibration factor
(abscal factor) and effective bandwidth were provided in the DigitalGlobe metadata IMD file.

Rasters were then converted to top-of-atmosphere reflectance (TOA) to normalize for solar
irradiance and sensor radiance according to Equation (2):

ρ(TOA)λ =
Lλd2π

Eλ Cosθs
(2)

where Lλ is the at-sensor radiance (W µm−1 m−2 sr−1), d is the earth-sun distance (astronomical units),
Eλ is the band averaged exo-atmospheric solar irradiation (W µm−1 m−2) and θs is the solar zenith angle.

TOA rasters were converted to at-surface reflectance using the dark pixel subtraction method.
Minimum raster values were subtracted from each raster to reduce the additive effects of atmospheric
inputs [55,56].

2.4.4. Image Normalization

Individual bands used in the calculation of fire indices (Red, NIR1 and SWIR5) were corrected for
atmospheric and solar differences using pseudo-invariant features method (PIF) [25,57]. Manual selection
of ten dark pixels (taken from coal tailings) and ten bright pixels (taken from bare spoil = sub-surface
material that has been brought the surface) in each image were used to generate regression models
and normalize atmospheric and solar differences in capture conditions (Figures A1 and A2). These
PIF-corrected images were used to calculate vegetation indices and generate fire severity classifications
and fire recovery maps.
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2.4.5. Band Indices

The NDVI was calculated using the red and NIR1 bands from WorldView-3 to produce a
continuous raster with a spatial resolution of 1.2 m (Equation (3)).

NDVI =
(NIR1 − RED)

(NIR1 + RED)
(3)

The red band was resampled using pixel averaging to 7.3 m spatial resolution and along with
the SWIR5 band, used to calculate the NBR (Equation (4)). The SWIR5 band was chosen for the NBR
calculation, since the wavelengths (2145–2185 nm) correspond with those used in previous studies to
calculate NBR using Landsat ETM+ and OLI imagery [15].

NBR =
(NIR1 − SWIR5)
(NIR1 + SWIR5)

(4)

NDVI and NBR rasters were calculated for each epoch: (i) pre-fire; (ii) post-fire; (iii) 12 months
post-fire; and (iv) 24 months post-fire. Continuous rasters were scaled to 103 resulting in rasters that
ranged in values −1000 and +1000. In both indices, high values indicate areas of high-biomass green
vegetation, while low values represent bare areas, burnt areas and water bodies (Figure A4).

2.4.6. Differenced Indices

The post-fire images were subtracted from the pre-fire images to generate the differenced image
rasters as a measure of absolute change between image captures (Equations (5) and (6)). The differenced
rasters range in values −2000 and +2000, with higher values representing areas of greatest change
(high fire severity) and low or negative numbers representing unburnt areas.

dNDVI_1000 = NDVI_1000Pre−Fire − NDVI_1000Post−Fire (5)

dNBR_1000 = NBR_1000Pre−Fire − NBR_1000Post−Fire (6)

2.4.7. Calibration & Validation

Differenced images were classified into fire severity classes using the band histogram functions
to manually delineate natural breaks; in combination with field observations of burn intensity and
severity [4,15]. Continuous rasters were reclassified into a map consisting of three classes: unburnt,
low severity, and high severity. The choice of two fire severity classes (high and low) was based
on previous studies in savanna environments where low canopy cover and reduced photosynthetic
material (due to cured grasses) reduced the accuracy of fire severity classifications [21].

Validation of the fire severity maps utilized the percent understory burnt data obtained at
297 severity plots, where each plot was given a field-based severity ranking according to thresholds
listed in Table 4. While many fire severity studies use indices such as the composite burn index (CBI)
to average fire impacts across each stratum, we chose to use a quantitative, continuous metric that
measured the fire impact directly [58]. This choice was taken since the fire was predominantly a
ground fire and was generally limited to this stratum. Therefore, it was assumed that this metric was
the most representative of the severity captured in post-fire imagery. Additionally, since the field
observations were conducted three months post-fire, it was assumed that due to leaf fall and canopy
changes, metrics such as crown and leaf scorch were not representative of severity captured in post-fire
imagery [21,39] and as such, canopy metrics were not included in the severity validation. Further, tree
density across the site was low in open woodland areas (<1000 stems per hectare) and virtually absent
in grassland areas.
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Table 4. Severity rankings based on field observations for percent understory burnt.

Severity Ranking % Understory Burnt

High Severity 80–100
Low Severity 10–80

Unburnt 0–10

Severity maps were smoothed using the ArcGIS majority filter to reduce mis-classification of
individual pixels within the imagery; with the number of neighbors set to four and the replacement
threshold set to majority. Pixel values were extracted from each NDVI and NBR severity map at the
297 plot locations and a frequency table was generated for each map to determine the number of
occurrences where field severity classes corresponded with modelled severity class. Validation of the
fire severity maps was determined through an error matrix [59]. Following the classification process,
polygons for grassland and open woodland areas were used to calculate zonal statistics and area
values for the dNDVI classification.

2.4.8. Fire Recovery Maps

Recovery maps for the 12- and 24-month post-fire time-steps were generated using NDVI to
demonstrate areas of regrowth within the burnt area (Equations (7) and (8)). Strongly negative
numbers correspond with increased regrowth, and this can be easily distinguished in grassland
areas [15]. The recovery maps maintained the same class thresholds as the severity map (above),
and therefore, changes in regrowth can be directly compared with the severity map. Due to the lower
classification accuracy for dNBR, the dNDVI was the only index used to demonstrate recovery at the
site (Figure A5).

dNDVI Recovery Map 1 = NDVI_1000Post−Fire − NDVI_100012 months Post−Fire (7)

dNDVI Recovery Map 2 = NDVI_1000Post−Fire − NDVI_100024 months Post−Fire (8)

2.4.9. Standardization of Control and Study Area

Unburnt control sites were selected based on field knowledge of rehabilitated areas surrounding
the burnt site. Three representative grassland areas totaling 5.7 ha and three areas representing open
woodland totaling 5.6 ha were digitized using digital API methods. Grassland areas had a high cover
of buffel grass and were selected from historical topsoil dumps and rehabilitated areas to the south of
the burnt site, while open woodland areas included areas of rehabilitation of similar age and species
mix (predominantly Acacia stenophylla and A. salicina) to the burnt site. Control sites were not impacted
by the experimental fire, nor any other known disturbances throughout the trial period.

Average NDVI and NBR values across the burnt and control areas were plotted over the time-series
to show fire impacts and recovery of vegetation post-fire by comparing control and burnt sites. In order
to remove rainfall effects and phenological changes, the post-fire images were standardized to the
pre-fire control images using a difference–adding technique [35]. Pre-fire control averages were used as
a baseline, and post-fire control imagery was equated to pre-fire values. For example, where post-fire
control average NDVI was lower than the pre-fire control average, the difference was added to the
post-fire imagery, and zonal statistics extracted. Alternatively, where post-fire imagery average NDVI
was higher than the pre-fire control, the difference was subtracted from the post-fire imagery. For each
time-step, the same control-difference value was applied to control sites and burnt sites, resulting in
imagery that is standardized for rainfall and phenological effects [35].

2.4.10. Spectral Signatures of Ground Features

Spectral signatures for ground features were sampled from single pixels at each time-step using
ENVI 5.4 (Exelis Visual Information Solutions, Boulder, CO, USA) spectral profile tool. A representative
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homogenous area of buffel grass was sampled at each grassland transect (n = 5) and in control
(unburnt) areas (n = 5), with the same pixels sampled over the four time-steps. Considering the
spatial heterogeneity of open woodland transects (which consists of a mix of tree canopy, grass and
bare areas), it was decided to sample the most common tree, Acacia stenophylla. Tree canopies at each
transect (n = 5) were mapped using Trimble Geo7x GNSS units prior to the fire so that canopies could
be tracked throughout the time-series. Acacia stenophylla canopies were selected from control (unburnt)
areas (n = 5) and sampled for the time-series as a comparison. Tree canopies ranged from ~3–5 m
in diameter. Bare areas of bright colored spoil were also sampled within the burn perimeter (n = 5).
Values for each feature were averaged and graphed with standard error for each time-step.

PIF corrections (Figures A1 and A2) were assessed for regression relationships to determine the
magnitude of date-to-date differences. All regressions resulted in sample points that displayed low
scatter and with calculated coefficients of determination (r2) close to +1. It was, therefore, assumed that
PIF adjustments for the remaining bands would provide negligible changes to final spectral signatures
of on-ground features.

3. Results

3.1. Severity and Recovery Maps

The classification produced by dNDVI resulted in an overall map accuracy of 65%, which indicates
an acceptable agreement between field estimates of severity and the modelled dNDVI and an overall
satisfactory result (Table 5) [60]. In contrast, the classification produced by dNBR returned a relatively
poorer result, with an overall map accuracy of 58% (Table 6). Producers’ accuracy for both classifications
was 80% for unburnt areas and both classifications also recorded high producers’ accuracy for the high
severity class, with values of 75% and 73% for dNDVI and dNBR respectively. The users’ accuracies for
both classifications for the high severity category was 80% for dNDVI and 75% for dNBR.

Table 5. Fire severity error matrix using dNDVI derived from the WorldView-3 dataset.

Field Reference

Unburnt Low
Severity

High
Severity

Grand
Total

Commission
Error (%)

Users’
Accuracy (%)

dN
D

V
I

V
al

ue
s Unburnt 37 26 12 75 51 49

Low Severity 6 31 30 67 54 46
High Severity 3 28 124 155 20 80

Grand Total 46 85 166 297 Overall Map
Accuracy (%) 64.65

Omission Error (%) 20 64 25 Overall Error (%) 35.35

Producers Accuracy (%) 80 36 75

Table 6. Fire severity error matrix using dNBR derived from the WorldView-3 dataset.

Field Reference

Unburnt Low
Severity

High
Severity

Grand
Total

Commission
Error (%)

Users’
Accuracy (%)

dN
BR

Unburnt 37 38 21 96 61 39
Low Severity 4 12 23 39 69 31
High Severity 5 35 122 162 25 75

Grand Total 46 85 166 297 Overall Map
Accuracy (%) 57.58

Omission Error (%) 20 86 27 Overall Error (%) 42.42

Producers Accuracy (%) 80 14 73

Area analysis of the dNDVI severity map showed that grassland areas had a greater proportion of
area impacted by high severity fire (68%) compared with open woodland areas (39%). Open woodland
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areas contained a notable proportion of unburnt (33%) and low severity (28%) pixels compared with
grassland areas (11% and 21% respectively) (Table 7, Figure 4a).

Recovery maps demonstrated the extent of regrowth of vegetation cover and green biomass
(Figure 4). Within 12-months of the fire, 71% of grassland and 41% of open woodland areas were
classified as high regrowth. This increased by the 24-month post-fire image, with high regrowth across
much of the grassland (82%) and open woodland (52%) areas burnt in the fire (Table 7, Figure 4b,c).
In general, areas that were classified as high severity in the fire severity map, were also classified as
high regrowth in the post-fire recovery maps, particularly in the grassland areas.

(b)

(c)
0 1 20.5 Km

´

(a) (d)

Fire Severity Plots
Study Area
High Severity
Low Severity
Low Regrowth \ Unburnt (a)
High Regrowth

Fire Severity Map

12-Months Post-Fire

24-Months Post-Fire

Figure 4. Differenced Normalised Difference Vegetation Index (dNDVI) analysis of WorldView-3
images showing: (a) fire severity map; (b) fire recovery 12-months post-fire; (c) fire recovery 24-months
post-fire and (d) location of ground-based fire severity plots. See Figure 3a for descriptions of grassland
and open woodland study area locations.
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Table 7. dNDVI area results for each class for fire severity and recovery maps.

Map Location Metric High Regrowth Unburnt/Low Regrowth Low Severity High Severity Total

Fire
Severity

Whole
Area

Area (ha) - 30 30 57 117
% - 25.64 25.64 48.72 100

Grassland
Area (ha) - 4 8 26 38

% - 10.53 21.05 68.42 100

Open
Woodland

Area (ha) - 26 22 31 79
% - 32.91 27.85 39.24 100

12-Month
Fire

Recovery

Whole
Area

Area (ha) 59 58 - - 117
% 50.43 49.57 - - 100

Grassland
Area (ha) 27 11 - - 38

% 71.05 28.95 - - 100

Open
Woodland

Area (ha) 32 47 - - 79
% 40.51 59.49 - - 100

24-Month
Fire

Recovery

Whole
Area

Area (ha) 72 45 - - 117
% 61.54 38.46 - - 100

Grassland
Area (ha) 31 7 - - 38

% 81.58 18.42 - - 100

Open
Woodland

Area (ha) 41 38 - - 79
% 51.90 48.10 - - 100

3.2. Field Observations

Regression analysis shows that NDVI and NBR were negatively correlated with grass curing for
both grassland and open woodland areas (Figure 5a,c). This linear relationship is strong and statistically
significant for grassland areas for NDVI (r2 = 0.80, p = 0.00001) and NBR (r2 = 0.86, p = 0.000), where
both indices appear to be a good predictor of grassland curing. However, when grassland areas
were highly cured in pre-fire assessments (>70%), the NDVI is a significantly better predictor of
curing (r2 = 0.97, p = 0.0023) compared to the NBR (r2 = 0.41, p = 0.24). Generally, NBR regression
relationships improve as grasses become increasingly greener (wetter) with the highest correlation
at 24-months post-fire (r2 = 0.88, p = 0.021), while NDVI showed more consistent relationships over
the time-series and across the curing spectrum. Note that the surveys were all conducted in the early
dry season, so the curing variability throughout the time-series is a response to rainfall rather than
any phenological changes or seasonal (drying/greening) cycles associated with perennial and annual
grasses. The heterogeneity of open woodland areas resulted in greater variation for transect areas and
produced weaker overall trends for NDVI (r2 = 0.38, p < 0.05) and NBR (r2 = 0.56, p = 0.001) (Figure 5a,c,
and Table A1). Note that the post-fire field assessment for curing was not completed, so a trend across
the entire time-series is not possible for this metric.

The regression between grass biomass and the tested indices showed a positive, increasing trend
for both grassland and open woodland areas (Figure 5b,d). Although scatter was high and the overall
relationships for both indices was generally poor, both indices showed improved relationships for
grassland areas in the 12-month post-fire (NDVI r2 = 0.71, p = 0.07; NBR r2 = 0.94, p = 0.006) and
24-month post-fire (NDVI r2 = 0.90, p = 0.01; NBR r2 = 0.88, p = 0.02) assessments. Open woodland
areas generally produced poor regression relationships across the time-series for both NDVI and NBR
(Table A1).

Grassland transects showed a significantly higher average oven dry biomass weight in the pre-fire
assessment (9.3 t/ha) compared with open woodland transects (5.4 t/ha) (Figure 6). The immediate
post-fire assessment suggests that both open woodland and grassland areas received a high severity
burn, with biomass values declining to 0.3 t/ha and 0.2 t/ha respectively. The 3-month post-fire
assessment showed a minor biomass regeneration before plateauing to the 6-month post-fire result at
0.9 t/ha for open woodland and 0.7 t/ha for grassland transects. Biomass re-accumulation post-fire
showed a strong increasing trend from 6 months post-fire to the final 24 month post-fire time-step,
with open woodland recovering to reach average biomass values higher than pre-fire levels (6.9 t/ha)
and average grassland values approaching pre-fire levels (8.6 t/ha) (Figure 6).
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Figure 5. Relationship between vegetation metrics measured at transect locations plotted against
average Normalised Difference Vegetation Index (NDVI) and Normalised Burn Ratio (NBR) for transect
areas (400 m2): (a) NDVI vs. grass curing (%); (b) NDVI vs. grass biomass (t/ha); (c) NBR vs. grass
curing (%) and (d) NBR vs. grass biomass (t/ha). Green outlines = pre-fire, black outlines = post-fire,
red outlines = 12-months post-fire and blue outlines = 24-months post-fire. Note that field grass curing
was not measured post-fire. For regression statistics and line equations, refer to Table A1.

Figure 6. Biomass re-accumulation post-fire for the grassland and open woodland transects. Each point
is a quadrat average ± SE (n = 50).
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3.3. NDVI and NBR Recovery Trends

Time-series graphs for both NDVI and NBR demonstrate vegetation recovery of the burnt and
unburnt sites in post-fire imagery (Figure 7). Burnt areas of grassland and open woodland show a sharp
decline in value, followed by a rapid increase, with both NDVI and NBR recovering beyond pre-fire
levels within 12 months of the fire, followed by further growth 24 months post-fire. Likewise, unburnt
reference sites show a small decline in NDVI and NBR in post-fire imagery (indicating a drying out of
the site), followed by a moderate increase in vegetation condition. Grassland areas responded faster
than open woodland areas for both burnt and unburnt sites (Figure 7a,c).

Accounting for rainfall effects and phenology by standardizing the time-series to pre-fire control
imagery reveals a reduced recovery trend for both NDVI and NBR in burnt areas. At 24 months
post-fire, open woodland had returned to pre-fire levels for both indices. Although grassland was on
a recovery trend, both NDVI and NBR show that these areas had not yet returned to pre-fire levels
(Figure 7b,d). The apparent decline in NBR grassland at the 24-month post-fire time step indicates
that there was a comparatively large increase in the control area for the 24-month post-fire image as
compared to the burnt area and is consistent with previous studies [35].

Figure 7. Time-series for recovery post-fire of WorldView-3-derived indices for grassland and open
woodland communities using: (a) mean NDVI across entire burnt and unburnt areas (b) standardized
mean NDVI of study and control areas (standardized to pre-fire control); (c) mean NBR across entire
burnt and unburnt areas; (d) standardized mean NBR of study area and control areas (standardized to
pre-fire control). Indices are all scaled to 1000 to assist interpretation.
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3.4. Spectral Signatures

Spectral signatures for ground features were sampled across the burnt and unburnt control
sites for the pre-fire, post-fire, 12- and 24-month post-fire time-series. Unburnt features from control
sites showed only minor variations across the four captures, while burnt features from the study
site demonstrated some notable changes due to the fire impact and subsequent vegetation regrowth
(Figure 8). Pre-fire spectral signatures show that reflectance values from the study site for buffel grass
and Acacia stenophylla were closely aligned with the same features sampled across the control areas
(Figure 8a). Buffel grass reflectance was characteristic of cured grasslands, particularly in the longer
wavelengths (>1200 nm) where signatures diverged from the reflectance signatures of Acacia stenophylla.
The post-fire images reveal that the burnt features strongly contrast with the control features for both
buffel grass and Acacia stenophylla. Burnt buffel grass reflectance shows a flat and featureless spectral
signature closely resembling black ash, while burnt Acacia stenophylla shows higher variability, due to
the range of post-fire canopy conditions experienced by the sample selection (Figure 8b). The 12- and
24-month post-fire spectral signatures indicate a strong recovery response from buffel grass, mirroring
the buffel grass control signature within 12-months post-fire (Figure 8c). The signature for burnt
Acacia stenophylla remained below the control signature, particularly in the NIR region of the EMS,
for both 12- and 24-month post-fire measurements (Figure 8c,d).

In general, the trends over the time sequence for unburnt control buffel grass and Acacia stenophylla
remain relatively steady and consistent. The reflectance signature from bare spoil indicates a consistently
high reflectance across the spectrum for each time-step.

Figure 8. Spectral signatures for ground features in burnt and unburnt (control) areas for the time
series: (a) pre-fire imagery; (b) immediate post-fire imagery; (c) 12-months post-fire and (d) 24-months
post-fire. Each point represents an average of five locations ± SE.

4. Discussion

This paper demonstrates the post-fire dynamics and vegetation recovery on mine site
rehabilitation using a combination of remote sensing and ground metrics. Image analysis provided
insights into the fire severity and subsequent recovery through the use of NDVI, dNDVI, NBR and



Fire 2018, 1, 22 17 of 28

dNBR indices over a two-year period. The remote sensing recovery trends, spectral signatures of
ground features and in situ grass biomass data suggest that grassland and open woodland areas are
on a trajectory towards recovery and are approaching pre-fire levels.

The fire severity maps produced using dNDVI resulted in a higher classification accuracy, and a
moderate agreement between the field validation points and the model, as compared to the dNBR
classification. A users’ accuracy for the high severity class of 80% for the dNDVI classification indicates
that this map can be useful for rehabilitation managers to assess and monitor the areas of high
impact. In general, land managers are most interested in the accurate fire mapping of high severity
classes in order to target and monitor any future remediation [18]. Other class accuracies were
generally poor for both dNDVI and dNBR, with high commission and omission errors indicating a
significant amount of confusion between the classes. A number of studies have also shown reduced
classification accuracies due to overlapping severity classes [15,18,21,43]. Common issues involve
confusion around low severity impacts due to low vegetation cover, background soil impacts, or drier
post-fire imagery providing false positives [15,21,41,61,62]. These issues all have the potential to impact
on the classification at this site, which contained a heterogeneous vegetation cover on natural black
and brown cracking clays and a range of spoil types. Additionally, low rainfall totals leading up to
and after the fire are reflected in a noticeably drier post-fire image (Figure 3c, and Figure A3).

Area calculations of the dNDVI severity map demonstrates that the grassland areas received the
majority of the high severity impacts, with the open woodland areas showing a mosaic of unburnt,
low and high severity (Table 7). This is supported by ground assessments, which showed that the fire
consumed a comparatively larger proportion of the understory biomass in the grassland areas. Where
the fire was able to move through areas of open woodland, it removed much of the ground layer
associated with the topsoil strips along the contour that contained buffel grass at fuel loads equivalent
to the more homogenous areas of the grassland type [4].

One of the key outcomes of the study was the improved overall accuracy of the dNDVI
classification compared with the dNBR assessment. This is likely due to a number of factors. Firstly,
the pre-fire vegetation on the study site was dominated by highly cured grasses and a sparse cover of
acacia trees; which proved more suited to indices using the shorter multispectral wavelengths (dNDVI)
as compared with indices utilizing the longer wavelengths of the SWIR region (dNBR). The dNBR has
been most effective when reflectance values of NIR and SWIR are inverted following fire, whereby NIR
exhibits a reduction in reflectance and the SWIR is increased [15]. However, the spectral signatures
of ground features measured in this study demonstrated a reduction in both the NIR and SWIR
reflectance values in post-fire images, due to the removal of vegetation and presence of black ash,
resulting in a poor classification result for dNBR (Figure 8). Changes in the SWIR region of the EMS
after burning have been shown to be highly variable across northern Australia [63]; while the dNBR
has been demonstrated to work effectively in forested environments [15], it is less effective in savanna
with low tree cover and a highly cured understory [32,64]. Reflectance for vegetation in the longer
wavelengths of the SWIR region (1300–2500 nm) is primarily driven by leaf water content—the higher
the leaf water content, the lower the reflectance [25,44]—this results in a low spectral response for dense
tree canopies, while highly cured grasslands typically show a high reflectance in this region [31,32,42],
as demonstrated in the pre-fire spectral signature for buffel grass in Figure 8a. Secondly, the presence
of a substantial amount of residual ash in post-fire imagery favors multispectral indices such a dNDVI.
Previous studies have modelled fire severity variations with spectral response and found that the
NIR and red bands were the most effective at classifying severity for the charcoal signal, rather than
when bare soil reflectance dominates the post-fire image [41]. Finally, highly heterogeneous sites may
be more strongly suited to small spatial scale imagery as compared to the relatively coarse spatial
resolution of the SWIR imagery. Spectral mixing in moderate spatial resolution sensors has resulted in
spectral confusion and misclassification [36] and other studies have shown higher overall accuracies
due to higher spatial resolution imagery [18]. This was tested by resampling the 1.2 m NDVI rasters to
7 m and re-running the severity classification. However, the result was a marginal increase in overall
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map accuracy (data not shown) suggesting that in this study, the improved accuracy of the dNDVI
classification is more closely aligned to the suitability of multispectral wavelengths over the SWIR
wavelengths in the semi-arid environment.

The dNDVI recovery maps show that areas impacted by high severity fire were also more likely
to display high regrowth in the 12- and 24-month post-fire images (Figure 4). This result supports
previous findings where areas of grassland impacted by high severity fire were also the areas with
a high rate of recovery [42]. Following fire, an increase in available nutrients and light will support
regrowth from grasses that are able to respond to changing edaphic conditions, provided the grass
root crowns are undamaged [65,66]. This is particularly relevant for species such as buffel grass with a
demonstrated capacity for fire resilience [65], and with root systems that can reach greater than 2 m in
depth [67]. Additionally, the rehabilitation technique that the mine employed resulted in 100% topsoil
coverage of grassland areas [4]. As a result, these areas are likely to have higher soil-water holding
capacity and higher nutrient availability facilitating the rapid regrowth of grasses compared with open
woodland areas that contain large areas of bare spoil.

This study demonstrates the importance of unburnt control plots for investigating the resilience of
ecosystem dynamics, particularly for extended burn severity assessments. Although the use of control
plots and paired unburnt plots have been used successfully in remote sensing studies [35,68], there
are no standard approaches to fire severity mapping [18]; despite the potential for controls to reduce
the phenological and rainfall effects in the analysis and interpretation of a time-series. For example,
prior to standardizing, the NDVI and NBR trends suggest that the burnt sites have recovered beyond
pre-fire levels for both grassland and open woodland areas, as early as 12 months post-fire (Figure 7a,c).
However, it is clear that the control sites also show an improvement in condition as demonstrated in
Figures 3, 4 and 7, thus demonstrating the need to determine the recovery trend relative to surrounding
unburnt areas. Following standardization, a more realistic insight into the post-fire recovery status
shows that recovery trends for burnt grassland and open woodland remain on a trajectory towards
pre-fire levels, but are yet to reach full recovery for both NDVI and NBR indices. In fact, by removing
the estimated rainfall effects that are responsible for the rapid re-greening of grassland areas, open
woodland areas appear to demonstrate a faster overall recovery towards pre-fire levels (Figure 7b,d).
The in situ field biomass observations support this result, showing biomass loads on open woodland
transects above pre-fire levels and recovering faster than on grassland transects (Figure 6). This finding
suggests that although grassland areas are recovering rapidly (as demonstrated in dNDVI recovery
maps), they have still not returned to pre-fire levels. To support this finding, it can be seen that
grassland areas were more heavily impacted in the fire as shown by a greater reduction in NDVI
and NBR after the burn (Figure 7a,c) and as a result, these areas may take longer to return to pre-fire
levels. Additionally, field surveys recorded a high tree mortality in open woodland areas, followed by
significant acacia root suckering and buffel grass growth beneath dead canopies (data not shown) and
this is likely to contribute to a greater increase in NDVI and NBR values compared to grassland areas.

It is clear that a high proportion of the site recovery occurred within the first 12-month window
following the experimental fire. Other grassland fire studies have analyzed time-series recovery
within the first six months post-fire with multiple images to show the first recovery steps [42]. Field
observations indicate that the biomass recovery occurred in the 6- and 12-month post-fire window
(Figures 6 and 9), which for this study site corresponds to the period between the late dry season and
the end of the first wet season. Attempts were made to capture imagery during the 6- to 9-month
post-fire window, but these were unsuccessful due to cloud cover in the imagery.

Commission errors were evident in the fire severity and recovery maps, with a number of large
areas recording high severity that are present outside the burn perimeter. These commission errors
were attributable to a number of factors including: (i) water bodies in the imagery that became
increasingly wet through the time-series (water bodies have been shown to be confused with burnt
areas in previous studies) [69]; (ii) land-cover changes between image captures where earthworks have
created bare areas (this is particularly notable in the south east corner of Figure 4c (when compared
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with the same locations in Figure 3c,e)); (iii) increased shadow as a result of topographic variations
and sensor viewing angle; and iv) georeferencing errors in areas of extreme topographic variation to
the south of the fire site (for example steep road ramp areas associated with mine infrastructure).

 GRASSLAND (T4) OPEN WOODLAND (T2) 

(a) 

  

(b) 

  

(c) 

  

(d) 

  

(e) 

  

(f) 

  
 

 
Figure 9. Photographs taken from the start of grassland transect 4 (left) and open woodland
transect 2 (right) showing the fire impact and the recovery over the two-year study. Images were taken
(a) 7-days pre-fire, (b) 7-days post-fire, (c) 3-months post-fire, (d) 6-months post-fire, (e) 12-months
post-fire and (f) 24-months post-fire. Note the death of Acacia stenophylla trees in the open woodland
transect followed by the suckering evident in the 24-month image.
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Another limitation to this study includes the timing of the post-fire field severity survey, which
was conducted three months after the immediate post-fire image capture. Although this time delay
may theoretically be problematic, the dry season conditions resulted in negligible rainfall (Figure A3),
and only minor vegetative changes had occurred, such as the initial re-sprouting of buffel grass and
first litter fall from some of the impacted trees. Residual ash was still clearly visible across the site, as
was charred vegetation and scorched leaves on trees. This is also notable in the relative slow recovery
of biomass in the 3- and 6-month post-fire biomass assessments (Figure 6) and field transect photos
(Figure 9). However, it is possible that this temporal discrepancy may have contributed to the reduced
class accuracy recorded in the low severity and unburnt classes for both indices, due to potential
underestimation of fire severity by field workers.

While studies have highlighted heterogeneity of surface features as being problematic for fire
mapping in comparable environments such as savanna grasslands and woodland [31,70], this study
demonstrates that remote sensing spectral indices can be used to quantify disturbance impacts,
vegetation recovery and resilience on highly heterogeneous landscapes. Indeed, the site preparation
methods employed during the rehabilitation of coal mine sites within the study region have resulted
in fine scale heterogeneity that is unique to rehabilitated landforms, often with no natural analogue.
Despite this, the use of high spatial and temporal remote sensing technology to the application of
restoration science is highly suited and can be applied at local scales ranging from 1 to 100+ km2.
Further, rehabilitation managers have the opportunity to utilize remote sensing and target approaches
to monitoring and remediation for areas that have been impacted by fire, drought, insect attack, flood
or cyclone damage and demonstrate to stakeholders the recovery success of rehabilitated areas.

5. Conclusions

The accurate assessment of fire risk, disturbance impacts and resilience of rehabilitated lands is
vital to mining companies who are tasked with creating and managing the current rehabilitation
estate as sites move towards mine closure and future lease relinquishment. When fire impacts
occur, managers need to make informed decisions on monitoring and remediation; and remote
sensing in combination with targeted field surveys offers informative, cost effective and scientifically
robust solutions. The dNDVI is a suitable index for the assessment of semi-arid grasslands and open
woodlands of Central Queensland, and the NIR and red bands appear better suited to resilience
analysis when compared to the longer SWIR wavelengths for WorldView-3 products. This study
shows the benefits of standardizing time-series trends with nearby, unburnt controls, in order to
reduce environmental effects (e.g., rainfall and phenological) and demonstrate more accurate recovery
trajectories. The success of the rehabilitation recovery post-fire is likely due to the impact of two
significant wet seasons and the future possibility of failed or weak wet seasons on the extended
recovery of burnt rehabilitation remain untested.

Author Contributions: P.M., S.P. and P.D.E. conceived and designed the experiments; P.M. performed the
experiments and analyzed the data; P.M. wrote the paper with substantial input from S.P., P.D.E.

Funding: The funding for this research was provided by Coronado Curragh Mine Pty Ltd. and the Queensland
Resources Council Coal Minesite Rehabilitation Trust Fund Scholarship.

Acknowledgments: Thanks to Vanessa Glenn, Associate Professor Alex Lechner, Associate Professor David Doley
and the anonymous reviewers who greatly improved the paper.

Conflicts of Interest: The authors declare no conflict of interest.



Fire 2018, 1, 22 21 of 28

Appendix A

Table A1. Statistics for regression analysis plotted in Figure 5.

Metric Figure Index Vegetation Epoch n Equation r r2 p Sig

Curing 5a NDVI Grassland All 15 y = 679.8089 − 4.8442x 0.894 0.7992 0.00001 yes
Curing 5a NDVI Open Woodland All 15 y = 498.2322 − 1.4284x 0.613 0.3757 0.0151 yes
Curing 5a NDVI Grassland Pre-Fire 5 y = −5.1722x + 722.1 0.98455 0.96934 0.0023 yes
Curing 5a NDVI Grassland 12-months post-fire 5 y = −10.511x + 971.93 0.63604 0.40455 0.248683 no
Curing 5a NDVI Grassland 24-months post-fire 5 y = −7.0186x + 768.57 0.9206 0.8475 0.026535 yes
Curing 5a NDVI Open Woodland Pre-Fire 5 y = −2.6542x + 581.55 0.5196 0.26998 0.369539 no
Curing 5a NDVI Open Woodland 12-months post-fire 5 y = 2.6362x + 314.13 0.65559 0.4298 0.229682 no
Curing 5a NDVI Open Woodland 24-months post-fire 5 y = −2.3464x + 532.91 0.57752 0.33352 0.307896 no

Biomass 5b NDVI Grassland All 20 y = 32.943x + 125.57 0.7675 0.58906 0.00008 yes
Biomass 5b NDVI Open Woodland All 20 y = 31.565x + 240.77 0.75908 0.57621 0.000104 yes
Biomass 5b NDVI Grassland Pre-Fire 5 y = 7.8942x + 238.36 0.68403 0.46789 0.202802 no
Biomass 5b NDVI Grassland Post-Fire 5 y = 105.1x + 29.71 0.46412 0.21541 0.431019 no
Biomass 5b NDVI Grassland 12-months post-fire 5 y = 35.828x + 243.21 0.84196 0.7089 0.073603 no
Biomass 5b NDVI Grassland 24-months post-fire 5 y = 41.245x + 126.02 0.95001 0.90252 0.013315 yes
Biomass 5b NDVI Open Woodland Pre-Fire 5 y = −6.2995x + 430.1 0.34055 0.11597 0.574936 no
Biomass 5b NDVI Open Woodland Post-Fire 5 y = 89.785x + 142.7 0.48528 0.2355 0.407311 no
Biomass 5b NDVI Open Woodland 12-months post-fire 5 y = 8.6196x + 398.84 0.34899 0.12179 0.564846 no
Biomass 5b NDVI Open Woodland 24-months post-fire 5 y = 3.9412x + 443.01 0.23244 0.05403 0.706736 no
Curing 5c NBR Grassland All 15 y = −7.2385x + 390.75 0.92679 0.85889 0.0000 yes
Curing 5c NBR Open Woodland All 15 y = −2.9024x + 90.793 0.74683 0.5577 0.00138 yes
Curing 5c NBR Grassland Pre-Fire 5 y = −6.0716x + 310.73 0.64015 0.4098 0.24465 no
Curing 5c NBR Grassland 12-months post-fire 5 y = −18.214x + 985.4 0.82067 0.6735 0.08867 no
Curing 5c NBR Grassland 24-months post-fire 5 y = −9.2755x + 464.34 0.93147 0.8676 0.021312 yes
Curing 5c NBR Open Woodland Pre-Fire 5 y = −5.5465x + 271.45 0.66309 0.4397 0.222507 no
Curing 5c NBR Open Woodland 12-months post-fire 5 y = −0.1766x − 8.2268 0.03277 0.0011 0.958285 no
Curing 5c NBR Open Woodland 24-months post-fire 5 y = −6.3784x + 168.14 0.82207 0.6758 0.087652 no

Biomass 5d NBR Grassland All 20 y = 39.131x − 356.74 0.71371 0.50938 0.00041 yes
Biomass 5d NBR Open Woodland All 20 y = 39.393x − 279.61 0.74963 0.56195 0.000142 yes
Biomass 5d NBR Grassland Pre-Fire 5 y = 12.84x − 290.46 0.61623 0.37973 0.268357 no
Biomass 5d NBR Grassland Post-Fire 5 y = −394.26x − 376.34 0.95165 0.90564 0.012669 yes
Biomass 5d NBR Grassland 12-months post-fire 5 y = 53.367x − 374.95 0.97022 0.94133 0.006141 yes
Biomass 5d NBR Grassland 24-months post-fire 5 y = 55.447x − 248.42 0.94112 0.8857 0.017 yes
Biomass 5d NBR Open Woodland Pre-Fire 5 y = 12.583x − 181.98 0.41539 0.17255 0.486736 no
Biomass 5d NBR Open Woodland Post-Fire 5 y = 103.93x − 390.17 0.3926 0.15413 0.513282 no
Biomass 5d NBR Open Woodland 12-months post-fire 5 y = 0.5874x − 17.884 0.01774 0.00031 0.977411 no
Biomass 5d NBR Open Woodland 24-months post-fire 5 y = 24.382x − 170.76 0.75299 0.567 0.14178 no
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Figure A1. Pseudo Invariant Features (PIF) regressions to normalize the bands used in the NDVI analysis: (a) Red band pre-fire vs. post-fire (b) Red band post-fire vs.
12-months post-fire (c) Red band 12-months post-fire vs. 24-months pot-fire; (d) NIR1 band pre-fire vs. post-fire; (e) NIR1 band post-fire vs. 12-months post-fire and
(f) NIR1 band 12-months post-fire vs. 24-months post-fire. ASR = At Surface Reflectance (%).
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Figure A2. Pseudo Invariant Features (PIF) regressions to normalize the bands used in the NBR analysis. Note that NIR1 bands were resampled to 7 m. (a) NIR1 band
pre-fire vs. post-fire (b) NIR1 band post-fire vs. 12-months post-fire (c) NIR1 band 12-months post-fire vs. 24-months pot-fire; (d) SWIR5 band pre-fire vs. post-fire;
(e) SWIR5 band post-fire vs. 12-months post-fire and (f) SWIR5 band 12-months post-fire vs. 24-months post-fire. ASR = At Surface Reflectance (%).
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Figure A3. Monthly rainfall measured at the Mine site weather station during the study period
compared to the 100-year monthly average taken from the nearby Blackwater Post Office. Source:
http://www.bom.gov.au/climate/data/ Dotted lines indicate monitoring events.

NDVI_1000
High : 1000

Low : -1000 ´ 0 0.5 10.25 km

(a) (b)

(c) (d)

Pre-Fire Post-Fire

12-Months Post-Fire 24-Months Post-Fire

Figure A4. NDVI rasters for the time-series (a) pre-fire; (b) post-fire; (c) 12-months post-fire and
(d) 24-months post-fire.

http://www.bom.gov.au/climate/data/
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Low : -1171.55
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High : 1420.15

Low : -1593.44
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High : 1471.16

Low : -1606.58

(a)

(b)

(c)

´ 0 0.5 10.25 km
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12-Months Post-Fire
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Figure A5. dNDVI rasters for the (a) fire severity map; (b) 12-month recovery map and (c) 24-month
recovery map.
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