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Abstract: The modulational instability (MI) of ion-acoustic waves (IAWs) is examined theoretically
in a four-component plasma system containing inertialess electrons featuring a non-thermal, non-
extensive distribution, iso-thermal positrons, and positively as well as negatively charged inertial
ions. In this connection, a non-linear Schrödinger equation (NLSE), which dominates the conditions
for MI associated with IAWs, is obtained by using the reductive perturbation method. The numerical
analysis of the NLSE reveals that the increment in non-thermality leads to a more unstable state,
whereas the enhancement in non-extensivity introduces a less unstable state. It also signifies the
bright (dark) ion-acoustic (IA) envelope solitons mode in the unstable (stable) domain. The conditions
for MI and its growth rate in the unstable regime of the IAWs are vigorously modified by the different
plasma parameters (viz., non-thermal, non-extensive q-distributed electron, iso-thermal positron,
the ion charge state, the mass of the ion and positron, non-thermal parameter α, the temperature of
electron and positron, etc.). Our findings may supplement and add to prior research in non-thermal,
non-extensive electrons and iso-thermal positrons that can co-exist with positive as well as negative
inertial ions.

Keywords: pair-ion plasma; NLSE; ion-acoustic waves; reductive perturbation method

1. Introduction

The physics of pair-ion (PI) plasmas, which have unusual thermodynamic features due
to the presence of solely positively and negatively charged species of equal mass [1], has
received tremendous attention in recent years as their applications have progressed from the
astronomical realm to the terrestrial laboratory. PI plasma can be observed in solar wind [2],
(Xe, F−) [3], positive and negative fullerene ions (C+

60 and C−60) [4], (K+, SF−6 ) [5,6], etc. The
formation of PI plasmas (Fullerene (C±60)) in the laboratory, introduced by Oohara and
Hatakeyama [7], has not only proved to be a viable alternative to electron–positron (EP)
plasma, but it has also made it more exciting and intriguing to study EP plasma properties
in terrestrial situations. The EP plasmas are commonly observed in active galactic nuclei [8],
in the early universe [9], and in pulsars [10], etc., and are also being produced in the
laboratory [11]. The study of linear and non-linear wave processes in EP plasmas has
received a lot of attention in recent years [12]. The PI plasma is expected to be utilized
in nanotechnology and for the synthesis of dimers directly from carbon allotropies [13].
Since then, the appeal of PI plasmas is contributing to a great deal of attention from
researchers [1,12].

Maxwellian velocity distribution usually describes the thermal equilibrium state of
particles, which may not be appropriate for interpreting the dynamics of highly energetic
particles. Renyi [14] was the first to suggest the non-extensive q distribution as a way
to describe the dynamics of these highly energetic particles, and Tsallis [15] proved the
further developments of a q distribution, which are applicable to a broader range in
solid-state physics [16], information theory [17], non-equilibrium systems [16], plasma
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physics [16], etc. In this distribution, the entropic index q quantifies the extent of non-
extensivity. It is worth noting that q = 1 refers to Maxwellian behavior, and q < 1
(q > 1) refers to super-extensivity (sub-extensivity), respectively. It has already been
mentioned that energetic electrons exist in a variety of astrophysical plasma domains, with
non-Maxwellian components [18]. Non-thermal electrons have been found in the upper
ionosphere of Mars [19], in the Earth’s bow-shock [20], in the magnetospheres of Jupiter
and Saturn [21], and in the vicinity of the Moon [18]. On the basis of observational data
from the Freja satellite [22] and the Viking spacecraft [23], Cairns et al. [17] proved that the
ubiquitous presence of non-thermal electron distributions in plasma systems can alter the
characteristics of IA solitary (IAS) structures. However, to broaden the work of the Cairns
non-thermal distribution, Tribeche et al. [24] presented a completely new hybrid (Cairns–
Tsallis) distribution inside the theoretical structure of Tsallis non-extensive statistics [15].
The non-thermal, non-extensive electrons can be described by the non-extensive parameter
q and the non-thermal parameter β (which identifies the degree of non-thermality in
plasma species). The primary benefit of employing such a distribution is that it claims to
provide increased parametric flexibility in modeling and fitting to a wide range of non-
thermal plasmas [24]. Such a kind of hybrid distribution provided an enormous effort to
generate various kinds of non-linear phenomena, namely, modulational instability (MI) [16],
envelope solitons [25], gigantic waves [16], etc. However, it is worth mentioning that some
recent theoretical work spotlighted the effects of non-thermal, non-extensivity on different
types of non-linear processes [16,24,26].

The investigation of MI and the associated non-linear structures (e.g., envelope soli-
tons [25], monster waves [16], etc.) has been one of the most popular research topics in
recent decades. MI is the carrier wave self-interaction, which is a well-known harmonic gen-
erating mechanism, that causes amplitude modulation in non-linear wave propagation [25].
The reductive perturbation method (RPM), used to derive the KdV equation, describes
the evolution of non-modulated waves, i.e., a bare pulse with no fast oscillations inside
the packet. A well-known non-linear mechanism involved in plasma wave dynamics is
amplitude modulation (which may be due to parametric wave coupling), to an interaction
between high- and low-frequency modes, or simply to the non-linear self-interaction of
the carrier wave. The standard method for studying this mechanism adopts a multiple
scales perturbation technique (also known as RPM) [27–29], which generally leads to a
non-linear Schrödinger equation (NLSE) describing the evolution of a slowly varying wave
packet envelope. Under certain conditions, the wave may undergo a Benjamin–Feir-type
MI, i.e., its envelope may collapse under the influence of external perturbations. The
MI of wave packets in plasmas acts as a precursor to the formation of bright envelope
solitons or highly energetic rogue waves; otherwise, the dark envelope solitons may be
formed. In addition, the envelope soliton may be defined as a rapidly oscillating wave
that propagates with a characteristic of constant shape and that can be pictured as cut
off by a smoothly modulating envelope. Recently, several authors have studied the MI
and envelope systems in various types of plasma systems [16,24,26]. Bouzit et al. [16]
employed a q-non-extensive, non-thermal electron velocity distribution to explore the MI
of IAWs, and discovered that plasma supports both the bright and dark envelope solitons.
They also discovered that the valid domain for the wave number k, at which instabilities
occur, differs depending on both the entropic index q and the non-thermal parameter α.
Bencheriet et al. [30] investigated tiny-amplitude ion-acoustic solitary (IAS) waves in a
plasma system containing positive-negative ions and non-thermal electrons, finding that
only rarefactive waves are maintained. Tribeche et al. [24] reported IAS waves in a plasma
with non-thermal electrons featuring Tsallis distributions, and observed that their plasma
model supports the co-existence of smooth rarefactive and spiky compressive IAS waves.
As far as we are concerned, there has been no attempt to examine the MI, the related dark
and bright envelope solitons, nor the growth rate analysis associated with IAS waves in
a four-component PI plasma system. The goal of this study is to enhance Tribeche’s [24]
work by examining the conditions for the MI in a four-component plasma system, using the
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RPM of the IAS waves (in which inertia is provided by the ion masses and restoring force
is regulated by the thermal pressure of non-thermal, non-extensive q-distributed electrons
and iso-thermal positrons).

The manuscript is ordered according to the following scheme: the model equations
containing non-thermal, non-extensive electrons, as well as iso-thermal positrons in a PI
plasma system, in association with the derivation of the NLSE, are manifested in Section 2.
The stability of IAWs and the associated envelope solitons are provided in Sections 3 and 4,
respectively. Lastly, the summary of our discussion is delivered in Section 5.

2. Model Equations

We have considered an unmagnetized, fully ionized, and four-component PI plasma
model consisting of inertial positive ions (charge q+i = +eZ+i; mass m+i), following the
fluid–momentum equations, inertial negative ions (charge q−i = −eZ−i; mass m−i), ex-
plained by the fluid–dynamic equations, inertialess electrons (charge qe = −e; mass me),
assumed to obey a non-thermal, non-extensive distribution, and an inertialess positron, de-
noted by np (charge qp = +e; mass mp), that follows an iso-thermal distribution. The quasi-
neutrality criterion is maintained in our model, which can be stated as ne0 + Z−in−i0 =
np0 + Z+in+i0. Now, the fundamental set of normalized equations can be depicted as follows:

∂n+i
∂t

+
∂

∂x
(n+iu+i) = 0, (1)

∂u+i
∂t

+ u+i
∂u+i
∂x

+
∂φ

∂x
= 0, (2)

∂n−i
∂t

+
∂

∂x
(n−iu−i) = 0, (3)

∂u−i
∂t

+ u−i
∂u−i
∂x
− γ1

∂φ

∂x
= 0, (4)

∂2φ

∂x2 = ne(1 + γ2 − γ3) + γ3n−i − γ2np − n+i, (5)

The following are the normalization and related parameters: n+i = N+i/n+i0, n−i =
N−i/n−i0, ne = Ne/ne0, np = Np/np0, u+i = U+i/C+iD, u−i = U−i/C+iD, x = X/λ+iD,
t = Tω+ip, φ = eϕ/kBTe, C+iD = (Z+ikBTe/m+i)

1/2, ω+ip = (4πe2Z2
+in+i0/m+i)

1/2,
λ+iD = (kBTe/4πe2Z+in+i0)

1/2, γ1 = Z−im+i/Z+im−i, γ2 = np0/Z+in+i0, and γ3 =
Z−in−i0/ Z+in+i0, where n+i, n−i, ne, and np stand for the number densities of the positive
ions, negative ions, electrons, and positrons, respectively. Conversely, u+i, u−i, x, t, φ,
C+iD, ω+ip, λ+iD, kB, and Te define the positive ion fluid speed, negative ion fluid speed,
space co-ordinate, time co-ordinate, electro-static potential, sound speed of the positive
ions, angular frequency of the positive ions, Debye length of the positive ions, Boltzmann
constant, and electron temperature, respectively. The number densities of the electrons
(obeying a non-thermal, non-extensive distribution [24]) and the positrons (following an
iso-thermal distribution [31]) can now be expressed using the normalized equations below:

ne = (1 + Aφ + Bφ2)[1 + (q− 1)φ]
q+1

2(q−1) , (6)

np = exp(−γ4φ). (7)

where A = −16qα/(3− 14q + 15q2 + 12α) (with q (α) as the non-extensive (non-thermal)
parameter, respectively. α, the non-thermal parameter that determines the proportion of the
fast energetic particles and thermal electrons [32], B = A(1− 2q), and λ4 = Te/Tp (with Tp
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(Te) being the temperature of the positron (electron), respectively and Te > Tp)). Now, by
substituting (6) and (7) into (5) and expanding up to the third order, we can write:

∂2φ

∂x2 + n+i + γ3

= 1 + γ3n−i +
[(1 + γ2 − γ3)Π1 + 2γ2γ4]

2
φ

+
[(1 + γ2 − γ3)Π2 − 4γ2γ2

4]

8
φ2

+
[(1 + γ2 − γ3)Π3 + 8γ2γ3

4]

M3
φ3 + · · · (8)

where Π1 = 2A + q + 1, Π2 = 8B + 4Aq + 4A + 2q− q2 + 3, and Π3 = 24Bq + 24B + 12q−
6q2 + 18 + 3Q3 + 3q2 − 9q2 − 9q− 5q2 − 5q− 15q− 15. In order to study the stable and
unstable domains of the IAWs’ PI plasma, we introduce the following stretched coordinates,
according to the reductive perturbation method (multiscale technique): [27–29,32,33]:

ξ = ε(x−Vgt), (9)

τ = ε2t, (10)

where Vg denotes the group speed and ε denotes a minor parameter. The dependent
variables [33] can, therefore, be stated as follows:

Υ(x, t) = Υ0 +
∞

∑
m=1

ε(m)
∞

∑
l=−∞

Υ(m)
il (ξ, τ)eil(kx−ωt), (11)

where Υ(m)
il = [n(m)

+il , u(m)
+il , n(m)

−il , u(m)
−il , φ

(m)
l ]T , Υ0 = [1, 0, 1, 0, 0]T , and k (ω) is a real variable

that represents the number of carrier waves (frequency), respectively. The dispersion
relation can be obtained by substituting these expansions into the motion equations:

ω2 =
k2(1 + γ1γ3)

(k2 + M1)
. (12)

We have numerically analyzed Equation (12) in order to explain the linear dispersion
features of IAWs for different values of γ1. The outcomes are depicted in Figure 1, which
manifest that (a) for the lower range of k, the IAW mode grows exponentially with it, but
saturation sets in after a specific value of k, and that (b) the wave frequency (ω) rises
exponentially with the positive ion mass for a fixed value of other plasma parameters. The
group velocity,

γ1 0.6

γ1 0.8

γ1 1.0

0 5 10 15 20

0.0

0.2

0.4

0.6

0.8

1.0

1.2

k

ω

Figure 1. The variation of ω with k for several values of γ1, along with α = 0.5, γ2 = 1.2, γ3 = 0.5,
γ4 = 1.4, and q = 1.5.
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Vg =
ω(1 + γ1γ3 −ω2)

k(1 + γ1γ3)
, (13)

and, finally, the NLSE,

i
∂Φ
∂τ

+ P
∂2Φ
∂ξ2 + QΦ|Φ|2 = 0, (14)

where Φ = φ
(1)
1 for simplicity, which denotes the electric potential correction [34] P =

(3V2
g /2ωk)− (3Vg/2k), Q = M14/(2k2 + 2k2γ1γ3), and the other parameters are:

M14 = 3M3ω3 + 2M2ω3M8 + 2M2ω3M13 −ωk2M4

−ωk2M9 − 2k3M5 − 2k3M10 − γ1γ3ωk2M6

−γ1γ3ωk2M11 − 2γ1γ3k3(M7 + M12).

M4 = (3k4/2ω4) + (2M8ω2k2/2ω4),

M5 = (k3/2ω3) + (M8k/ω),

M6 = (3γ2
1k4/2ω4)− (γ1M8k2/ω2),

M7 = (γ2
1k3/2ω3)− (γ1M8k/ω),

M8 = (M2ω2/k2 + γ1γ3k2 −M1ω2 − 4k2ω2) + (3γ3γ2
1k4

−3k4/2ω2k2 + 2γ1γ3ω2k2 − 2M1ω4 − 8k2ω4)

M9 = (2k3/Vgω3) + (k2/V2
g ω2) + (M13/V2

g ),

M10 = (k2/Vgω2) + (M13/Vg),

M11 = (2γ2
1k3/Vgω3) + (γ2

1k2/V2
g ω2)− (γ1M13/V2

g ),

M12 = (γ2
1k2/Vgω2)− (γ1M13/Vg),

M13 = [(2M2V2
g ω3 + 2γ3Vgγ2

1k3 − 2Vgk3

+ωk2)/(ω3 + γ1γ3ω3 −M1V2
g ω3)]

+[(γ3γ2
1k2)/(ω2 + γ1γ3ω2 −M1ω2V2

g )].

3. Stability of IAWs

To study the MI of IAWs, we consider the linear solution of Equation (12) in the form
Φ = Φ̃eiQ|Φ̃|2τ + c.c., where Φ̃ = Φ̃0 + εΦ̃1 and Φ̃1 = Φ̃1,0ei(k̃ξ−ω̃τ) + c.c. We note that the
amplitude depends on the frequency, and that the perturbed wave number k̃ and frequency
ω̃ are different from k and ω. Now, substituting these into Equation (12), one can easily
obtain the following non-linear dispersion relation [31,34,35]:

ω̃2 = P2k̃2
(

k̃2 − 2|Φ̃0|2
P/Q

)
. (15)

The MI of IAWs, in which the NLSE dominates the amplitude progression, is entirely de-
pendent on two terms: the non-linear (P) and dispersive coefficients (Q) (see Equation (15)).
Both of the coefficients are the functions of different physical plasma parameters, such
as γ1, γ2, γ3, α, q, etc. Outlining P/Q against the wave number (k) for different plasma
properties can be used to acknowledge the stability conditions of IAWs [36]. The sign of
P/Q plays a significant role to recognize the criteria of the IAWs. It is important to mention
that IAWs are modulationally stable when the non-linear and dispersive coefficients have
different signs (P/Q < 0), whereas the instability condition is obtained when P and Q have
the same sign (P/Q > 0) (see Equation (15)) [36]. It is necessary to note that the critical
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threshold number, (kc), is defined as the intersecting point at which a stable and unstable
domain can be obtained for IAWs. Additively, the term plays a decisive role in order to
differentiate between stable and unstable regions of IAWs [36].

The impact of γ2 on kc in the variation of the P/Q curve with k is displayed in
Figures 2 and 3, respectively. It is obvious from the figures that: (a) both the modulation-
ally stable and unstable domains can be observed in non-linear and dispersive IAWs
(Figures 2 and 3); (b) the IAWs are modulationally unstable for a trivial value of k
(k = kc ∼= 0.4) when the other parameters remain constant (Figure 2). On the other
hand, in Figure 3, the instability condition can be observed at a value of k = kc = 0.5;
(c) the stable region of the IAWs increases (decreases) with the equilibrium number density
of the positron (positive ion) for a constant value of the charge state of the positive ion
(via γ2) (Figures 2 and 3, respectively); (d) the equilibrium positron number density plays
a more major role in enhancing the stability domain of IAWs in the non-Maxwellian case
(q = 1.5, α = 0.5, as shown in Figure 2) than in the Maxwellian case (q = 1, α = 0, as clearly
seen in Figure 3). Thus, an excess number of positrons in our considered plasma system
leads to the maximization of the stable domain of the wave profile.

γ2=1.2

γ2=1.4

γ2=1.6

0.0 0.2 0.4 0.6 0.8 1.0

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

k

P

Q

Figure 2. The relationship between P/Q and k for various values of γ2 (when α = 0.5 and q = 1.5),
along with γ3 = 0.5 and γ4 = 1.4.
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-0.10
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0.00

0.05

0.10

k

P

Q

Figure 3. For different values of γ2, the change of P/Q with k (when α = 0 and q = 1.0), along with
γ3 = 0.5 and γ4 = 1.4.

The effect of the non-thermal parameter (α) and the non-extensive index (q) on the
stability of the wave profile can easily be recognized from Figures 4 and 5, respectively.
The outcomes are as follows: (a) the stable and unstable regions of the IAWs can be noticed
in Figures 4 and 5, respectively; (b) it is clear from Figure 4 that the instability domain of
the IAWs, which arises by varying α (while keeping other parameters constant), strikes
at a value of kc = 0.38, whereas in Figure 5, the same condition commences at a value of
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kc = 0.4; (c) the stability of the IAWs declines (rises) by increasing the value of the non-
thermal parameter (non-extensive q index) (Figures 4 and 5, respectively), and this result is
in good agreement with the work of Ghosh and Banerjee [25]; (d) in order to enhance the
stability condition of the IAWs, the non-thermal parameter (α) plays a completely opposite
character to the non-extensive q index (Figures 4 and 5).

α=0.4

α=0.6

α=0.8

0.0 0.2 0.4 0.6 0.8 1.0

-0.2

-0.1

0.0

0.1

0.2

k

P

Q

Figure 4. Plot of P/Q with k for different values of α (when q = 1.5), along with γ1 = 0.8, γ2 = 1.2,
γ3 = 0.5, and γ4 = 1.4.
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0.2

k

P

Q

Figure 5. The variation of P/Q with k for various values of q (when α = 0.5), together with γ1 = 0.8,
γ2 = 1.2, γ3 = 0.5, and γ4 = 1.4.

The disparity of the growth rate (Γ) of the MI of IAWs varies with the wave number (k)
of the changing value of γ1, and γ4 is displayed in Figures 6 and 7, respectively. However,
the graphical representations reveal that (a) the growth rate Γ reduces (advances) in the
values of Z+i (Z−i) (via γ1) by keeping the other parameters constant (Figure 6), and that
(b) if the value of Te is increased for a fixed value of Tp, then Γ decreases (via γ4) (Figure 7).
Therefore, the non-linearity of our considered plasma is very sensitive to the changes of two
parameters, namely, γ1 and Tp, which cause the maximum growth rate of the wave profile.
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Figure 6. Graphical representation of Γ with k̃ for different values of γ1, along with α = 0.05, γ2 = 1.2,
γ3 = 0.5, γ4 = 1.4, q = 1.5, ω, Φ0 = 0.5, and k = 0.6.
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Figure 7. Numerical analysis of Γ with k̃ for different values of γ4, along with α = 0.05, γ1 = 0.8,
γ2 = 1.2, γ3 = 0.5, q = 1.5, ω, Φ0 = 0.5, and k = 0.6.

4. Envelope Solitons

The sign of the coefficients (P and Q) declares that two types of envelope modes may
exist, e.g., bright and dark envelope solitons. The bright envelope solitons have attractive
non-linearity [34] with a bell-shaped structure. Envelope solitons in the form of the bright
type are found in space plasmas [34]. This type of soliton exists when P and Q have the
same sign (P/Q > 0), which occurs at larger wave numbers (shorter wavelengths). The
localized envelope pulses of the form is shown in Figure 8. The common analytical form of
bright envelope modes can be read as [32,34,35,37]:

Φ(ξ, τ) = Π5 ×Π6, (16)

where

Π5 =

[
ψ0 sech2

(
ξ −Uτ

W

)]1/2
,

and Π6 = exp
[

i
2P

{
Uξ +

(
Ω0 −

U2

2

)
τ

}]
,

It is noted that, in the Π5 term, ψ0 indicates the envelope amplitude, U is the prop-
agation speed of the localized pulse, W is the pulse width, which can be written as
W =

√
(2|P/Q|)/ψ0), and Ω0 is the oscillating frequency for U = 0.



Plasma 2022, 5 9

On the other hand, the dark solitons are dips or holes in a wave background that
require repulsive or defocusing non-linearity [30]. In this soliton, P and Q have the opposite
sign P/Q < 0 for large wavelengths (or small wave numbers in the modulationally stable
region). The localized envelope pulse of the dark envelope soliton is depicted in Figure 9.

The general analytical form for the dark-type mode can be written as [32,34]:

Φ(ξ, τ) = Π7 ×Π8, (17)

where

Π7 =

[
ψ0 tanh2

(
ξ −Uτ

W

)]1/2
,

and Π8 = exp
[

i
2P

{
Uξ −

(
U2

2
− 2PQψ0

)
τ

}]
.
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R
e
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)

Figure 8. The variation of Re(Φ) with ξ, along with α = 0.5, γ1 = 0.8, γ2 = 1.2, γ3 = 0.5, γ4 = 1.4,
and q = 1.5, Φ0 = 0.008, ψ0 = 0.008, τ = 0, k = 0.6, and U = 0.4.
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Figure 9. The variation of Re(Φ) with ξ, along with α = 0.5, γ1 = 0.8, γ2 = 1.2, γ3 = 0.5, γ4 = 1.4,
and q = 1.5, Φ0 = 0.008, ψ0 = 0.008, τ = 0, k = 0.3, and U = 0.4.

5. Conclusions

We have examined the basic features of IAWs in an unmagnetized PI plasma system
containing a non-thermal, non-extensive q-distributed electron, an iso-thermal positron,
and positively as well as negatively charged inertial ions. A multiscale technique (reductive
perturbation method) is employed to deduce the NLSE. From the investigation, it can
be seen that both the modulationally stable and unstable domains can be observed in
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non-linear and dispersive IAWs. The wave frequency (ω) grows exponentially with the
rising value of the positive ion mass. It is worth mentioning that the equilibrium positron
number density plays a more vital role in enhancing the stability domain of IAWs in the
non-Maxwellian case than in the Maxwellian case. Moreover, in order to enhance the
stability condition of the IAWs, the non-thermal parameter (α) plays a completely opposite
character to the non-extensive q index. The increment of both the negative ion mass and
the electron temperature in the PI plasma system tend to decrease the growth rate of IAWs.
Note that the findings of our present investigation will be useful for understanding the
non-linear phenomena (viz., the MI of IAWs and the formation of envelope modes) in
IAWs, where the electrons follow the non-thermal, non-extensive distribution, and the
positrons obey the iso-thermal distribution.
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