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Abstract: Ion holes refer to the phase-space structures where the trapped ion density is lower at the
center than at the rim. These structures are commonly observed in collisionless plasmas, such as the
Earth’s magnetosphere. This paper investigates the role of multiple parameters in the generation and
structure of ion holes. We find that the ion-to-electron temperature ratio and the background plasma
distribution function of the species play a pivotal role in determining the physical plausibility of ion
holes. It is found that the range of width and amplitude that defines the existence of ion holes splits
into two separate domains as the ion temperature exceeds that of the electrons. Additionally, the
present study reveals that the ion holes formed in a plasma with ion temperature higher than that of
the electrons have a hump at its center.
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1. Introduction

Solitary wave structures are commonly observed in space, astrophysical and labo-
ratory plasmas [1–9]. From the kinetic perspective, these structures are characterized as
Bernstein Greene Kruskal (BGK) modes [8,10]. Charged particles will get trapped inside
such structures depending on the polarity of wave electrostatic potential and the corre-
sponding sign of charged particles [11]. These solitary wave structures are referred to
as ion or electron BGK mode depending on the type of trapped particle species. As the
phase-space equilibrium for these modes is characterized by a vortex-type structure, they
are also called the ion or electron holes. The ion holes (IHs) are associated with the negative
monopolar potential [12], whereas the electron holes (EHs) are associated with the positive
monopolar wave potential [13,14]. In-situ observations in the Earth’s magnetospheric
regions of bipolar coherent electric field with negative mono-polar potential are indications
that IHs are present in such a vicinity [3,7,15]. The Viking satellite [15] first observed the
signatures of IHs, followed by the later more frequent detection by FAST satellite [3].

Schamel developed the theoretical models to study the IHs [16–18]. Unlike the clas-
sical approach, the authors assigned a vortex type distribution to the trapped particles.
The integration of both trapped and passing distribution functions in velocity space yields
the total charge density as a function of electrostatic potential. The potential is further calcu-
lated self-consistently from the Poisson equation. Schamel’s theory places a rather stringent
condition on the ion-to-electron temperature ratio for the generation of ion holes [19],
but this approach is not well suited to model the observations as the satellite data are not
always consistent with such a theoretical prediction. It thus appears that the classical BGK
approach is more suitable as it is free from the restriction on the said temperature ratio.
Chen et al. [20] thus developed a theory for BGK equilibrium that encompasses both ion
and electron holes, which is more general than the approach taken by Schamel. However,
certain assumptions implicit in their theory is ambiguous and thus, their solution is not
completely general. Recently, Wang et al. [7] reported observations from the Magneto-
spheric Multiscale (MMS) Mission, which revealed the presence of IHs in Earth’s bow
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shock region that do not satisfy the temperature ratio condition implied in Schamel’s theory.
Aravindakshan et al. [12] improved the theory by Chen et al. [20] and demonstrated that
the MMS observations can unambiguously be explained.

The present paper builds upon the work by Chen et al. [20], and further explores
the property of IHs under different plasma conditions. The present theoretical formalism
assumes that both ions and electrons follow the suprathermal (kappa) distribution function.
In general, it is believed that the origin of suprathermal distribution lies in the acceleration
by waves in plasma [21–25]. However, on a more specific note, several mechanisms cause
the particles to follow suprathermal distribution. Some examples are the superposition of
stochastic processes [26], the influence of pickup ions [27], due to quasi-thermal noise [28],
the particle acceleration due to shock waves [29] and the variation of the polytropic index
in the solar wind protons [30]. Thus these suprathermal distributions of charged particles,
often modeled by the kappa distribution, are directly or indirectly observed in diverse
regions in space and astrophysical plasmas. Voyager, Cassini, and other interplanetary
mission satellite observations report the presence of suprathermal electrons and thermal
ions in their respective magnetospheres [31] (and references therein). Observations from
the magnetotail of Uranus reported by Voyager reveal the presence of suprathermal ions
and thermal electrons with large ion beams directed outward [32,33]. Close to the Earth,
Espinoza et al. [34] analyzed the ion kappa parameter distribution in the Earth’s bow-
shock and plasmasheet. On the other hand, in the heliosheath, magnetosphere of Saturn,
and terminal shocks the ions and electrons are found to be in thermal equilibrium [35,36].
By employing the kappa distribution, we may characterize the IHs formed in such diverse
regions by choosing different value for the suprathermal kappa parameter.

This paper is organized as follows: In Section 2, we discuss the formulation of BGK
IHs, where both ions and electrons follow the suprathermal distribution. Characteristics of
IHs and their properties are discussed in Section 3, and the present study is summarized
and concluded in Section 4.

2. Theoretical Formalism

We briefly overview the model proposed by Aravindakshan et al. [12] for ion holes in
suprathermal plasma. We consider a one-dimensional unmagnetized collisionless plasma
system consisting of electrons and ions (protons), commonly found in the Earth’s magne-
tosphere, other astrophysical and inter-planetary regions. We begin the discourse based
upon a one-dimensional Vlasov-Poisson system of equations that governs the dynamics of
ion distribution function fi in collisionless unmagnetized plasma, and adiabatic electrons,(

∂

∂t
+ Vi

∂

∂x
− qi

mi

∂Φ
∂x

∂

∂Vi

)
fi = 0 (1)

d2Φ
dx2 = − qeNe + qi Ni

ε0
(2)

where fi, qi, Vi and mi denote the distribution function, charge, velocity, and mass of ions i,
respectively. Here qe = −e for electrons and qi = +e for ions. Ne and Ni are electron and
ion densities such that Ne = Ni = N0. Φ is the electrostatic potential and ε0 is the vacuum
permittivity. It is convenient to work in a coordinate system in which the ion hole is at rest
so that all quantities are time-independent. In such a case, the Equations (1) and (2) reduce
to the following normalized form:

v
∂ fi(v, x)

∂x
+

1
2

∂φ

∂x
∂ fi(v, x)

∂v
= 0 (3)

d2φ

dx2 = ne − ni (4)
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In Equation (4), we have made use of the definition, ni =
∫ ∞
−∞ fi(x, v)dv, and ne is the

electron density, which can be obtained by taking the first moment of the one-dimensional
kappa velocity distribution function [37,38].

ne =

(
1− φTr

αe

)−αe

(5)

Here, Tr = Ti/Te, αe = κe − 1.5 and κe denotes the suprathermal index of adiabatic
electrons. In Equation (3), v is the normalized ion velocity in the frame co-moving with
the wave perturbation. The normalizations are such that x is normalized by the ion
Debye length, λdi =

√
kBTi/ε0N0e2; velocity is normalized with respect to ion thermal

velocity vth,i =
√

2kBTi/mi, and φ is the potential normalized by kBTi/e. Here Ti is the ion
temperature, kB is the Boltzmann constant, and N0 is the equilibrium density of electrons.

We consider suprathermal ions distributed according to the kappa model.

fi(v) =
Γ(κi)√

παi Γ(βi)

(
1 +

v2

αi

)−κi

(6)

Here, αi = κi − 1.5, βi = κi − 0.5 and κi denotes the suprathermal index of ions.
It should be noted that the velocity in the above distribution function that we used to
describe the passing ions is unaffected by the potential. Thus, they are represented as v∞.
Let us write the ion distribution function in terms of the normalized total energy of the
particles w =

(
v2 + φ

)
/2. For the particles that are unaffected by the potential, the total

energy is essentially kinetic energy given by, w = v2
∞/2. From the conservation of energy,

w =
(
v2 + φ

)
/2 = v2

∞/2. Consequently, Equation (6) transforms as

fi(v) =
Γ(κi)√

παi Γ(βi)

(
1 +

2w
αi

)−κi

(7)

We assume a Gaussian negative potential form, which is supported by spacecraft
observations in the Earth’s magnetosphere, where such a Gaussian wave potential structure
is shown to be quite common [39]. The formation of potentials and the associated BGK
structures are generally attributed to streaming instabilities [1], driving plasma electrons
by a small amplitude and chirped frequency ponderomotive force or the autoresonant
approach to self-consistent excitation [40,41] (and the references therin). Specifically, we
adopt the model,

φ(x) = −ψ exp
(
− x2

2δ2

)
(8)

where ψ represents the amplitude, and δ is the width of the perturbation, respectively. Note
that δ signifies a distance at which the potential decreases to 0.6065 ψ. The full half-width
of the perturbation is given by ∆ = 2.35 δ [13]. Under the influence of potential, the ion
population splits into the passing and trapped population. The trapped population inside
the potential is affected by the potential, whereas the passing population is unaffected,
and their distribution is fundamentally the aforementioned kappa distribution function.
We distinguish the passing particle distribution function by fp, and the trapped particles
by ftr.

As there are two kinds of ion population, trapped and passing, we distinguish the
passing particle distribution function by fp, and the trapped particles by ftr. The net
charge density is made of combined passing (np) and trapped (ntr) charged densities. As a
consequence, Equation (4) is written as

d2φ

dx2 = ne − np − ntr (9)
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Integrating the passing ion distribution function under the proper limits we obtain
the passing ion density,

np = 1− 2A
√−φ√

αi
2F1

(
κi, 0.5, 1.5;

φ

αi

)
(10)

where 2F1(a, b, c; z) is the hypergeometric function, and

A =
Γ(κi)√
π Γ(βi)

(11)

Making use of Equation (10) for passing ion density, we obtain the trapped ion density,

ntr =

(
ρTr

αe
+ 1
)βe

− 2ρ log(ρ/ψ)

δ2 − ρ

δ2

−1 +
2A
√

ρ
√

αi
2F1

(
κi, 0.5, 1.5;− ρ

αi

)
(12)

Here βe = κe − 0.5. Making use of the trapped ion density Equation (12), we may
construct the trapped ion distribution function. The method closely follows those by
Refs. [13,42]. The result is as follows:

ftr(w) =
A√
αi

2F1

(
0.5, κi; 1;

2w
αi

)
−
√
−w
{

0.9Tr
βe

αe
2F1

(
1, κe + 0.5; 1.5;

2Trw
αe

)
+

4
√

2
πδ2

[
log
(
−8w

ψ

)
− 0.5

]}
(13)

In order for the ion trapped distribution Equation (13) to represent physically mean-
ingful stable equilibria for ion holes, we require that ftr(w) always be positive. Employing
this criterion we arrive at an inequality governing the width and amplitude of the wave po-
tential,

δ2 ≥
4
√

2
√
−w
[
log
(
− 8w

ψ

)
− 0.5

]
0.9π Tr

√
−w βe

αe 2F1

(
1, κe + 0.5; 1.5; 2Trw

αe

)
+ πA

√
αi 2F1

(
0.5, κi; 1; 2w

αi

) (14)

This inequality leads to a constraint on possible ranges of wave potential width and
amplitude in order for the trapped ion distribution to have positive values. The conse-
quence of condition (14) is explored in depth next.

3. Results and Discussion

The present model assumes that both trapped and passing particles are described
by kappa distributions. We may thus include thermal as well as suprathermal plasma in
our discussion by choosing appropriate values of κ index. We study the characteristics of
ion BGK hole equilibrium by analyzing the width-amplitude relation, i.e., Equation (14)
for the four cases: (i) suprathermal electrons and ions (κe = κi = 2), (ii) suprathermal
electrons and thermal ions (κe = 2, κi = 200), (iii) thermal electrons and suprathermal ions
(κe = 200, κi = 2), (iv) thermal electrons and ions (κe = κi = 200). We begin the discussion
by considering two different ion temperature cases: Ti < Te (Tr = 0.5) and Ti > Te (Tr = 3).

Figures 1 and 2, respectively, show the behavior of physically plausible width-amplitude
region, (δ, ψ), for the above-mentioned four cases with temperature ratio Tr = 0.5 and
Tr = 3. For Ti < Te, as exemplified by Tr = 0.5, the region of plausibility for ion holes
shows a clear demarkation – see Figure 1, blue-shaded domains, which correspond to
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the plausibility condition versus white areas, which indicate forbidden zone. As the ion
temperature exceeds that of the electrons Ti > Te (or specifically Tr ≥ 1), on the other
hand, the physical plausibility condition undergoes a dramatic change, as Figure 2 shows.
In specific, a new branch of physically plausible region splits from the main domain,
as exemplified by Figure 2. This suggests that the ion-to-electron temperature ratio plays a
pivotal role. Henceforth, we refer to the narrow vertical blue strip corresponding to the
lower amplitude region, shown in Figure 2, as Region 1 and the main higher amplitude
domain, color-coded in blue, Region 2. Note that all four different cases (i–iv) show
qualitatively similar features in terms of the overall pattern of plausible versus forbidden
parameter space. For this reason we focus on case (i) in order to further investigate the
parametric dependence on the behavior of IHs.
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Figure 1. The width-amplitude relation for different configuration of ion and electron distribution
function is shown for temperature ratio, Tr = 0.5. The blue-shaded regions correspond to the
parameter space that permits the existence of ion holes.

3.1. Effects of Potential on IHs
3.1.1. Ti < Te

One of the key quantities that defines the BGK equilibria is the trapped particle density.
Figure 3 depicts the dependence of trapped ion density on the width and amplitude of the
potential when both ions and electrons are suprathermal. The left panel of Figure 3 displays
the dependence of trapped ion density for various values of wave amplitude when the
electrons have twice the temperature of ions. It can be seen that as the amplitude of the
wave-potential increases, the maximum of the trapped density distribution also increases.
The right panel shows the influence of wave potential width on the trapped ion density. It
is seen that the width controls the spatial spread of trapped ion density. The solitary wave
amplitude determines the maximum velocity of the trapped particles, while the width
controls how many particles can be trapped in order to sustain the BGK equilibrium.
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Figure 2. The width-amplitude relation for different configuration of ion and electron distribution
function is shown for temperature ratio, Tr = 3.
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Figure 3. The dependence of trapped ion density for different ψ and δ is shown. The left panel shows
the case for different ψ, for fixed Tr = 0.5 and δ = 10. The right panel shows the case for different δ

keeping the Tr = 0.5 and ψ = 0.01 constant.

The influence of wave potential amplitude on the BGK equilibrium can be seen in
Figure 4, where the trapped ion distribution function is plotted for different values of ψ,
for fixed Tr and δ. It is seen that ftr(x, v) gets stretched along v axis as the amplitude ψ
increases. In order to aid the visualization we also plotted the two-dimensional projection
of ftr underneath the surface plots of the trapped-particle distribution.

Figure 5 demonstrates the dependence of trapped ion distribution function on varying
δ, while keeping ψ and Tr as fixed. For this case, ftr is stretched along x axis, which is
consistent with Figure 3, where it is shown that the trapped density broadens as δ increases.
The elongation of ftr along x axis as δ increases is thus predicted by the behavior of ntr.
However, the stretching of ftr along v axis, as shown in Figure 4, could not have been
predicted on the basis of trapped density analysis.
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Figure 4. Three-dimensional structure of the trapped ion distribution function ftr(x, v) versus x and
v, for different values of ψ, while keeping Tr = 0.5 and δ = 10 as fixed. The color bar indicates the
density. The two-dimensional projection of ftr(x, v) is displayed underneath the surface plot of the
trapped ion distribution function.

Figure 5. The same as Figure 4, except that the potential width δ is varied, while keeping Tr = 0.5
and ψ = 0.01 as constants.

3.1.2. Ti > Te

We next consider Tr = 3 to investigate the phase space structure of IHs when the
ion temperature is higher than the electron temperature. As seen in Figure 2, the width-
amplitude plot for this case shows Region 1 and Region 2 for the existence of BGK IH
equilibria. Thus, we consider the amplitudes and widths from these regions separately in
order to examine the behavior IHs. Figure 6 shows the behavior of trapped ion density with
the amplitude and width of the wave potential corresponding to Region 1 (left panels) and
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Region 2 (right panels). Figure 6 demonstrates that the lower amplitude wave potentials
(Region 1) have a similar response to the trapped ion density that we have seen for Ti < Te.
However, the trapped ion density shows an extreme behavior when the wave potential
amplitude is high (Region 2). Despite the width and amplitude from the allowed region,
the trapped density delves into negative values that are physically improbable. A similar
distribution of trapped density is generally displayed if the stretched solitary wave’s
potential generates the BGK equilibria [43]. Figures 7–10 depict the corresponding phase
space characteristics of the IHs for the cases that are shown in Figure 6. It is seen that
the left panels of Figures 7 and 9 show similar behavior as compared to the case of a
lower temperature ratio; this indicates that the temperature ratio does not have an explicit
dependence on the characteristics of IHs.

In contrast, the right panels of the Figure 6 and their corresponding phase-space
distribution shown in Figures 8 and 10 exhibit a different behavior. Such a trapped density
distribution and phase space portrayal are a general characteristics of the stretched solitary
wave. In Figures 8 and 10, unlike a smooth minimum, a small local maximum appears at
the center of trapped ion phase space distribution function. A small hump in the phase
space is attributed to the momentum transfer between the electrons to the trapped ions [43].
When the temperature ratio (Tr) is large, i.e., when ions have a higher temperature and the
wave potential depth is correspondingly high, a wider range of phase space is available
for the electrons to interact with the potential. As the interaction of the electrons is most
efficient at the center of the potential, the largest transfer of momentum causes the ions
to bunch, which is depicted as a hump in the phase space. This transfer of momentum
translates to the such kind of trapped ion density distribution.
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Figure 6. The characteristics of trapped ion density for different ψ and δ are shown. The top panels
show the case for different ψ keeping the Tr = 3 and δ constant. In the top left panel, the values of ψ

are taken from Region 1, and δ is assumed to be 10. In the top-right panel, the values of ψ are taken
from Region 2, and δ is assumed to be 60. The bottom panels show the case for different δ keeping
the Tr = 3 and ψ constant. In the bottom left panel, ψ is assumed to be 0.01 (from Region 1), whereas
in the bottom right panel ψ is assumed to be 2 (from Region 2) for different values of δ.
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Figure 7. The trapped ion distribution function ftr(x, v) versus x and v, as well as 2D projection,
for different values of ψ, and for fixed Tr = 3 and δ = 40.

Figure 8. The same as Figure 7, except that the choice of ψ and δ designate Region 2. For each panel,
a small hump at the center of the phase space distribution can be observed.
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Figure 9. The trapped ion distribution function for different δ keeping Tr = 3 and ψ = 0.01 as
constants. The values for width and amplitude are from Region 1.

Figure 10. The trapped ion distribution function for different δ keeping Tr = 3 and ψ = 3 as constants.
The input amplitude represent Region 2. The central hump characterizes the phase space distribution
for each case.

3.2. Effects of Temperature Ratio, Tr

We have seen that the ion-to-electron temperature ratio is a critical factor that deter-
mines the structure of IHs. We investigate the effects of Tr more systematically. Figure 11
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depicts the role of temperature ratio in determining the characteristics of BGK IH equilibria.
The left panel shows the case for extremely low amplitudes and widths from Region 1,
while the right panel shows the case for higher amplitudes and widths from Region 2. If the
wave potential is constant, a monotonic increase in the temperature ratio decreases the
trapped density, indicating that the colder the electrons, the lower the trapped ion density.
This might be due to increased ion-electron interactions. Physically, as the ion temperature
is higher, a smaller potential cannot trap highly energetic ions, or equivalently, the BGK
equilibrium does not demand a higher density of trapped particles in order to sustain the
equilibria. The phase space portrait of this scenario is shown in Figure 12. The trapped ion
distribution function displays a higher depth for higher temperature ratio. Thus, a BGK
ion hole will exhibit more pronounced depth if the ion-to-electron temperature ratio is
high. It should be noted that a similar effect is not displayed by any other parameters than
the temperature ratio. Thus, the temperature ratio holds the key to decide the depth of
the BGK IH equilibria. Physically, as the temperature ratio works as a negative catalyst to
the trapped density, the trapped ions have a wider space to oscillate inside the potential,
creating a deeper hole.

The right panel of Figure 11 shows the scenario when the amplitude and potential
are higher. The unusual nature observed in the earlier cases repeats here also. The corre-
sponding phase-space portrait, Figure 13, also shows a similar effect. It can be seen that as
the temperature ratio Tr increases, a small hump emerges in the trapped ion distribution
function. The plot of trapped density shows that the temperature ratio facilitates the
momentum transfer, generating the hump in the trapped ion distribution function.

A general inspection of the width-amplitude relation shows that a forbidden band is
created in the width-amplitude plot at specific temperature ratios, Tr. Figure 14 reveals that
this puzzling phenomenon is due to the sudden generation of a saddle point in the energy
space. Again a probable physical explanation is the interaction of electrons with ions. Thus,
this proves that the wave potential should be strong enough to hold the required trapped
density, or else, the ions will get untrapped. Consequently, the equilibria will be dissolved,
leading to the violation of the heteroclinic property of the phase-space. Thus, it opens a
piece of direct evidence that there is a transfer of momentum taking place between the
electron and ions.
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Figure 11. The characteristics of trapped ion density ntr for different Tr is shown keeping ψ and δ

constant. The left panel shows the case for different Tr keeping ψ = 0.01 and δ = 10 as fixed, i.e., from
Region 1. The right panel show the case for different Tr keeping ψ = 3 and δ = 40 as constants,
i.e., from Region 2.
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Figure 12. The trapped ion distribution function ftr(x, v) versus x and v, as well as 2D projection,
for different values of Tr, keeping δ = 10 and ψ = 0.01 constants. The values for width and amplitude
are from Region 1.

Figure 13. The same as Figure 12, except that δ = 40 and ψ = 3 are used. The input parameters
are from Region 2. The central hump characterizes the phase space distribution for all the cases
considered here.
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Figure 14. The characteristics of trapped ion distribution function for different Tr keeping δ = 10 and
ψ = 0.01 as constants. The emergence of saddle point after Tr crosses the threshold, Tr = 1, denotes
the occurrence of forbidden gap in the width-amplitude plot.

4. Conclusions

This paper probes the structural characteristics of BGK ion holes based on the theo-
retical formulation by Aravindakshan et al. [12]. From the comparative study of width-
amplitude relationship for IHs for plasmas with different particle distributions, we un-
covered that a forbidden band of amplitude is present as the temperature of ions exceeds
that of the electrons. From the analysis of trapped ion distribution function, mathemat-
ically it turns out that the reason stems from the non-differential nature of the electron
density. Hence, we propose that this is due to the interaction of electrons with the wave
potential. The study of characteristics of IHs leads us to conclude that the width of the
potential decides the number density of trapped particles required to form a BGK ion hole
equilibria. Also, when the ion-to-electron temperature ratio increases, the depth of the
holes increases. We argue that due to the thermal energy acquired by the ions when they
are at high temperatures, these trapped ions oscillate inside the potential with a higher
amplitude. The characteristics of ion holes lead us towards more radical thoughts on the
fundamental nature of ion-electron interactions, momentum, energy transfer, the plasma
distribution function’s role, etc., in BGK equilibria’s stability. Thus, this paper finally opens
a path to explore such fundamental yet crucial questions that the space plasma community
to ponder.
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