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Abstract: A novel piezoelectric plasma generator developed by TDK Electronics GmbH & Co OG, the
CeraPlas

®
, was investigated for its feasibility as a charger for aerosol particles. The CeraPlas

®
charger

was directly compared to a commercially available bipolar X-ray charger regarding its efficiency of
charging atomized NaCl particles in a size range from 30 nm to 100 nm. First results show the ability
of the CeraPlas

®
to perform bipolar aerosol charging with high reproducibility, and measurements of

the charge distribution in the Nit product yielded about 1012 m−3 s for our experimental charging
configuration. Unwanted generation of ozone was suppressed by a dedicated charging chamber and
operation in N2 atmosphere.

Keywords: aerosol charging; diffusion charging; plasma charging; CeraPlas
®

; PDD; piezoelectric
direct discharge

1. Introduction

Aerosols have existed for all of human history. Besides the popular example of air
pollution, aerosols have always existed in nature to a greater degree than than most people
are aware. They are part of our everyday life, from cloud formation to the spread of
pandemics by airborne infections, to smoke and dust. The characterization of aerosol
particles and their properties is therefore of great importance. One major property of
particles that must be determined is their size. This can give rise to its own challenges,
especially when it comes to non-spherical particles in the nanometer range. Various
equivalent diameters have been introduced to classify aerosol particles, each referring to
the behavior that a sphere at a certain diameter would have in regard to a specific physical
property. An especially common one is the electrical mobility diameter, which assigns
electrical mobility of a sphere to the considered particle. It is utilized in the differential
mobility analyzer (DMA), where aerosol particles are classified by balancing the electrical
force and the aerodynamic drag force [1]. For a reliable operation of the DMA, a defined and
reproducible electrical charge distribution of particles is crucial. Therefore, bipolar aerosol
chargers are used upstream of the DMA. Common commercially available devices are
include 85Kr (TSI 3077) and X-ray (TSI 3088) chargers. These chargers are well characterized
and impart a known size-dependent equilibrium charge distribution on the particles, which
can be approximated by analytical formulas [1,2]. Furthermore, the charging behavior of
neutralizers is standardized in ISO 15900 [3].

The aforementioned neutralizers use ionizing radiation to generate bipolar ions and
therefore have certain disadvantages in the areas of radiation safety, aging and mobile
applications. Furthermore, the asset costs are in the range of a few thousand euros. Alter-
natively, bipolar ions can be produced within a non-thermal plasma, typically generated by
a dielectric barrier discharge (DBD) or a piezoelectric direct discharge (PDD). A novel and
cost-efficient piezoelectric plasma generator, the CeraPlas

®
, was developed by TDK Elec-

tronics GmbH & Co. OG. This technology provides a platform consisting of the CeraPlas
®
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piezo ceramic component and a driving circuit, which allows to specific applications to
be created for using cold atmospheric plasma. The device efficiently ionizes the gas at
atmospheric pressure and temperatures, which allows for safe operating conditions. The
dimensions and the low power consumption of the device enable its usage for mobile
applications. Because of these favorable properties, the device has the potential to be used
as a source for aerosol charging and is feasible for low-cost, high-volume applications, as
described, e.g., by Nishida et. al. [4] and Schriefl et. al. [5].

Aim of This Work

In this study, we examine the aerosol charging properties of the CeraPlas
®

in an
experimental setup, show its feasibility as an aerosol neutralizer, and provide initial data
about the produced particle size depending charge distribution, ion density, and estimation
of the Nit product.

2. Materials and Methods
2.1. Diffusion Charging by Plasma Discharge

Diffusion charging describes the process of aerosol charging. Particles are exposed to
an ion-rich atmosphere and ions attach to the particles by diffusion. The charging process
can be unipolar or bipolar, depending on the present ion polarities. The resulting charge
distribution depends on the shape and diameter of the particles [1]. In unipolar diffusion
charging, the particles are exposed to ions of one polarity. In the case of bipolar diffusion
charging, positive and negative ions are present, resulting in a bipolar charge distribution
with a near-zero net charge [6]. The charging process is used to condition the aerosol
for interaction with an instrument, such as an aerosol electrometer for particle number
(PN) [5] measurement or a DMA for size selection. Diffusion-charging-based PN sensors
are established devices and can be realized in different configurations [5,7,8].

The rate of ion attachment to particles is mainly determined by Brownian ion diffusion,
the forces in the electric field of the ion and particle charges, if no external field is present [1].
The attachment of ion to particle can be calculated by a model developed by Fuchs [9],
which is valid for ultrafine spherical particles in the transition regime [10]. For arbitrarily
shaped particles, more advanced theories are available [11,12].

Based on the approach of Pui et. al. [10] and the birth-and-death approach of Boisdron
and Brock [13], the charge distribution and the average charge per particle as a function of
particle size d(q) can be calculated. For this model, the product of ion concentration and
residence time of particles within the charging zone (Nit product) is the most crucial input
parameter, since deviations of the Nit product cause significant deviations in the mean
charge of the aerosol.

For unipolar diffusion charging, the Nit product can be used to calculate the charge
distribution for initially uncharged particles [14]. For bipolar diffusion charging, the Nit is a
crucial parameter to indicate if a steady-state charge distribution can be achieved, which is
crucial for aerosol neutralizers [15]. A value of 6× 1012 m−3 s is considered to be sufficient
to achieve steady-state charging independent of pre-existing charge states [15]. Although
it has been shown that this Nit product reaches its limits at high particle concentrations
and small sizes [16], it indicates the basic ability of bipolar chargers to serve as neutralizers.
To avoid depletion of ions, the ion concentration has to be much greater than the particle
concentration in any case [1].

Ions can be generated in different ways: of most importance for aerosol measurement
are ionizing radiation [13], corona discharge [5], UV radiation (photoelectric effect) [17],
and non-thermal plasma discharge [18,19], which is the method this paper focuses on. A
plasma is referred to as non-thermal if the atoms are at ambient temperature while the
electron temperature is in the range of a plasma discharge (a few thousand degrees Kelvin).
This condition can be established by transferring the required energy to the electrons by an
external electric field. The collisions between electrons with neutral gas molecules do not
suffice for a significant gas temperature increase [18]. Appropriate electric fields, which
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avoid spark discharges, can be provided, e.g., by a dielectric barrier in the discharge gap
between the electrodes of a corona charger (DBD) [20] or by a piezoelectric transducer like
the CeraPlas

®
(PDD), which is described in Section 2.2. DBD chargers provide a wide range

of applications because of the adjustability of several parameters (e.g., frequency, voltage,
flow rates, geometry). A plasma discharge in air usually produces considerable amounts
of corrosive ozone (O3). By operating the plasma in N2 atmosphere, ozone generation from
O2 can be suppressed [15].

2.2. Description of the Plasma Source

The CeraPlas
®

element is a multilayered piezoelectric component with co-fired hard
lead zirconate titanate (PZT) ceramics and copper inner electrodes. The ionization of the
surrounding media (air or other gases) and the ignition of the plasma streamers requires a
high voltage on the output side of the CeraPlas

®
. This high voltage is obtained by operating

the CeraPlas
®

in resonance mode. Therefore, TDK offers an Evaluation Kit [21] including
a driver and an electronic board, which was used in this study to ensure continuous
resonance operation. The HF series of the CeraPlas

®
element [22], shown in Figure 1a,

has dimensions of L × W × H = 45.2 mm × 6 mm × 2.8 mm and an operating resonance
frequency of 83 kHz.

Cold atmospheric plasma sources are capable of generating high ion concentrations.
The provided CeraPlas

®
technology ensures a safe and affordable study design with

PDD [23–25]. Due to their size, piezoelectric cold plasma generators (PCPG) are ideal for
mobile application.

The principle of a PCPG is based on a piezoelectric transformer, the so called Rosen-
type design [26]. A low electric input voltage (12 V AC) can be transformed to a high
electric output voltage (several kV). This is similar to a magnetic transformer but based on
the electromechanical coupling effect of the piezoelectric material. The operating frequency
is designed to the second harmonic vibration mode of the component, which has the
advantage of two nodal points along the length of the PCPG. Wire contacts are possible at
¼ of the length and allow it to be driven as a highly efficient electrical component.

(a) The CeraPlas
®

HF-series element. (b) The CeraPlas
®

Evaluation Kit.

Figure 1. The CeraPlas
®

as available from TDK.

2.3. Feasibility Study Bipolar Charging

In order to test the particle charging capability of the CeraPlas
®

, the device was used
as a neutralizer for particle size distribution measurements in a known setup, replacing
the original X-ray charger (TSI 3088). The CeraPlas

®
was mounted in a specially designed

package, where it was binned only at the nodal points on one side. The package was placed
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within a 3D-printed charging chamber shown in Figure 2b. Bipolar diffusion charging was
achieved by mixing the emitted ions with aerosol particles. The charging chamber was
designed to suppress possible particle contamination, which seemed to be caused by the
CeraPlas

®
(It was found that the CeraPlas

®
initially emits particles for a few minutes if

it was inactive for longer periods (e.g., several hours or days). This is unwanted for the
target application and the reason for the above described design of the charging chamber.
The charging chamber suppresses possible particle contamination.) The gas path upstream
of the the charging chamber was operated under slight overpressure, while the emitted
particles were actively sucked off via the ventilation.

The test setup shown in Figure 2a was used in order to investigate the basic feasibility
of the CeraPlas

®
for bipolar particle charging. NaCl particles, generated with a Topas ATM

220 atomizer and a silica gel diffusion dryer, were used as test aerosol. A Cambustion
electrostatic precipitator (ESP) was placed downstream of the dilution bridge to optionally
remove pre-charged particles before the particles were led into the CeraPlas

®
charging

chamber. Subsequently, the number-weighted particle mobility diameter distribution was
measured using an X-ray charger (TSI 3088), a DMA (TSI 3081), and a CPC (TSI 3775)
forming an SMPS (Scanning Mobility Particle Sizer). The CPC was operated at a sample
flow rate of 0.3 L min−1 and the DMA with a sheath flow of 4 L min−1. To ensure stable
and repeatable particle distribution measurements, the CeraPlas

®
was turned on for 60 s

before conducting an lasting SMPS scan120 s. To check for particle contamination in the
system, a HEPA filter was inserted upstream of the charging chamber.

(a) Flow schematic of the experimental setup.
(b) Charging chamber for the
CeraPlas

®
.

Figure 2. Experimental setup for the feasibility study of the particle charging capability of
the CeraPlas

®
.

The experimental setup described above and shown in Figure 2a allowed the charging
characteristics of the CeraPlas

®
charging chamber to be tested. As reference a commercial

X-ray aerosol charger (TSI 3088) was used.
Unwanted O3 generation was suppressed by operating the CeraPlas

®
in N2 atmo-

sphere, as suggested by Mathon et. al. [15].

2.4. Charge Distribution Measurements

The bipolar charging performance was evaluated by charge distribution measure-
ments based on a tandem DMA setup, shown in Figure 3. NaCl particles were generated
by a Topas ATM 220 atomizer and a silica gel diffusion dryer and passed through a dilu-
tion bridge to adjust the aerosol concentration. Downstream of the dilution bridge, the
test aerosol was led through an X-ray charger (TSI 3088) and classified by a DMA (TSI
3081 - selector DMA). The transmitted monodisperse particle fraction was subsequently
neutralized by a 85Kr source (TSI 3077) and further led through an ESP to remove the
charged particle fraction. The remaining uncharged particles were then passed through
the charging chamber with the CeraPlas

®
. Finally, the positive and negative mobility

spectrum of the particles was measured by another DMA (TSI 3081 - analyzer DMA) and a
CPC (TSI 3775). The mobility spectrum of positive particles was obtained by ramping the
DMA voltage from 0 kV to 10 kV. In order to obtain the negative mobility spectrum, the
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analyzer DMA was operated with a positive voltage using a custom-built HV generator.
To check for particle contamination from the charging device or elsewhere in the setup, a
HEPA filter was inserted after the dilution bridge. The ESP – in this case, a custom-made
ESP with a voltage of 3 kV – and the CeraPlas

®
charging chamber were bypassed for the

characterization of the 85Kr neutralizer.
The bipolar charge distribution curves for monodisperse particles were derived fol-

lowing a method described in the Appendix A, based on the obtained mobility spectra.

Figure 3. Flow schematics of the experimental setup for the measurement of the charge distribution.

2.5. Ion Density Measurement

In order to estimate the Nit product, the ion density downstream the CeraPlas
®

charg-
ing chamber was measured with an Ionometer IM806V2. In the setup shown in Figure 2a,
the SMPS was replaced by the Ionometer.

3. Results
3.1. Feasibility Study Bipolar Charging

For the following measurements, the ESP was always turned on to remove pre-charged
particles. In order to check for unwanted particle generation by the CeraPlas

®
, SMPS scans

with a HEPA filter upstream the charging chamber were performed with the CeraPlas
®

alternately turned on and off (Since the X-ray charger is not active, no defined charge
distribution is imparted on the particles. Therefore, the resulting SMPS scans do not show
the real size distribution). No increased particle concentration was measured with the
CeraPlas

®
turned on. A total number concentration in the order of 103 cm−3 was detected

in both cases (on and off). Due to small leakeages of the 3D-printed package and fluctuating
flow rates of the aerosol generator, a small amount of ambient air might be sucked into the
charging chamber and cause a constant particle count. The detected leakage is acceptable
for this feasibility study, since it was constant and less than 1% of the measured particle
number concentration.

To compare the charging performance of CeraPlas
®

with the X-ray charger, measure-
ments were performed with either the CeraPlas

®
or the X-ray charger activated at a given

time. Consecutive particle size distribution measurements were performed in a 10 min
interval to show the repeatability of the CeraPlas

®
charging behavior. Prior to the first size

distribution measurement, SMPS scans with an activated X-ray charger were performed.
The resulting data are shown in Figure 4a.

On average, a total number concentration of 5.11× 105 cm−3 was achieved with the
CeraPlas

®
and 1.04× 105 cm−3 with the X-ray charger. The measured number concentra-

tion with the CeraPlas
®

compared to the X-ray charger was higher by a factor of around 5.
This indicates either a higher charging efficiency or a higher fraction of positively charged
particles when using the CeraPlas

®
, or both.

The mean particle size measured with CeraPlas
®

charged particles was 30 nm, whereas
with the X-ray charger 37 nm on average was measured. The mode of the distribution was
unaffected. A significantly higher charging efficiency occurred for particles smaller than
70 nm.
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Figure 4. Particle size distribution measurements with both the X-ray charger and the CeraPlas
®

.
(a) Nine repetitions of size distribution measurement using the CeraPlas

®
for particle charging. The

measurements were performed in a 10 min interval. A reference measurement with the X-ray charger
was done before Run 1. The settings of the particle generator were not changed. (b) Particle size
distributions for NaCl particles, measured with CeraPlas

®
and X-ray charger. Size distribution curves

have been measured on several days to ensure reproducibility.

Particle size distributions of NaCl particles were measured over five consecutive days.
To account for variations in the particle source, the particle number concentration was
adjusted with the dilution bridge using the X-ray charger as reference. The reproducibility
of the size distribution with CeraPlas

®
charged particles is shown in Figure 4b.

3.2. Charge Distribution Measurements

The obtained experimental data were compared to analytical values, which were
calculated using Equation (A6) [2]. See the Appendix A for details. Size-dependent
charge fractions up to two elementary charges per particle produced by neutralizers were
considered. Particles with a diameter smaller than 100 nm can be mostly considered neutral
or singly charged after passing a neutralizer, the fraction of particles that acquires more than
three elementary charges is below 1% for this size regime [3]. Measurements were done at
30 nm, 41 nm, 50 nm, 60 nm, 70 nm and 100 nm (mobility diameter) for the CeraPlas

®
and

a commercial 85Kr neutralizer (TSI 3077) as a reference. It must be noted though, that for
measurements with the 85Kr neutralizer, particles were pre-charged because the charging
chamber and ESP were bypassed, as shown in Figure 3.

The results and calculated values are plotted in Figure 5. With the CeraPlas
®

, the
fractions of positive charged particles were much higher than those calculated with the
Wiedensohler approximation (A6), especially for particles smaller than 50 nm. The negative
singly charged fraction (Figure 5a) is much smaller than calculated, again with the maxi-
mum deviation occurring for particles smaller than 50 nm. This indicates that the positive
ions produced by the CeraPlas

®
either exceeded the negative ions in terms of number

concentrations or the positive ions are more mobile than negative ions. The measured
charge fractions produced by the 85Kr neutralizer for most measurement points widely
agree with the calculated curves. The higher positive fractions could be due to the setup,
where no neutralizer or ESP were used upstream of the charger under question; thus, the
positively charged particles leaving the selector DMA were not neutralized. Further, the
calculation was done according to the ISO 15900 [3]; hence, the ratio of ion mobilities was
assumed to be 0.875 [2]. This is an empirical value appropriate for 85Kr neutralizer. Ions
produced by the CeraPlas

®
might be of a different kind, with another ratio of ion mobilities.
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(b) Positive charge fractions

Figure 5. Fractions of single and double charged particles plotted against the mobility diameter.
Dashed lines show the calculated fractions according to the Wiedensohler approximation (A6),
red symbols are the measured fractions generated by the commercial 85Kr neutralizer, and yellow
symbols represent measurements with the CeraPlas

®
as a charging source.

3.3. Ion Density Measurements

The measurement of the inlet ion concentrations that resulted for the positive ions were
N+

i = 3.48± 0.05× 106 cm−3 and for the negative ions were N−i = 3.15± 0.08× 106 cm−3.
With these measured ion densities and an assumed ion recombination coefficient of

1.6× 1012 m3 s−1 [15], a Nit product of about 1012 m−3 s for this charging configuration can
be calculated.

It has to be mentioned that there was no defined gas flow into the Ionometer because
the device does not allow for a tight connection to the setup as was the case for the SMPS.
This could lead to a lower volumetric flow in the case of the Ionometer, which would favor
ion–ion recombination, resulting in lower ion densities.

4. Discussion

The basic ability of the CeraPlas
®

to charge ultrafine particles was shown by a com-
parison of size distribution measurements using either the CeraPlas

®
or the X-ray charger

within an SMPS. The resulting unimodal size distribution curves are comparable with
respect to median particle size, while the total number concentration obtained with the
CeraPlas

®
was approximately five times higher. Due to the fact that only positively charged

particles were classified with the available TSI classifier, one can conclude that either a
higher charging efficiency or a higher fraction of positively charged particles, or both,
is obtained by the CeraPlas

®
compared to a X-ray charger. This behavior was proven

to be stable and reproducible. From the estimated Nit product of 1012 m−3 s, we expect
the charging efficiency to be lower, or at least too low for obtaining steady-state charge
conditions independent from pre-existing charges. On the other hand, the mentioned
problems with the ion concentration measurement method might have caused a significant
underestimation of the Nit product. However, the obtained estimation underlines the
potential of the CeraPlas

®
for aerosol charging. The values published here are meant to

be a first estimation, and a detailed and systematical characterization will be done in a
future work.

The charge fraction measurements show that the bipolar charge distribution of the
CeraPlas

®
is unbalanced: it produces more positive then negative charges. This behavior

will be investigated in further studies. The latest research shows a flow dependency of
the balance of positive to negative charges for 85Kr chargers as well, underestimating the
number of positive charges for higher flows [27]. Furthermore, it is was reported that ions
are transported with the aerosol downstream the charger. Since the losses for positive
ions are lower than for negative, the balance is shifted further towards positive charges
with increasing transport length [27,28]. Another important influence that needs to be
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considered is the composition of the carrier gas; it is known that the ion mobility is different
for different gases [29].

The experiments presented in this work were not conducted under ideal conditions.
The charge fractions were measured only over a small size regime, restricted by the available
measurement equipment. Larger particles showed a dominant peak that originates from
multiple charged particles leaving the selector DMA. For the measurement of the negative
mobility spectrum, a custom-built positive HV generator was used. Thus, the accuracy
of the negative mobility spectrum is lower than for the positive mobility spectrum. The
charging chamber was 3D-printed from electrically insulting material. To exclude any
possible influence from the wall material of the charging chamber, it would be favorable to
use a conductive material.

Attempts to measure the ion concentration using a current measurement by means
of an ESP downstream of the CeraPlas

®
were not successful, and measurements with

the Ionometer shall be seen as rough indications. The main reason for unsuccessful ion
concentration measurements was that the CeraPlas

®
induces electromagnetic disturbances,

resulting in difficulties with sensitive measurements of low currents induced by ions. The
gas species may also have an influence on ion mobility. Within the experiments shown here,
nitrogen was used as an aerosol carrier gas in order to suppress possible O3 generation.

5. Conclusions

Within this work a novel PCPG, the CeraPlas
®

, is proven feasible for aerosol charging.
In our proof of concept study, we showed that bipolar particle charging is in principle
possible with the CeraPlas

®
in a reproducible way. Furthermore, a first estimation of the

obtainable Nit product promises great potential. The obtained results prove the feasibility
and thereby raise the need for a comprehensive study. Charge distribution measurements
show that the charging behavior is displaced towards positive charges, with a detailed
elaboration still pending. Future work will also include investigations regarding the varia-
tion in the charging process by (i) applying an electric field within the charging chamber,
(ii) changing the driving parameters of the CeraPlas

®
and (iii) varying the carrier gas

composition. Systematical and detailed charge distribution and ion density measurements
will provide a comprehensive characterization. Furthermore, the application as an ul-
tra low-cost, unipolar charging source, possibly for high-volume applications, might be
explored in succeeding studies.

In a future work, the concentration of positively and negatively charged ions gener-
ated by the CeraPlas

®
will be obtained from a reliable measurement in order to obtain a

estimation for the Nit. Furthermore the influence of altering the driving parameters of the
CeraPlas

®
(frequency, voltage, phase) on the ion concentrations will be investigated, which

exceeded the scope of this study. The possibility of using an electric field to manipulate the
relative ion concentrations into obtain unipolar charged aerosols will be investigated. This
would enable establishing a low-cost charging source without the need for expensive high
voltage generators. The long-term behavior of the obtained charge distribution as well as
the aging and depletion effect need to be studied in detail, which was outside the scope of
this feasibility study.
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Abbreviations

The following abbreviations are used in this manuscript:
AAC Aerodynamic Aerosol Classifier
AC Alternating Current
CPC Condensation Particle Counter
DBD Dielectric Barrier Discharge
DMA Differential Mobility Analyzer
ESP Electrostatic Precipitator
H Height
HEPA High Efficiency Particle Air
HV High Voltage
L Length
PCPG Piezoelectric Cold Plasma Generator
PDD Piezoelectric Direct Discharge
PN Particle Number
PZT Lead Ziconite Titanate
SMPS Scanning Mobility Patricle Sizer
UV Ultra Violet
W Width

Appendix A. Evaluation of Bipolar Charge Distribution Curves

The mobility spectrum of either positively or negatively charged particles was mea-
sured with the setup shown in Figure A1. With the mobility spectra, the charge distribution
on monodisperse particles was determined according to the approach in Mathon et. al. [15],
which is schematically shown in Figure A1.

The mobility spectra, shown on the left-hand side in Figure A1, were measured with
the SMPS by applying either a positive or a negative voltage ramp on the DMA column
and were then used in a calculation procedure including the following steps:

• Determination of the peak heights: Each peak of the mobility spectrum corresponds
to a charge fraction. The main peak, which is located at the position of the selected
mobility size (set by the selector DMA), corresponds to the singly charged particle
fraction. Subsequent peaks correspond to multiply charged particles. Thus, relative
peak heights represent the charge fractions. Due to peak overlapping, a multi-modal
Gaussian fit is applied to determine the peak heights:

f (x) =
imax

∑
i=1

ai · exp

(
− (x− bi)

2

2c2
i

)
(A1)

with x being the mobility diameter in this case.
• Determination of the charge distribution assuming a Gaussian distribution function:

The peak heights from the mobility spectra do not include the uncharged particle
fraction. Therefore, the charge distribution is assumed to be Gaussian in shape
(see Figure A1) in order to be able to determine the neutral fraction:

fq =
1√

2πσ2
exp

(
− (q− q̄)2

2σ2

)
(A2)

ln fq = −1
2
(2πσ2) ·

(
− (q− q̄)2

2σ2

)
(A3)
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The logarithmic curve is then fitted with a 2nd-order polynomial y = c0 + c1q + c2q2

with the fitting coefficients c0 = −( ln 2πσ2

2 + q̄2

2σ2 ), c1 = q̄
σ2 and c2 = − 1

2σ2 . Mean and
standard deviation of the fitting curve can then be calculated from the fit coefficients as:

σ2 = − 1
2cc

q̄ = c1σ2 (A4)

• Calculation of uncertainties for the charge bins acc. to [15]:

δ fq = δq̄| q− q̄
σ2 | fq +

δσ2

σ2

(
1 + | (q− q̄)2

2σ2 |
)

fq (A5)

with the assumed uncertainties δq ≈ 0.1 and δσ2 ≈ 0.1σ2.

Figure A1. Determination of charge distribution on monodisperse particles based on mobility spectra,
measured by a tandem DMA approach.

Charge Fractions for DMA Charge Conditioning

Aerosol neutralizers, used prior to a DMA classification device, need to ensure a de-
fined particle charge distribution, according to the ISO 15900 standard [3]. The charge frac-
tions up to two elementary charges for a particle size between 20 nm to 1000 nm, produced
by these neutralizers, can be calculated according to the Wiedensohler approximation [2]

log fq(d) =
5

∑
i=0

aq
i (log(d))i (A6)

Fit coefficients are shown in Table A1.
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Table A1. Fit coefficients up to ±2 elementary charges for Equation (A6).

i q = −2 q = −1 q = 0 q = 1 q = 2

0 −26.3328 −2.3197 0.0003 −2.3484 −44.4756
1 35.9044 0.6175 −0.1014 0.6044 79.3772
2 −21.4608 0.6201 0.3073 0.4800 −62.8900
3 7.0867 −0.1105 −0.3372 0.0013 26.4492
4 −1.3088 −0.1260 0.1203 −0.1553 −5.7480
5 0.1501 0.0297 −0.0105 0.0320 0.5049
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