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Abstract: The formation of nonlinear, nonstationary structures in weakly collisional media with
collective interactions are investigated analytically within the framework of the kinetic description.
This issue is considered in one-dimensional geometry using collision integral in the Bhatnagar-Gross-
Krook form and some model forms of the interparticle interaction potentials that ensure the finiteness
of the energy and momentum of the systems under consideration. As such potentials, we select
the Yukawa potential, the δ-potential, which describes coherent structures in a plasma. For such
potentials we obtained a dispersion relation which makes it possible to estimate the size and type of
the forming structures.

Keywords: plasma; physical kinetics; Bhatnagar-Gross-Krook collision integral; Vlasov equations;
coherent structures

1. Introduction

There are a lot of natural systems which are capable of exchanging energy and ne-
gentropy with the immediate environment [1,2]. In this case, the steady time-dependent
states of the systems appear to be possible as a result of two effects: the formation of
coherent states due to the self-consistent potential field and the formation of dissipative
equilibria due to collisions. A well-known example of dissipative processes is the Beloysov-
Ghabotinskyl reaction [2,3], whereas the formation of nonlinear wave-like vortex-like
structures in the collisionless Coulomb plasmas [4,5] is the most vivid and vital sample
of the system with the purely potential interaction between particles, which have been
described by soliton-like distributions. In this case, one should keep in mind that such
wave-like solutions possess some properties of particles [6,7]. For example, the polar
molecules clouds can combine into hyperparticle structures which one may consider to be
macroscopic atoms.

From this perspective, we could suggest that the internal structure as well as the
physical properties of such hyperparticle samples is similar to real atoms. In particular, we
may expect that they are capable of accumulating some power inside themselves and to
produce (gate out) it during the fusion. It is clear that such macroscopic entities can be
formed in various systems with collective interacting particles. (We shall call such media
as plasma-like media.)

Therefore, it would be interesting to study the possibility of such macroscopic, time-
dependent entities formation in weakly dissipative media with different collective inter-
action between particles. Therefore, the special question within this study is dependence
of coherent states on the type of potential – Lennard-Jones, Yukawa, Coulomb potential,
etc. To understand this, we are going to consider the influence of the potential type on the
formation of coherent states in ideal, weakly collision plasma-like media.

Plasma 2021, 4, 359–365. https://doi.org/10.3390/plasma4020024 https://www.mdpi.com/journal/plasma

https://www.mdpi.com/journal/plasma
https://www.mdpi.com
https://doi.org/10.3390/plasma4020024
https://doi.org/10.3390/plasma4020024
https://doi.org/10.3390/plasma4020024
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/plasma4020024
https://www.mdpi.com/journal/plasma
https://www.mdpi.com/article/10.3390/plasma4020024?type=check_update&version=1


Plasma 2021, 4 360

This article discusses an approach to describing the behavior of particles in the ap-
proximation of physical kinetics. We examined the formation of coherent structures in the
environment, consisting of a Maxwellian ensemble of particles. At the same time, various
potentials of interaction between particles are considered.

2. Basic Equations

The medium is assumed to be infinite, i.e., the pure initial value problem is to be
studied. Within the framework of a kinetic approach, the governed equations for the
one-particle distribution function f = f (t, r, v) describing polar molecules dynamics are

∂ f
∂t

+ v·∇ f − F
m
· ∂ f

∂v
= Ic, (1)

where F is the force influencing the medium particles of mass m and Ic is the collision integral.
To show the basic features of formation of coherent structures in collisionless and

weakly collision media we start from the simplest possible form of collision integral

Ic = −ν( f − fe) (2)

where ν is the collision frequency and fe is some equilibrium distribution to be determined.
Here we suppose that the interaction between particles depends only on distance

between particles | r − r′ | but not their velocities v and v′. So one can represent self-
consistent force F in terms of the scalar potential Φ = Φ(t, r),

F = −∇Φ,

where potential is defined by the relation [4]:

Φ(t, r) =
∫

K1,2(| r− r′ |) f (t, r′, v′)dr′dv′ + (3)

+
∫

K1,2,3(| r− r′ |, | r− r′′ |, | r′ − r′′ |) f (t, r′, v′) f (t, r′′, v′′)dr′dv′dr′′dv′′ + · · ·+ Π(t, r),

where Π(t, r) is some known function. In the general case, this function reflects the
influence of external superposed factors.

Then, let us discuss the influence of separate terms on the nonlinear properties of the
system; however, now for simplicity we restrict our study to the case when

Φ(t, r) =
∫

K(| r− r′ |) f (t, r′, v′)dr′dv′ + Π(t, r). (4)

The kernel of integral relation is determined by the nature of interaction between
particles of the system, for example, that may be dipolar interaction. However, the present
approach is valid only when the kernel K(r, r′) satisfies the relation

γ =
∫ +∞

−∞
K(| r− r′ |)dr′ < ∞, (5)

whereas Coulomb-type potentials cannot be defined by such way since for these fields the
relation (5) is violated. In this case we have to use Poison equation.

We are going to construct some partial solution of the issue (1), (4) using [8]:

f (t, r, v) =
L

∑
k=0

Fk(t, v)Φk(t, r), (6)
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where Fk(t, v) are unknown functions to be determined, and Φ(t, r) is determined by
relation (4). We assume that L is a finite integer or infinite value. We are going to seek the
local equilibrium distribution function in similar form

fe(t, r, v) =
L

∑
k=0

CkF0(t, v)Φk, (7)

where Ck are some constants.
Additionally, we suppose that Φ(t, r) satisfies

∂Φ
∂t

+ V · ∇Φ = 0, (8)

where drift velocity V is a constant.
By applying (6)–(8) to Equation (1), we find

L

∑
k=0

{
∂Fk
∂t

+ ν(Fk − CkF0) + (k + 1)Fk+1(v−V) · ∇Φ +∇vFk · ∇Φ
}

Φk = 0. (9)

If there is no connection between Φ(t, r) and Fk(t, v), relation (9) has to be satisfied for
any power of ∂Φ/∂qj and Φ (here q1 = x, q2 = y, q3 = z). So we obtain

∇vFk + (k + 1)Fk+1(v−V) = 0, (10)

∂Fk
∂t

= −ν(Fk − CkF0). (11)

The solution of (11) can be written as

Fk(t, v) = Wk(v) exp(−νt) + CkF0(v), (12)

where Wk(v) is some functions. Then substituting (12) into Equation (10) we have

(k + 1)(v−V)
(
Wk+1e−νt + Ck+1F0

)
+ Ck∇vF0 + e−νt∇vWk = 0 (13)

from which we can obtain

(k + 1)Ck+1F0(v−V) + Ck∇vF0 = 0, (14)

(k + 1)Wk+1(v−V) +∇vWk = 0. (15)

For
Ck+1 =

Ck
(k + 1)T

,

where T > 0 is a constant which can be considered to be temperature; from Equation (14)
it follows

F0 = C0 exp
[
− (v−V)2

2T

]
, (16)

where C0 is an arbitrary constant. From (15) we obtain

Wk =
1
k!

DkW0(v), k = 1, 2, . . . , L, (17)

where
D =

V− v
(v−V)2∇v.
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Finally, the substitution of (16) and (17) into (12) leads to

F(t, v) =
e−νt

k!
DkW0(v) +

C0

k!
exp

[
− (v−V)2

2T

]
(18)

and the distribution function can then be written as

f (t, r, v) =
L

∑
k=0

[
e−νtDkW0(v) +

C0

Tk e−(v−V)2/2T
]

Φk

k!
. (19)

The function W0(v) can be any function of velocity v such that all moments of the
distribution function (19),

In(t, r) =
∫ +∞

−∞
vn f (t, r, v)dv,

must be finite, i.e.,
|In(t, r)| < ∞, n = 0, 1, 2, . . . . (20)

and for this kernel K(r, r′) provide the finite Φ(t, r), i.e.,∫
K(| r− r′ |) f (t, r′, v′)dr′dv′ < ∞. (21)

Moreover, we have to require

Dk =
∫ +∞

−∞
DkW0(v)dv < ∞. (22)

It is essential to stress conditions (20)–(22) determine the allowable choices of W0(v).
To define the admissible form of Φ(t, r) we put (19) into (6). As a result we obtain

Φ(t, r) =
L

∑
k=0

∫ +∞

−∞

K(| r− r′ |)
k!

[
C + Dke−νt]Φk(t, r′)dr′. (23)

Here we used C0 = C/(2πT)3/2.
Relations (23) and (19) with conditions (20)–(22) form the basis for most of the follow-

ing analysis.

3. Maxwellian Type Distributions

For simplicity, we shall analyze Equation (23) in the case when L→ ∞ and when F0
belongs the class of Maxwellian functions,

F0(v) =
1

(2πθ)3/2 exp
[
− (v−V)2

2θ

]
, (24)

where θ > 0 is a constant which plays role of second temperature. It should be noted that
in general case we can suppose T 6= θ. Then from (19) and (24) it follows

f (t, r, v) =
1

(2πθ)3/2 e−νt exp
[
− (v−V)2+

2θ
+

Φ
θ

]
+

1
(2πT)3/2 exp

[
− (v−V)2

2T
+

Φ
θ

]
(25)

In this case, instead of (23) we obtain

Φ(t, r) = e−νt
∫ +∞

−∞
K(| r− r′ |) exp(Φ/θ)dr′ + C

∫ +∞

−∞
K(| r− r′ |) exp(Φ/T)dr′ (26)
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The nonlinear equation (26) admits spatially uniform solution Φ0 = Φ0(t) which is
determined from

Φ0 = γ
(

e−νt+Φ0/θ + CeΦ0/T
)

, (27)

where γ is determined by (5). There is its nontrivial solution. In particular,if we set θ = T
and Φ0/θ � 1, one can obtain

Φ0 =
γ
(
e−νt + C

)
1− C(e−νt + C)/θ

. (28)

Let us consider (28) as a state of local equilibrium, near which the basic equation is
linearized, for this we substitute

Φ = Φ0(t) + δΦ0(t, r)

into (26). As result we have

δΦ− eΦ0/θ

θ

(
e−νt + C

) ∫ +∞

−∞
K(| r− r′ |)δΦ(r′)dr′ = 0. (29)

Let us analyze the behavior of Equation (28) with respect to different values of han-
dling parameters ν, θ. In particular, in the limit νt→ ∞, Equation (29) admits stationary
solution of the form

δΦ = Aeikr. (30)

Substituting (30) into the (29), we obtain

1− λ
∫ +∞

−∞
K(| r− r′ |) exp(−ik(r− r′)dr′ = 0. (31)

where

λ(θ, C) =
C exp(Φ0/θ)

θ
. (32)

One can estimate the integral∫ +∞

−∞
K(| r− r′ |) exp(−ik(r− r′)dr′ =

∫ ∞

0

∫ π

0

∫ 2π

0
K(ρ) exp[−ikρ cos(ϑ)]ρ2 sin(ϑ)dϕdϑdρ

=
4π

k

∫ +∞

0
K(ρ)ρ sin(kρ)dρ.

Thus, we obtain the following dispersion relation

1− 4πλ

k

∫ +∞

0
K(ρ)ρ sin(kρ)dρ = 0. (33)

which defines the existence of spatial wavelet-structures for the real values k. Equation (33)
has nontrivial, real root k if and only if the integral in (33) is negative. Such behavior is
possible owing to the initial conditions (see Equation (32)) or the kernel of interaction K(ρ).

4. Different Types of Kernels

As an illustration, we now calculate the roots of Equation (33) for the kernel of type

K(r, r′) =
µ

| r− r′ | exp
(
−q | r− r′ |

)
, (34)
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where µ and q are some constants depending on the kind of the interactions which admits
elementary analytical consideration and has some physical meaning. Inserting (34) into (33)
we obtain

1− 4πλµ

k2 + q2 = 0. (35)

It is evident that this equation has real roots in the case

4πλµ ≥ q2 = 0. (36)

The spatial length of periodic structures

k−1 = (4πλµ− q2)−1/2 (37)

is defined by the initial conditions over constant λ and the parameters of interaction q
and µ. This example shows that for some initial conditions and kernels one can expect
the formation of spatially nonuniform structures from initial uniform states [9]. The
relation (33) or (35) determines only value of k but its direction is unknown. Using (37) we
can determine the size of the vortex depending on the initial parameters of the system.

As another result of the application of this method, we give an example of the forma-
tion of coherent structures in the "billiard balls" model. In that case, the kernel of interaction
is shown by

K(r, r′) = µδ(r− r′ − a) (38)

where µ is some constant depending of the kind of interactions and |a| is the radius of
every particle of the media. Inserting (38) into dispersion relation (33) we obtain

1− 4πλµa sin(ak)
k

= 0. (39)

We can transform Equation (39) into a more convenient form

k = 4πλµa sin(ak). (40)

Equation (40) has some sets of solutions. This shows us that if we imagine that
particles of a medium interact only through collisions, coherent vortexes still appear. They
can have different sizes that correspond to different positive roots of the Equation (40).
Additionally, we add that if

q >> 1, (41)

where q is the constant included in (34), the kernel (34) is greatly approximated by a
delta-function such as (38). That is, the Yukawa kernel model under the condition of a low
intensity of particle interaction (41) could be approximated by the model of billiard balls.

5. Discussion and Conclusions

To describe the formation of kinetic coherent structures in weakly collisional medium
with collective interactions we used one-dimensional, time-dependent nonlinear Vlasov
equations with simplest collision integral in the Bhatnagar-Gross-Krook form. Additionally,
in our model of collisional medium we have used some physically admissible forms of the
interparticle interaction potentials providing the finiteness of the energy and momentum
of the systems under consideration. As such potentials, we select the Yukawa potential, the
δ-potential, and the soliton potential, which may describe electron holes in a plasma [10].

We applied the method of constructing time-dependent solutions of the kinetics
equations based on the expansion of the distribution function as a series in positive powers
of the interparticle interaction potentials [8]. The key point of this method consists in the
representation of nonstationary solution and local equilibrium distribution function in
similar form (see Equations (6) and (7)). As a result, we managed to show that a Maxwellian
time-dependent distribution function (19) appears as a natural solution of the considered
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initial-value problem (see Equations (10) and (11)) when such Maxwellian time-dependent
distribution can be formed for any interparticle interaction potential.

In this class of Maxwellian distributions for the considered potentials, we obtained a
dispersion relation Equation (33) which makes it possible to estimate the size and type of
the forming structures in locally equilibrium media. Analyzing dispersion relation (33), we
presented coherent structures as wave solutions of the equation, which describes variations
with respect to the equilibrium states of system. Such an approximation is valid if the
spatial scales of the resulting structures are small with respect to the characteristic scale of
the system [11].

Analyzing relation (33), we presented coherent structures as wave solutions of equa-
tion, which describes variations with respect to the equilibrium states of system [12]. Taking
into account such high sensitivity of our pattern to perturbations in the initial conditions,
one can come to the conclusion that there exists a small interval in the system parameters
in which it is possible to see the effect described in reality. Our consideration was limited
to the case of Maxwellian distributions. In this regard it would be interesting to study the
Lorenz-Fermi distributions which may be more relevant for some natural cases.
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