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Abstract: A theoretical investigation has been carried out to examine the ion-acoustic shock waves
(IASHWs) in a magnetized degenerate quantum plasma system containing inertialess ultra-relativistically
degenerate electrons, and inertial non-relativistic positively charged heavy and light ions. The Burg-
ers equation is derived by employing the reductive perturbation method. It can be seen that under
the consideration of non-relativistic positively charged heavy and light ions, the plasma model
only supports the positive electrostatic shock structure. It is also observed that the charge state and
number density of the non-relativistic heavy and light ions enhance the amplitude of IASHWs, and
the steepness of the shock profile is decreased with ion kinematic viscosity. The findings of our
present investigation will be helpful in understanding the nonlinear propagation of IASHWs in white
dwarfs and neutron stars.

Keywords: shock waves; Burgers equation; degenerate quantum plasma; reductive perturbation
method

1. Introduction

The research regarding the propagation of nonlinear electrostatic excitations in a de-
generate quantum plasma system (DQPS) has received a substantial attention from plasma
physicists due to its ubiquitous existence in white dwarfs [1–3] and neutron stars [1–3]. It
is believed that the components of the DQPS are electrons, positively charged heavy ions
(e.g., 56

26Fe [4], 85
37Rb [5], 96

42Mo [5]), and positively charged light ions (e.g., 1
1H [6,7], 4

2He [8],
12
6 C [9,10]). A number of authors investigated nonlinear waves in DQPS with positively
charged heavy and light ions and electrons [11–14].

The characteristics of DQPS are comprehensively governed by the number density of
the plasma species of DQPS, and it has been observed that the electron number density
in white dwarfs is in the order of 1030 cm−3 to 1039 cm−3, and even more in neutron
stars [9,10]. The dynamics of these high-dense plasma species in DQPS can be predicted by
the Heisenberg uncertainty principle and Pauli exclusion principle, and under considera-
tion of these two principles, the plasma species can create degenerate pressure which is
readily outwardly directional and is not similar to the thermal pressure in normal plasmas.
In extremely high-dense plasma, the degenerate pressure usually exceeds the thermal
pressure. Therefore, the degenerate pressure has to be taken into account to model the
dynamics of the DQPS. The degenerate pressure associated with degenerate electrons,
heavy ions, and light ions can be given by [2]

Ps = ḰsNγ
s , (1)
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where s represents the electron or heavy ion or light ion species, i.e., s = e for the electron
species, s = 1 for the heavy ion species, and s = 2 for the light ion species;

γ = 5/3; Ḱs = (3/5)(π/3)
1
3 (πh̄2)/ms ' 3Λcs h̄c/5, (2)

for the non-relativistic limit (with Λcs = πh̄/msc, h̄ is the Planck constant (h) divided by
2π, ms is the mass of species s, and c is the speed of light in vacuum), and

γ = 4/3; Ḱs = (3/4)(π2/9)
1
3 h̄c ' 3h̄c/4, (3)

for the ultra-relativistic limit [13,14]. The degenerate pressure only depends on the number
density of the plasma species but not on their temperature [13,14]. For the stable configura-
tion of the DQPS, the outward directional degenerate pressure is counter-balanced by the
inward gravitational pressure.

Mamun [11] first brought the idea of degenerate electron energy and the corresponding
wave speed and wavelength by considering a cold DQPS containing inertialess degenerate
electrons, inertial non-degenerate light nuclei, and stationary heavy nuclei, and showed
that the degenerate pressure-driven nucleus-acoustic waves propagating in such a DQPS
totally disappears if the degenerate pressure of the electrons is neglected. Mannan [15]
investigated three-dimensional cylindrical waves in a self-gravitating DQPS and found that
the considered plasma system supports both positive and negative electrostatic potentials
and the amplitude, width, and speed are significantly modified by the effects of degenerate
plasma species.

The electrostatic shock wave profile, which may arise due to the Landau damping
and kinematic viscosity of the medium, is governed by the Burgers equation [16–19].
Atteya et al. [16] examined the ion-acoustic (IA) shock waves (IASHWs) in DQPS, and
reported that the amplitude of the positive shock profile increases with the increase in elec-
tron number density. Abdelwahed et al. [17] investigated IASHWs in non-thermal plasma,
and found that the steepness of the shock profile decreases with ion kinematic viscosity.

The external magnetic field has been considered to investigate the electrostatic shock [20–22]
and solitary [23,24] waves in plasmas. Hossen et al. [22] examined the IASHWs in the
presence of an external magnetic field, and highlighted that the amplitude of IASHWs
increases when increasing the angle between the wave propagation vector and the direction
of the external magnetic field (via δ). Shaukat [23] studied IA solitary waves in degenerate
magneto-plasma. Ashraf et al. [24] observed that the amplitude of the electrostatic shock
wave increases with the oblique angle.

Recently, Islam et al. [14] investigated envelope solitions in a three-component DQPS
containing relativistically degenerate electrons, positively charged heavy and light ions.
To the best knowledge of the authors, no attempt has been made to study IASHWs in
a magnetized DQPS with positively charged non-relativistic heavy and light ions, and
ultra-relativistically degenerate electrons. Therefore, the aim of our present investigation
is to derive the Burgers equation and by employing its shock solution, we numerically
analyze the IASHWs in a magnetized DQPS.

The manuscript is organized in the following way: the governing equations are
described in Section 2. The derivation of the Burgers equation and its shock solution are
demonstrated in Section 3. The results and discussion are presented in Section 4. The
conclusion is provided in Section 5.

2. Model Equations

We consider a magnetized DQPS consisting of inertial positively charged non-relativistic
heavy ions (mass m1; charge q1 = +eZ1; number density N1; pressure P1), positively
charged non-relativistic light ions (mass m2; charge q2 = +eZ2; number density N2; pres-
sure P2), and inertialess ultra-relativistically degenerate electrons (mass me; charge −e;
number density Ne; pressure Pe); where Z1 (Z2) is the charge state of the heavy (light) ion.
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We also assume a uniform external magnetic field B in the direction of z-axis (B = B0ẑ).
The propagation of IASHWs is governed by the following equations:

∂T N1 + ∇̃ · (N1U1) = 0, (4)

∂TU1 + (U1 · ∇̃)U1 = (Z1eB0/m1)(U1 × ẑ)

+η̃∇̃2U1 − (Z1e/m1)∇̃Φ̃− (1/m1N1)∇̃P1, (5)

∂T N2 + ∇̃ · (N2U2) = 0, (6)

∂TU2 + (U2 · ∇̃)U2 = (Z2eB0/m2)(U2 × ẑ)

+η̃∇̃2U2 − (Z2e/m2)∇̃Φ̃− (1/m2N2)∇̃P2, (7)

∇̃2Φ̃ = 4πe(Ne − Z2N2 − Z1N1), (8)

where U1 (U2) is the fluid speed of heavy (light) ion; Φ̃ is the electrostatic wave potential;
and η̃ is the kinematic viscosity for heavy and light ions, and for simplicity, we have
assumed η̃ ' η̃1/m1N1 ' η̃2/m2N2. The equation for the degenerate electron can be
expressed as

∇̃Φ̃− (1/eNe)∇̃Pe = 0. (9)

Now, we introduce the normalizing parameters as follows: n1 → N1/n10; n2 →
N2/n20; ne → Ne/ne0; u1 → U1/C1; u2 → U2/C1; φ → eΦ̃/mec2; t → T/ω−1

p1 ; ∇ →
∇̃/λD1; η = η̃/ωp1λ2

D1
(
where C1 = (Z1mec2/m1)

1/2; the plasma frequency ω−1
p1 =

(m1/4πZ2
1e2n10)

1/2; the Debye length λD1 = (mec2/4πZ1e2n10)
1/2). At equilibrium, the

quasi-neutrality condition can be written as ne0 ' Z1n10 + Z2n20. By using these normaliz-
ing parameters, Equations (4)–(8) can be expressed as

∂tn1 +∇ · (n1u1) = 0, (10)

∂tu1 + (u1 · ∇)u1 = −∇φ + Ωc1(u1 × ẑ)

−(µ1Ḱ1/n1)∇nα
1 + η∇2u1, (11)

∂tn2 +∇ · (n2u2) = 0, (12)

∂tu2 + (u2 · ∇)u2 = −µ2∇φ + µ2Ωc1(u2 × ẑ)

−(µ1Ḱ2/n2)∇nα
2 + η∇2u2, (13)

∇2φ = (1 + µ4)ne − µ4n2 − n1, (14)

where the plasma parameters are: Ωc1 = ωc1/ωp1 (where ωc1 = Z1eB0/m1); µ1 =

m1/Z1me; µ2 = Z2m1/Z1m2; µ3 = ne0/Z1n10; µ4 = Z2n20/Z1n10; K1 = n10
α−1Ḱ1/m1c2;

K2 = n20
α−1Ḱ2/m2c2 and γ = α = 5/3 (for the non-relativistic limit). Now, by normalizing

and integrating Equation (9), the number density of the inertialess electrons can be obtained
in terms of electrostatic potential φ as

ne = [1 + (γe − 1)φ/K3γe]
1/(γe−1), (15)

where K3 = ne0
γe−1Ḱe/mec2 and γ = γe = 4/3 (for the ultra-relativistic limit). Now,

expanding the right hand side of Equation (15) and substituting in Equation (14), we
can write

∇2φ + n1 + µ4n2 = 1 + µ4 + σ1φ + σ2φ2 + · · · (16)

where σ1=[(µ4 + 1)/αK3] and σ2=[(µ4 + 1)(2− γe)/2(αK3)
2].
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3. Derivation of the Burgers Equation

To study IASHWs, we derive the Burgers equation by introducing the stretched
coordinates for independent variables as [22,23]

ξ = ε(lxx + lyy + lzz− vpt), (17)

τ = ε2t, (18)

where vp is the phase speed and ε is a smallness parameter measuring the weakness of the
dissipation (0 < ε < 1). The lx, ly, and lz (i.e., l2

x + l2
y + l2

z = 1) are the directional cosines
of the wave vector k along x, y, and z-axes, respectively. The dependent variables can be
expressed in power series of ε as [22]

n1 = 1 + εn(1)
1 + ε2n(2)

1 + · · ·, (19)

n2 = 1 + εn(1)
2 + ε2n(2)

2 + · · ·, (20)

u1x,y = ε2u(1)
1x,y + ε3u(2)

1x,y + · · ·, (21)

u2x,y = ε2u(1)
2x,y + ε3u(2)

2x,y + · · ·, (22)

u1z = εu(1)
1z + ε2u(2)

1z + · · ·, (23)

u2z = εu(1)
2z + ε2u(2)

2z + · · ·, (24)

φ = εφ(1) + ε2φ(2) + · · ·. (25)

Now, by substituting Equations (17)–(25) into Equations (10)–(13) and (16), we obtain
the lowest order in ε as Equations (A1)–(A8) (as given in Appendix A), along with the
phase speed of IASHWs:

vp = vp+ = lz

√
m2 +

√
(m2

2 − 4m1m3)/2m1, (26)

vp = vp− = lz

√
m2 −

√
(m2

2 − 4m1m3)/2m1, (27)

where m1 = σ1, m2 = 1 + µ2µ4 − ασ1µ1K2 − ασ1µ1K1, and m3 = αµ1K2 + αµ1µ2µ4K1 +
σ1α2µ2

1K1K2.
The next higher order in ε gives a system of equations (given by Equations (A9)–(A13)

in Appendix A). Solving this system with the help of (A1)–(A8) (as given in Appendix A),
we finally obtain the Burgers equation as

∂τΦ + AΦ∂ξ Φ = B∂ξξΦ, (28)

where Φ = φ(1) for simplicity. In Equation (28), the nonlinear coefficient A and dissipative
coefficient B are, respectively, given by

A = P(Q + R− 2σ2), (29)

B =
η

2
, (30)

where

P = [(v2
p − αµ1l2

z K1)
2(v2

p − αµ1l2
z K2)

2]/2vpl2
z [v

4
p(1 + µ2µ4) + α2µ2

1l4
z (K

2
2 + µ2µ4K2

1)−M],

M = 2αµ1l2
z v2

p(K2 + K1µ2µ4),

Q = l4
z{3v2

p + µ1l2
z K1α(α− 2)}/(v2

p − αµ1l2
z K1)

3,

R = µ2
2µ4l4

z{3v2
p + αµ1µ2l2

z K2(α− 2)}/(v2
p − αµ1l2

z K2)
3,
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Now, we look for the stationary shock wave solution of this Burgers equation by
considering ζ = ξ −U0τ′ and τ = τ′ (where U0 is the speed of the shock waves in the
reference frame). These allow us to write the stationary shock wave solution as [22,25,26]

Φ = Φ0

[
1− tanh

(
ζ

∆

)]
, (31)

where the amplitude Φ0 and width ∆ are given by

Φ0 =
U0

A
, and ∆ =

2B
U0

. (32)

It is clear from Equations (31) and (32) that the IASHWs exist, which are formed due
to the balance between nonlinearity and dissipation, because B > 0 and the IASHWs with
Φ > 0 (Φ < 0) exist if A > 0 (A < 0) because U0 > 0.

4. Results and Discussion

Our present investigation is valid for white dwarfs and neutron stars in which both
non-relativistic positively charged heavy ions (e.g., 56

26Fe [4], 85
37Rb [5], 96

42Mo [5]), and light
ions (e.g., 1

1H [6,7], 4
2He [8], 12

6 C [9,10]), and ultra-relativistically degenerate electrons exist.
For numerical analysis, we considered Z1 = 20 ∼ 60, Z2 = 1 ∼ 12, n10 = 1× 1029 cm−3 ∼
9× 1029 cm−3, n20 = 2× 1030 cm−3 ∼ 8× 1030 cm−3, and ne0 = 1032 cm−3 ∼ 1034 cm−3.
The IASHWs are governed by the Burgers equation (28), and the positive (negative) shock
potential can exist corresponding to the limit of A > 0 (A < 0). The variation of A with µ4
can be seen from Figure 1 (left panel), and it is clear from this figure that our plasma model
only supports positive shock potential under the consideration of both non-relativistic
positively charged heavy and light ions (i.e., α = 5/3), and ultra-relativistically degenerate
electrons (i.e., γe = 4/3).

The parameter δ reveals the angle between the direction of the wave propagation and
the direction of the external magnetic field, and the effects of δ on the formation of IASHWs
can be seen in Figure 1 (right panel). When the oblique angle (δ) increases, the magnetic
effect becomes more significant, and therefore the amplitude of the shock wave increases,
and this result agrees with the result of Hossen et al. [22].

Figure 2 (left panel) illustrates the effects of the non-relativistic heavy and light ion’s
kinematic viscosity on the positive potential (i.e., Φ > 0) under consideration of A > 0. It
is really interesting that the steepness of the shock profile decreases with an increase in the
value of the non-relativistic heavy and light ion’s kinematic viscosity, but the amplitude of
shock profile is not affected by the kinematic viscosity of ions, and this result agrees with
the previous work of Abdelwahed et al. [17].

The variation of IASHWs with electron number density (ne0) under the consideration
of both non-relativistic positively charged heavy and light ions (i.e., α = 5/3), and ultra-
relativistically degenerate electrons (i.e., γe = 4/3) can be observed in Figure 2 (right
panel). It is clear from this figure that as we increase the electron number density, the
amplitude of the IASHWs associated with Φ > 0 (i.e., A > 0) increases. So, the ultra-
relativistic electrons enhance the amplitude of the IASHWs in a magnetized DQPS with
non-relativistic positively charged heavy and light ions, and ultra-relativistically degenerate
electrons.

The effects of the charge state of non-relativistic heavy and light ions species on the
formation of IASHWs in a magnetized DQPS can be seen in the left panel and right panel
of Figure 3, respectively. It is obvious from these figures that the charge state of both
non-relativistic heavy and light ion species enhances the amplitude of IASHWs associated
with Φ > 0 (i.e., A > 0) under the consideration of α = 5/3 and γe = 4/3. Physically, both
non-relativistic heavy and light ion species, due to both being positively charged, play the
same role in the dynamics of magnetized DQPS as well as the configuration of IASHWs.
Similarly, the number density of the non-relativistic heavy and light ion species can play a
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significant role in the formation of IASHWs. It is clear from the figures in both panels of
Figure 4 that the amplitude of the IASHWs associated with Φ > 0 (i.e., A > 0) and under
the consideration of α = 5/3 and γe = 4/3 increases with the number density of both
non-relativistic heavy and light ion species.
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Figure 1. Plot of the nonlinear coefficient A vs. µ4 (left panel) and Φ vs ζ for different values of
δ (right panel) when α = 5/3, η = 0.3, γe = 4/3, δ = 20◦, Z1 = 37, Z2 = 6, n10 = 1029 cm−3,
n20 = 1030 cm−3, ne0 = 1033 cm−3, U0 = 0.05, and vp = vp+.
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Figure 2. Plot of Φ vs. ζ for different values of η (left panel) and for different values of ne0 (right
panel) when α = 5/3, δ = 20◦, γe = 4/3, η = 0.3, Z1 = 37, Z2 = 6, n10 = 1029 cm−3, n20 =

1030 cm−3, ne0 = 1033 cm−3, U0 = 0.05, and vp = vp+.

Z1=20

Z1=40

Z1=60

-60 -40 -20 20 40 60
ζ

0.02

0.04

0.06

0.08

Φ

Z2=01

Z2=07

Z2=12

-60 -40 -20 20 40 60
ζ

0.02

0.04

0.06

0.08

Φ

Figure 3. Plot of Φ vs. ζ for different values of Z1 (left panel) and for different values of Z2

(right panel) when α = 5/3, δ = 20◦, η = 0.3, γe = 4/3, Z1 = 37, Z2 = 6, n10 = 1029 cm−3,
n20 = 1030 cm−3, ne0 = 1033 cm−3, U0 = 0.05, and vp = vp+.
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Figure 4. Plot of Φ vs. ζ for different values of n10 (left panel) and for different values of n20

(right panel) when α = 5/3, δ = 20◦, η = 0.3, γe = 4/3, Z1 = 37, Z2 = 6, n10 = 1029 cm−3,
n20 = 1030 cm−3, ne0 = 1033 cm−3, U0 = 0.05, and vp = vp+.

5. Conclusions

We investigated the fundamental characteristics of IASHWs in a magnetized DQPS
with inertial non-relativistic positively charged heavy and light ions, inertialess ultra-
relativistically degenerate electrons. The reductive perturbation method [27–31] was
employed to derive the Burgers equation. The results found from the present study
can be pinpointed as follows:

• The plasma model only supports positive shock potential under the consideration
of both non-relativistic positively charged heavy and light ions (i.e., α = 5/3), and
ultra-relativistically degenerate electrons (i.e., γe = 4/3);

• The increasing number density of ultra-relativistic electrons enhances the amplitude
of the IASHWs;

• The increasing charge state and number density of the non-relativistic heavy and light
ion species enhance the amplitude of the IASHWs associated with Φ > 0 (i.e., A > 0);

• The steepness of the shock profile is decreased with the increasing kinematic viscosity
(η) of ions;

• The amplitude of the shock profile is found to increase as the oblique angle increases.

It may be noted here that it is really important to include the exchange and correlation effects
of plasma species [32,33] and the self-gravitational effects of the DQPS in the governing equa-
tions, but this is beyond the scope of our present work. It is also important to mention that
the Bohm potential arises due to the effect of quantum diffraction or quantum tunneling,
and that in the case of a long wavelength, the Fermi temperature term may dominate over
the Bohm potential term; thus, we neglect the Bohm potential term compared to the Fermi
temperature term in the equation of motion [34,35]. Thus, we neglected the Bohm potential
in quantum plasma, as many published works by many authors did [34–38]. However,
we are optimistic that the outcomes from our present investigation will be useful in un-
derstanding the propagation of IASHWs in white dwarfs [1–3] and neutron stars [1–3] in
which the non-relativistic positively charged heavy and light ions, and ultra-relativistically
degenerate electrons exist.
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Appendix A. First-Order and Second-Order Perturbation Terms

By collecting the terms containing the coefficients of ε from Equations (10)–(13) and
(16) we obtain the first-order equations as:

n(1)
1 = [l2

z /(v2
p − αµ1l2

z K1)]φ
(1), (A1)

u(1)
1z = [vplz/(v2

p − αµ1l2
z K1)]φ

(1), (A2)

n(1)
2 = [µ2l2

z /(v2
p − αµ1l2

z K2)]φ
(1), (A3)

u(1)
2z = [µ2vplz/(v2

p − αµ1l2
z K2)]φ

(1). (A4)

The x and y-components of the first-order momentum equations can be manifested as:

u(1)
1x = [−lyv2

p/Ωc1(v2
p − αµ1l2

z K1)]∂ξ φ(1), (A5)

u(1)
1y = [lxv2

p/Ωc1(v2
p − αµ1l2

z K1)]∂ξφ(1), (A6)

u(1)
2x = [−lyv2

p/Ωc1(v2
p − αµ1l2

z K2)]∂ξ φ(1), (A7)

u(1)
2y = [lxv2

p/Ωc1(v2
p − αµ1l2

z K2)]∂ξ φ(1). (A8)

Finally, by collecting the next higher-order terms of Equations (10)–(13) and (16) we
obtain the following second-order equations:

∂τn(1)
1 − vp∂ξ n(2)

1 + lx∂ξ u(1)
1x + ly∂ξ u(1)

1y + lz∂ξ u(1)
1z + lz∂ξ

(
n(1)

1 u(1)
1z

)
= 0, (A9)

∂τu(1)
1z − vp∂ξ u(2)

1z + lzu(1)
1z ∂ξ u(1)

1z + lz∂ξ φ(2) − η∂ξξu(1)
1z + αµ1lzK1

[
∂ξ n(2)

1 + [(α− 2)/2]∂ξ n(1)2

1

]
= 0, (A10)

∂τn(1)
2 − vp∂ξ n(2)

2 + lx∂ξu(1)
2x + ly∂ξ u(1)

2y + lz∂ξ u(2)
2z + lz∂ξ

(
n(1)

2 u(1)
2z

)
= 0, (A11)

∂τu(1)
2z − vp∂ξ u(2)

2z + lzu(1)
2z ∂ξ u(1)

2z + µ2lz∂ξ φ(2) − η∂ξξu(1)
2z + αµ1lzK2

[
∂ξ n(2)

2 + [(α− 2)/2]∂ξ n(1)2

2

]
= 0, (A12)

µ4n(2)
2 + n(2)

1 = σ1φ(2) + σ2φ(1)2
. (A13)
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