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Abstract: Featured observations of high frequency (HF) heating experiments are first introduced;
the uniqueness of each observation is presented; the likely cause and physical process of each
observed phenomenon instigated by the HF heating are discussed. A special point in the observations,
revealed through the ionograms, is the competition between the Langmuir parametric instability
and upper hybrid parametric instability excited in the heating experiments and the impact of the
natural cusp at foE (the peak plasma frequency of the ionospheric E region) on the competition.
The ionograms also infer the generation of Langmuir and upper hybrid cavitons. Ray tracing theory
is formulated. With and without the appearance of large-scale field-aligned density irregularities
in the background ionosphere, ray trajectories of the ordinary mode (O-mode) and extraordinary
mode (X-mode) sounding pulses are calculated numerically. The results explain the artificial Spread-
F recorded by the digisondes in the heating experiments. Parametric instabilities, which are the
directly relevant processes to achieve effective heating of the ionospheric F region, are formulated
and analyzed. The threshold fields and growth rates of Langmuir and upper hybrid parametric
instabilities are derived as the theoretical basis of many radar observations and electron-plasma
wave interactions. Harmonic cyclotron resonance interaction processes between electrons and upper
hybrid waves are introduced. Formulation and analysis are presented. The numerical results show
that ultra-energetic electrons are generated. These electrons enhance airglow at 777.4 nm as well
as cause ionization. Physical processes leading to the generation of artificial ionization layers are
discussed. The nonlinear Schrodinger equation governing the nonlinear evolution of Langmuir
waves and upper hybrid waves are derived and solved. The nonlinear periodic and solitary solutions
of the equations are obtained. The localized Langmuir and upper hybrid waves generated by the HF
heater form cavitons near the HF reflection layer and near the upper hybrid resonance layer, which
induce bumps in the virtual height spread of the ionogram trace similar to that induced by the density
cusp at E-F1 transition layer; the down-going Langmuir waves and upper hybrid waves evolve into
nonlinear periodic waves propagating along the magnetic field, which backscatter incoherently the
sounding pulses to cause downward virtual height spread.

Keywords: ionospheric modification; high frequency (HF) heating; parametric instabilities; artificial
ionization layers; nonlinear waves; caviton; harmonic cyclotron resonance; ray tracing

1. Introduction

Using ionosphere as an unbounded plasma laboratory to study linear and nonlinear
plasma processes, instigated by high frequency (HF) pump waves, has been a highly active
research area over the past four decades [1–3]. Experiments were conducted by transmitting
powerful HF waves from the ground to observe Ionospheric modification via remote-
sensing instruments. A major facility has been built in Gakona, Alaska for conducting
ionospheric heating experiments, as part of the High-Frequency Active Auroral Research
Program (HAARP) [4]. The HAARP HF transmitting system has a rectangular planar array
of 180 elements, which consist of a low band (2.8 to 7.6 MHz) and a high band (7.6 to
10 MHz) crossed dipole antenna in each element. Each crossed dipole radiates circularly
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polarized wave up to 20 kW, so that the HAARP HF transmitter radiates circularly polarized
waves, in the frequency band from 2.8 MHz to 10 MHz, up to 3.6 MW. The antenna gain
increases from 15 dB to 30 dB with an increase of the radiating frequency from 2.8 MHz to
10 MHz. An effective radiated power (ERP) up to 93 dBw (at 10 MHz) is available in heating
experiments, which explore modification effects on the bottom-side of the ionosphere as
illustrated in Figure 1. Through the observations of various heating induced phenomena
presented in Section 2, considerable advances are toward the theory of wave–wave and
wave–particle interactions.

Figure 1. Ionospheric heating experiments and some remote-sensing facilities.

Electromagnetic waves interact with charged particles; only electrons can effectively
respond to the fast oscillation of the HF wave electric field. Through elastic and inelastic
collisions with charged particles (mainly electrons), neutral particles can also be indirectly
affected by the presence of HF waves. In D and E regions, electron–neutral collision
frequency is higher than electron-electron and electron–ion collision frequencies. Although
neutral particles can share considerable wave energy with charged particles and rapidly
thermalize the indirectly absorbed wave energy, the background temperature elevation
is small due to high neutral-particle density. Nevertheless, a long heating period in the
daytime could still make an impact on the ionization balance, which involves the processes
of (1) photoionization by the solar illumination, (2) electron-heating-caused reduction of the
recombination coefficient, and (3) enhancement of the electron attachment to the oxygen
molecules. Moreover, electrojet appeared in these regions can be modulated by intensity
modulated HF heating waves to become a virtual antenna, which radiates ELF/VLF
waves [5]. Applying an HF heating facility to establish an ionospheric virtual ELF/VLF
transmitter for undersea communications is another focus of research.

However, most of the HF heating experiments were focused on the F region modifica-
tion on the bottom side of the ionosphere, where the HF heating wave induces significant
electron quiver motion in the region below and near the HF reflection height; parametric
instabilities are excited to convert EM wave to plasma (ES) waves [6]. This is done by
employing O-mode heating wave with frequency less than the maximum cutoff frequency
(FoF2) of the ionosphere to confine the HF wave in the bottom side of the ionosphere.
The excitation of parametric instabilities is essential because the collision (electron–electron
and electron–ion) processes cannot efficiently absorb the electromagnetic (EM) wave energy
delivered to the F region of the ionosphere, and a fast conversion of EM wave into electro-
static (ES) waves (via parametric instabilities) minimizes the loss of the heating power due
to reflection back to the ground. The excited plasma waves interact with electrons as well
as are interacting among themselves; as a result, new phenomena have been observed in
the experiments, which are called for theoretical interpretations.

The present work is aimed at providing theoretical foundation for the understanding
of experimental observations in active wave-ionosphere interaction and the underlying
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linear and nonlinear plasma processes. Among the experimental observations of various
heating-induced phenomena, some of those featured are first described physically in
Section 2. Theoretical formulations and analyses of the relevant linear and nonlinear
mechanisms and processes are presented in Sections 3–7.

2. Featured Observations in HF Heating Experiments
2.1. HFPLs and HFILs

Monostatic backscatter radars record signals from incoherent and coherent backscat-
tering, which are ascribed to the inhomogeneity of the background plasma and to the
Bragg scattering by the plasma waves (electron plasma waves as well as ion plasma waves),
respectively, and are used to monitor background plasma density variation and plasma
wave intensity. A plasma wave (ω, k) scatters the radar signal (ωR, kR) to produce new
signals (ωRs, kRs), whose frequencies and wavevectors are imposed by the Bragg scat-
tering (matching) conditions: ωRs = ωR ± ω and kRs = kR ± k. Because ωR >> ω,
|kRs| ∼= |kR|; in the backscattering, kRs ∼= −kR and k = kp ∼= ∓2 kR. Thus, the plasma
waves

(
ω, kp

)
that backscatter radar signals have a wavelength λp half of that of the radar

signal (i.e., λp ∼= λR/2), propagate parallel or antiparallel to the radar signal, and produce
frequency down-shifted (i.e.,ωRsd = ωR −ω) and upshifted (i.e.,ωRsu = ωR +ω) radar
returns, respectively. The frequency spectrum of backscatter-radar returns is then offset by
the radar frequency to present a distribution (with ∓ω) on both sides of the zero central
frequency. The spectral lines on the negative side correspond to up-going plasma lines and
those on the positive side correspond to down-going plasma lines.

In the unperturbed ionosphere, the spectral intensity of coherent backscatter lines
is at noise level. On the other hand, in HF heating experiments transmitting O-mode
heating waves (ω0, k0 ∼= 0), both up-going and down-going plasma lines and ion lines
were recorded by backscatter radars. The offset (by the radar frequency) frequency spec-
trum, representing the electron plasma lines, contains discrete spectral peaks located
at ±ω0 of the HF heating wave frequency and at frequencies downshifted from ω0 by
∆ω ∼= (2N + 1)2kRCS, N = 0, 1, 2..., where 2kRCS is an ion acoustic frequency and CS
is the ion acoustic speed. These plasma lines were enhanced by the HF heating waves;
thus, they are named “HF enhanced plasma lines (HFPLs)”. The spectral features suggest
that HFPLs are correlated to oscillating two stream instability (OTSI), parametric decay
instability (PDI), and Langmuir cascade. First, these parametric instabilities are only excited
by the O mode HF heating waves. OTSI excites Langmuir waves (ω ∼= ω0, k) together
with non-oscillatory purely growing modes (ωS ∼= 0, kS ∼= −k); thus, it is revealed by
the spectral peaks at the heater frequency ±ω0 in the distribution of the HFPLs. PDI
decays the HF heating wave to Langmuir waves (ω= ω0 −ωS, k) and ion acoustic waves
(ωS, kS ∼= −k). The wavevector of the HFPLs is kp ∼= ∓2 kR, thus the spectral peaks have
a downshifted frequency from the heating wave frequencyω0 byωsp = kspCS = 2kRCS,
i.e., located at ±

(
ω0 −ωsp

)
. When the PDI excited Langmuir wave (ω, k) cascades to

a new Langmuir wave (ω′, k′ ∼= −k) and an ion acoustic wave (ωS, kS ∼= 2k), the fre-
quency, ω′, of the first cascade plasma line is downshifted from ω0 by about 6kRCS.
In other words, Langmuir cascade lines in the HFPLs are separated by intervals about
double the ion-acoustic frequency separating the OTSI line and the PDI line in the HF-
PLs. At HAARP, cascade lines were observed in lower heating power operation, but not
observed in high power operation. Heating power depletion (pump depletion) by the
upper-hybrid OTSI/PDI excited in the region below the Langmuir OTSI/PDI as well
as the mode competition induced nonlinear-damping are suggested as the mechanisms,
suppressing cascade enhanced HFPLs.

Likewise, the offset (by the radar frequency) frequency spectrum, representing the ion
lines, contains discrete spectral peaks located at zero (i.e., atωS ∼= 0) and at ±ωS of the ion
acoustic frequency, which represent non-oscillatory purely growing modes excited by the
OTSI and ion acoustic modes excited by the PDI and Langmuir cascade, respectively. These
ion lines were enhanced by the HF heater and thus named “HF enhanced ion lines (HFILs)”.
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In Arecibo HF heating experiments, overshoot [7,8] of the intensity and down shift-
ing [9,10] of the originating height in time of the HFPLs were observed. It is realized that
the relevant parametric instabilities prefer to excite Langmuir waves along the geomagnetic
field. On the other hand, the Langmuir waves ascribed to the HFPLs, which must have
an oblique propagation angle of 40◦ at the Arecibo site, are not the preferred ones. Thus,
these Langmuir waves are suppressed in time by those preferred ones having much larger
growth rates (mode competition nonlinear damping). A spectral distribution of Langmuir
waves, excited by the HF heater via parametric instabilities, interact with background
electrons. The non-resonance interaction with bulk electrons (wave phase velocity is much
larger than the electron velocity) in the velocity distribution broadens the distribution to
have an equivalent temperature Teff = Te0 + Tw, where Te0 is the electron temperature of
unperturbed background plasma and Tw = 2ε0 ∑

k
ω2

pe |E1k|2/n0ω
2
kr is the time average

wave energy per electron. The matching height of the Langmuir wave decreases with the
increase of the effective electron temperature, which is proportional to the total spectral
intensity of the Langmuir waves.

Measurements also show asymmetry [11] of the HFPL distribution on the negative
side (corresponding to up-going plasma lines) and on the positive side (down-going plasma
lines). It is realized that the spectral intensity on the positive side of the HFPLs is ascribed
to the excited down-going plasma waves as well as the excited up-going plasma waves
after being reflected. Both OTSI and PDI were excited very close to the HF reflection height,
and the reflected back plasma waves did not attenuate significantly when combining with
the down-going plasma waves.

2.2. Competition between Langmuir PDI and Upper Hybrid PDI

Parametric instabilities excited in the HF heating experiments have been monitored
by UHF/VHF radars [1,3], which receive return signals backscattered by the plasma waves.
Because of the imposed Bragg backscattering conditions, the exploration of parametric
instabilities by UHF/VHF backscatter radars in HF heating experiments is limited to
HFPLs and HFILs, which do not represent the spectra of the plasma waves excited by
parametric instabilities. Moreover, UHF/VHF radars do not detect magnetic field-aligned
waves (i.e., wavevectors are closely perpendicular to the magnetic field), such as the
upper and lower hybrid waves, because those waves do not backscatter radar pulses.
On the other hand, the O-mode heating wave propagates through the upper hybrid
resonance layer before reaching the reflection height in an over-dense ionosphere; thus,
Langmuir and upper hybrid parametric instabilities can be excited simultaneously by a
HF heating wave [12,13]. Langmuir and upper hybrid waves exert ponderomotive and
thermal pressure forces on electrons [14,15], which induce nonlinear feedback on the waves.
Thus, intense Langmuir and upper hybrid waves evolve to nonlinear waves, which have
periodic and solitary envelopes; solitary waves press out local plasma in a self-consistent
way to form cavitons [16,17].

A digisonde [18] was used to explore Langmuir and upper hybrid parametric in-
stabilities excited in the HF heating experiments. The experiment was conducted with
2 min on and 2 min off on 20 November 2009 from 21:00 to 23:04 UT. In the on period,
the polarization of the heating wave was switched alternately with O mode and X mode.
Echo spread with bump(s) occurs only after O mode heating. The spread was fading away
in the subsequent off period and eliminated further by the X-mode heater. In essence,
it was 2 min on and 6 min off. The Sun was above the HAARP horizon for the entire
experiment period. Therefore, there was no precondition on the background plasma for
each O mode heating period. The experimental observations of exciting Langmuir and
upper hybrid waves were manifested by bumps in the virtual spread of the ionogram trace,
which are located closely below the HF heater frequency and the upper hybrid resonance
frequency [12,13]. The time development of bumps in the ionogram trace, which signifies
the competition between Langmuir PDI and upper hybrid PDI, was observed [12,13]. This
is demonstrated in a sequence of 15 ionograms, presented in Figure 2a–o. The echoes (red
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dots) in each ionogram were acquired at the beginning of the moment when the O mode
heater turned off.

Figure 2. A sequence of ionograms (a–o) showing the evolution of the virtual height spread. Arrows locate the likely bumps
in the virtual height spread and the two lines at 2.88 MHz and 3.2 MHz label the plasma frequencies of the upper hybrid
resonance layer and high frequency (HF) reflection layer.

The results show the time change of the virtual height spread as well as the de-
velopment of bumps next to the HF reflection layer and upper hybrid resonance layer.
In Figure 2a–j, bumps, indicated by arrows, appear simultaneously in the regions below
3.2 MHz (i.e., HF reflection height) and 2.88 MHz (upper hybrid resonance height), respec-
tively. Based on the locations of these speculative bumps, one may infer that Langmuir
PDI and upper hybrid PDI were excited simultaneously by the HF heater. In the early
experimental period (from 21:10 to 21:52 UT), when the natural virtual height bump at
E-F1 transition layer was still relatively small, the ionograms in Figure 2a–f show that the
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Langmuir bump was rising while the upper hybrid bump was dropping. As the experiment
proceeded, the natural virtual height bump at E-F1 transition layer was rising; it seems
to favor upper hybrid PDI in competing with Langmuir PDI. As shown in Figure 2g–j,
the Langmuir bump was weakening and shifting down slightly in frequency while the
upper hybrid bump was strengthening. As the experiment proceeded further, the natural
virtual height bump at the E-F1 transition layer rose to become very high as shown in
Figure 2k–o, and the Langmuir bump was suppressed completely, leaving the strengthened
upper hybrid bump to stand out.

The development infers that the Langmuir PDI was suppressed by the upper hybrid
PDI. The likely process is the pump depletion. First, the density ledge (cusp) at foE
(the peak plasma frequency of the ionospheric E region) increased the loss of the HF heater
in the E-F1 transition region; next, the heating power was further drained in the upper
hybrid resonance region before the heating wave reaches the HF reflection height.

The impact of the natural cusp at foE on the competition between Langmuir PDI and
upper hybrid PDI is further evidenced by the ionograms presented in Figure 3. The iono-
grams in Figure 3a,b were acquired on 16 November 2009 at 30 s before the heating
experiment started and at the beginning of the moment when the O mode heater turned off
after on for 2 min, respectively. As shown, the heating induced considerable virtual height
spread as well as a bump located slightly below the HF reflection height. The ionograms
in Figure 3c,d were acquired, on 20 November 2009, at 90 s after the heating experiment
ended and at the beginning of the moment when the O mode heater turned off after on
for 2 min, respectively. As shown, the heating also induced considerable virtual height
spread as well as a bump but located slightly below the upper hybrid resonance layer.
Ionograms in Figure 3a,c represent the background conditions in the two heating periods
(21:00 to 21:02) on 16 November and (23:02 to 23:04) on 20 November. The natural cusp on
20 November was considerably large.

Figure 3. Comparison of ionograms recorded on 16 and 20 November 2009. (a) and (c) Recorded 30 s
before the heater turned on and 90 s after the heater turned off; (b) and (d) recorded at the beginning
of the moment when the O mode heater turned off.

The ionograms in Figure 3 indicate that the natural cusp was small on 16 November,
thus, Langmuir PDI prevailed. On the other hand, on 20 November when the natural cusp
was large, Langmuir PDI was suppressed and upper hybrid PDI prevailed. Because the
density cusp introduces anomalous loss of the HF heater, the upper hybrid PDI was not as
strongly excited as the Langmuir PDI excited on 16 November. Consequently, the upper
hybrid bump in Figure 3d is much smaller than the Langmuir bump in Figure 3b.
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Monostatic UHF radar only detect backscattered lines, such as HFPLs and HFILs;
on the other hand, parametric instabilities excite plasma waves with broad spectra, and their
evolution to the nonlinear states cannot be revealed by the UHF radar. Moreover, due to
the field-aligned nature of the upper hybrid waves, these waves also cannot be detected
directly by the UHF radar. The distinctive virtual height bumps in Figures 2 and 3 suggest
that the digisonde can be a key diagnostic instrument to explore the nonlinear evolution of
Langmuir waves and upper hybrid waves excited in the HF heating experiment.

2.3. Airglow Enhancement

Superthermal electron flux excites atomic oxygen via collision to produce airglow,
which is emissions mainly at 630 nm and 557.7 nm. The minimum electron energies to
stimulate airglow at 630 nm and 557.7 nm are 3.1 eV and 5.4 eV, respectively. Airglow
enhancements were observed in the O-mode HF heating experiments. Electron plasma
waves excited by parametric instabilities accelerate electrons through Doppler-shifted reso-
nance interaction (quasi-linear diffusion) to reach the energy thresholds [6] for stimulating
those airglows.

The enhancement of airglow at 777.4 nm was also observed as the O-mode HF heat-
ing wave was transmitted near the second and third harmonic of the electron gyro fre-
quency [19,20]. The minimum electron energy to excite 777.4 nm emissions is 10.7 eV [19],
which well exceeds the super thermal energy range and the capacity of quasi-linear diffusion.

Harmonic cyclotron resonances with electrons require the aid of finite Larmour radius
effect [21], which is proportional to kve/Ωe, where k and ve, and Ωe are the transverse
wavenumber and electron speed, and the electron gyrofrequency. The finite Larmour radius
effect works to shift down the wave frequency to the fundamental cyclotron resonance
frequency for Doppler-shifted cyclotron resonance interaction, as well as to provide a
positive feedback to the interaction.

Thus, heating at the harmonic cyclotron resonances directly by the HF heating wave
is not effective because the wavenumber of the HF heating wave is small. On the other
hand, an O-mode HF heating wave can excite parametric instabilities (upper-hybrid OTSI
and PDI) in and below the upper hybrid resonance layer to produce short scale upper
hybrid waves, which can interact effectively with electrons at cyclotron harmonic resonance.
In Section 5, the theory of harmonic cyclotron resonance interaction procedure will be
elaborated, and numerical results will be presented to show the generation of very-high-
energy electrons by the upper hybrid waves [22,23].

2.4. Energetic Electron Flux

In the O-mode HF heating experiments, electron fluxes in the energy range from 10
to 25 eV were detected in situ by a probe in rocket [24] as well as on the ground by UHF
radar inferred by an ultra-upshifted frequency band [25] and by the CCD camera inferred
by the airglow enhancement at 777.4 nm [19].

As described in Section 2.1, the spectral lines in the radar returns have a fixed wave-
length equal to half of the radar wavelength; thus, an ultra-upshifted frequency band
signifies that the radar scatterers are moving at ultra-high phase speeds. These high-speed
electron waves, which are not plasma modes, are virtually formed by the wakefields of
ultra-high energy electron bunches.

Plasma waves excited by the parametric instabilities are likely to be responsible
for the electron acceleration to such a high energy level. Langmuir waves implement
quasi-linear diffusion through a Doppler-shifted resonance interaction to produce super-
thermal electrons. Upper hybrid waves further accelerate super-thermal electrons to
ultra-energy level via Doppler-shifted harmonic cyclotron resonance interaction, which
will be demonstrated by the numerical simulations of Section 5.
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2.5. Artificial Ionization Layers (AILs)

Optical emissions observed by Pedersen et al. [26,27] indicated that new ionization
layers were produced by the O-mode HF heating wave at frequency (~2.85 MHz) set
near double the electron gyro frequency. Digisonde [18] echoes, shown in Figure 4a,
provided evidence to support the generation of artificial ionization layers, indicated by
an arrow. The generation and development of AILs during the heating experiment are
seen by a sequence of seven ionograms recorded from 01:59:40 to 02:03:00, as presented in
Figure 4b. Ionization energy of the atomic oxygen “O” is 13.6 eV. Experiments [28–30] were
further conducted during twilight and early evening hours in Alaska local time, when the
photoionization was weak. The wave–ionosphere interaction occurs in the region around
230 to 250 km, where the O+ ions are dominant.

Figure 4. Ionograms of digisonde echoes recorded on 16 November 2009 during HF heating experi-
ment at High-Frequency Active Auroral Research Program (HAARP). (a) An additional echo trace
(pointed by an arrow) appears below the normal echo trace. It signifies artificial ionization structures,
and (b) a sequence of seven ionograms recorded from 01:59:40 to 02:03:00 showing the generation
and evolution of the artificial ionization structures. Courtesy of Bo Reinisch.

Experimental results show that the enhanced optical emissions (inferring ionization
enhancement) descend in the background F-region ionosphere [31] and relatively thin
artificial ionization structures, seen directly in the ionograms of the digisonde, are emerging
from the lower F-region ionosphere and descending (Figure 4b) to settle at the base of the
F-region (Figure 4a).

In later experiments with the heating wave frequencies set at 4.34 MHz and at 5.8 MHz,
which are around the third and fourth harmonic of the electron gyro frequency, digisonde
ionograms show that AILs also emerge from the base of the ambient F region as relatively
thin layers, like those formed with the heating wave frequency set near the second harmonic
of the electron gyro frequency. Experiments found that AILs were preferred to be generated
with the heating wave frequency tuned either slightly above a harmonic of the electron
gyro frequency or far below the second harmonic gyro frequency.

The power transfer from wave to the electron moving along the magnetic field, i.e.,
P‖ = −e Ezvez, depends on the phase of Ez which varies with time due to the mismatch
frequency ∆ω 6= 0. Although the phase is distributed randomly from 0 to 2π, there are
electrons of appropriate phases that will gain energy from the wave, i.e., P‖ > 0 and vez
increases. In the case of ∆ω > 0, ∆ω decreases to give a positive feedback to enhance wave–
electron interaction. When ∆ω drops to a negative value, the feedback of the interaction
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becomes negative; thus, a sufficient large ∆ω0 is necessary to give adequate positive
feedback interaction period for the generation of energetic electrons. On the other hand,
if ∆ω0 is too large, the initial interaction will be too weak, and the available interaction
spatial length will be too short to generate energetic electrons. When the heating wave
frequency is far below the second harmonic of the electron gyro frequency, the excited
Langmuir waves can resonantly interact with electrons through Doppler-shifted cyclotron
resonance; at fundamental cyclotron resonance, the interaction does not need the aid of the
finite Larmour radius effect, and positive feedback to the interaction can still be sufficient
at large frequency mismatch.

The numerical results to be presented in Section 5 show that the parametrically excited
upper hybrid waves can energize electrons to exceed 13.6 eV, the ionization energy of
the atomic oxygen “O”, through the harmonic cyclotron resonance interaction [22,23].
Moreover, the parametrically excited upper hybrid waves have a frequency band, which it
makes accessible for the match of cyclotron harmonic resonance over an altitude region.
Thus, electrons, while moving downward, can be accelerated continuously along a slightly
increasing geomagnetic field, through the Doppler-shifted harmonic cyclotron resonance
interaction with a band of spatially distributed upper hybrid waves. It results in a major
ionization occurrence at the bottom of the F region. This explains the descending feature
of the enhanced optical emissions in the evolution of AILs and the emergence of AILs as
relatively thin artificial ionization structures at the bottom of the F region.

2.6. Artificial Spread-F

Digisonde is HF radar, which probes the electron density distribution in the bottom
side of the ionosphere. O-mode and X-mode sounding pulses with carrier frequency
swept from 1 to 10 MHz are transmitted for sounding echoes, which are then recorded
in an ionogram. An O-mode or a X-mode sounding echo represents the backscatter of a
corresponding sounding pulse from a layer of the ionosphere, where the electron plasma
density N(h) of the layer matches the O-mode cutoff density NcO = (f/9000)2 cm−3 or
X-mode cutoff density NcX = f(f− fe)/(9000)2 cm−3 set by the carrier frequency f of the
respective sounding pulse, where h and fe are the virtual height of the layer and the electron
gyrofrequency. The virtual height h is determined by the time delay τ of the echo to be
h = cτ/2, where c is the speed of light in free space. At HAARP site, N(h) can be converted
to a true height profile N(h, ′) by a profile conversion (NHPC) algorithm [32], which is
available in the software program SAO Explorer [33].

The digisonde radiates at a large cone angle, each sounding pulse can be decomposed
into many rays, which have different ray trajectories, and only backscattered rays can
return to the digisonde and are recorded as the ionogram echoes.

In the unperturbed ionosphere, only a few rays, which are close to the vertical transmis-
sion, are backscattered. The virtual height traces of the sounding echoes in the ionogram
have narrow virtual height spreads. When the ionosphere is perturbed, it also affects
ray trajectories. In the presence of large-scale field-aligned density irregularities (FAIs
with scale lengths of a few hundreds of meters to kilometers), ray trajectories [34] can be
significantly modified as elaborated in Section 3.

In general, multiple incident rays (at different oblique angles) are backscattered to
the digisonde receiver to produce multiple sounding echoes at the same radar frequency
but at different return times [35], resulting in the spread of the virtual height traces. In the
naturally perturbed ionosphere, the spread usually appears in the frequency band corre-
sponding to the F region of the ionosphere and is thus termed “Spread-F”.

In HF heating experiments conducted on November 13, 2009 from 21:00 to 23:00
UTC (12:00 to 14:00 local time), spread-F induced by the O-mode HF heater at 5.75 MHz
(slightly above the fourth harmonic of the electron gyrofrequency) has also been observed
and is termed “artificial spread-F”. This is demonstrated in Figure 5 comparing a pair
of ionograms without (Figure 5a) and with heating effect (Figure 5b) [34]. As shown,
the artificial spread-F extends from 2.4 MHz (foF1 ~ 2.38 MHz) to foF2 ~ 6.4 MHz; on the
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other hand, the parametric instabilities excited by the O-mode heating wave of 5.75 MHz
occur only locally near the HF reflection height (at 5.75 MHz) and around upper hybrid
resonance region (at 5.57 MHz). Although the large-scale FAIs could be generated through
the filamentation of the HF heating wave [36], the FAIs responsible for the virtual height
spread appearing in Figure 5b are likely generated by the thermal instability [37] driven by
the downward and upward heat flow from the heat sources (converted from the plasma
waves excited by the parametric instabilities) located near the HF reflection region and
near the upper hybrid resonance region.

Figure 5. A pair of ionograms (a) without heating effect and (b) with heating effect; the ionogram in (b) was acquired at the
beginning of the moment the heater turned off after the 5.75 MHz O-mode heater turned on for 2 min.

2.7. Ionization Enhancement

In the 20 November 2009 experiment, although the O-mode heating wave frequency
of 3.2 MHz was not close to an electron harmonic cyclotron resonance frequency, artificial
ionization enhancement was observed together with artificial spread-F [34]. Experiments
were conducted around local solar noon when the photoionization was strong and the
wave-electron interaction occurred in the lower F region (<180 km) of the ionosphere,
where the electron-ion effective recombination coefficient depends strongly on the electron
temperature Te [38]. Anomalous electron heating through parametric instabilities and
thermal diffusion it reduces the recombination coefficient to change the balance between
the photoionization and the recombination loss over a large region. As a result, there is an
electron density enhancement in the heated region below ~180 km.

This is demonstrated in Figure 6, in which electron density distributions at times
(a) 21:29:30UT, after the O-mode heater off more than 90 s and (b) 21:28:00UT, off within
10 s, are presented for comparison. As shown, the distribution at time (b) (i.e., blue curve)
has a higher density in the entire modified region than that at time (a) (i.e., red curve).
The percentage of the electron density increase exceeds 10% over a region extended in
height (> 30 Km) from below to above the HF reflection height.
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Figure 6. Electron density distributions at the two recording times.

2.8. Artificial Cusp

A virtual height bump usually occurs at frequencies near foE in the presence of an
F1 layer, as shown in Figure 5a; the true height profile (the solid line plot) indicates that
there is a density ledge (cusp) at foE, which retards the propagation of sounding signals
with frequencies f close to foE, causing spread of the sounding echoes in virtual height
in the form of a distinct bump. Spread-F normally extends over a frequency band in the
ionogram and is recognized to be caused by the large-scale FAIs in the plasma. However,
localized anomalous echo spread appearing as a bump in the ionogram trace has also
been observed in the O-mode HF heating experiments conducted on 16 November 2009.
This is exemplified in Figure 7a, showing a combined ionogram from a pair of heater-off
ionograms acquired at 21:18 UT and 21:22 UT after the O mode heater of 3.2 MHz turned
on at 21:16 UT for 2 min [12] and the X-mode heater of 3.2 MHz turned on at 21:20 UT for
2 min [12].

Figure 7. (a) The unique echoes (red triangles) extracted from the 21:18 UT ionogram and (black dash) the common echoes
of 21:18 UT and 21:22 UT ionograms, recorded during heating experiment conducted on 16 November 2009, and (b) an
ionogram showing that the natural cusp near foE (the peak plasma frequency of the ionospheric E region) in the density
distribution causes spread of the sounding echoes to also appear as a bump.

The ionogram in 21:18 UT shows considerable spread of echoes and contain a notice-
able bump located at 2.92 MHz, slightly above the plasma frequency (fp = (f0

2 − fce
2)1/2 ~
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2.88 MHz) of the upper hybrid resonance layer of the O-mode heating wave at f0 = 3.2 MHz,
where fce ~ 1.4 MHz is the electron cyclotron frequency. This heating-induced bump in the
ionogram trace is similar in its appearance to the natural virtual height bump induced by
the density cusp at E-F1 transition layer (at foE ~ 1.96 MHz in the presence of an F1 layer as
shown in Figure 7b); the similarity suggests that a heater-stimulated ionization ledge (cusp)
appears near the upper hybrid resonance layer, which causes the virtual height spread
in the form of a bump peaked slightly above the upper hybrid resonance layer [12]. This
ledge can be created by the thermal pressure force arising from the Langmuir waves (i.e.,
the localized Langmuir waves form a caviton), which are excited parametrically by the HF
heating wave. The matching height of the Langmuir wave drops due to the increase of the
effective electron temperature, which is proportional to the total spectral intensity of the
Langmuir waves.

The experiment was conducted around local solar noon when the photoionization
was strong and the wave–electron interaction occurred in the lower F region (<180 km
of the true height) of the ionosphere, where the electron-ion effective recombination co-
efficient depends strongly on the electron temperature Te [38]. The heat diffusion from
the Langmuir PDI region downward and upward excites thermal instability to generate
large-scale FAIs [37] as well as to cause ionization enhancement over a large region. An ion-
ization enhancement, like that presented in Figure 6, was observed. On the other hand,
the combined ionogram presented in Figure 7a shows that the heating wave induces a
downward spread of the ionogram trace in the region from 2.1 to 2.8 MHz, different from
that shown in Figure 5b in which the enhanced Spread-F appears with an upward-spread
of the virtual height in the ionogram trace. It is likely the spread in Figure 7a is caused by
a different mechanism; the down-going Langmuir waves evolve into nonlinear periodic
plasma waves propagating along the magnetic field, which backscatter incoherently the
sounding pulses to give rise to downward spread of the ionogram trace.

In sum, these observed phenomena are ascribed to various linear and nonlinear
wave–plasma and wave–wave interactions instigated by the Langmuir waves, upper
hybrid waves, and density irregularities, generated by the HF heating waves. Theoretical
formulation and analysis of parametric instabilities and instigated interaction processes
are presented in Section 4 as the theoretical basis of HF heating induced phenomena.

3. Ray Tracing

One approach to characterize wave propagation in the ionosphere is “ray tracing”.
It is applicable when the wave front extends uniformly over several wavelengths and the
inhomogeneity scale lengths of the medium are large in comparison to the wavelength,
and particularly, the wave has a dominant frequency. In this situation, the wave may
be treated as a ray and its trajectory is tracked to explore wave propagation and the
ionospheric plasma. The ionosphere is stratified into layers and the Snell’s law of refraction
is applied at the interface of two adjacent layers to setup the ray trajectory equation. This is
illustrated by applying the arrangement shown in Figure 8, in which an inhomogeneous
medium with refractive index n(z) is approximated by a series of plane slabs of thickness
∆z, where ∆z→ 0 and each slab i has a uniform refractive index ni.

Figure 8. Ray trajectory in a planar stratified medium.
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As shown in Figure 8, a ray is incident from a uniform medium (e.g., below the
ionospheric plasma) of refractive index n0 at an angle, θ0, with respect to the vertical axis
into this inhomogeneous medium; the Snell’s law nj sin θj = nj+1 sin θj+1 is applied at
the interface of two adjacent slabs j and j+1 to determine the moving direction of the ray;
n0 < n1 < n2 . . . is assumed in the plot (however, in the case of propagating upward into
the ionospheric plasma, it is n0 > n1 > n2 . . . .).

The path of the ray in each slab is a straight line, and one can identify the relations:
∆z/∆xi = cotθi and ni sin θi = n0 sin θ0, where ∆xi is the horizontal displacement of
the ray after transit through slab i. In the limit of ∆z → 0, these two relations become
dz/dx = cotθ and n sin θ = n0 sin θ0, and a trajectory equation is derived to be

dz
dx

= cot θ =
(1− sin 2 θ)

1
2

sin θ
=

(n 2 − n2
0 sin2θ0)

1
2

n0sin θ0
. (1)

If n2 can be modelled by a second-order polynomial, i.e., n2(z) = a + bz + cz2, (1) can
be integrated analytically; otherwise, it is integrated numerically.

3.1. General Formulation of Ray Trajectory Equations

Consider a general case that wave propagation is governed by a dispersion equation
with the generic form [39]

G(k,ω; r, t) = 0. (2)

We now introduce a generic variable “τ” and take a total τ derivative on (2), it yields

dG
dτ

= ∇kG · dk
dτ

+
∂G
∂ω

dω
dτ

+ ∇G · dr
dτ

+
∂G
∂t

dt
dτ

= 0. (3)

The four terms in (3) are arranged into two groups to be(
∂G
∂t

dt
dτ

+
∂G
∂ω

dω
dτ

)
+

(
∇G · dr

dτ
+ ∇kG · dk

dτ

)
= 0, (4)

where the first group of terms is related to the time variation of the media, while the
second group related to the spatial variation of the media. Because (4) is obtained from a
general approach and the spatial variation and temporal variation are separable, its general
solution requires that the following two relations be satisfied simultaneously:

∇G · dr
dτ

+ ∇kG · dk
dτ

= 0 (5)

and
∂G
∂t

dt
dτ

+
∂G
∂ω

dω
dτ

= 0, (6)

where dr
dτ 6=

dk
dτ and dt

dτ 6=
dω
dτ because r and k and t and ω are independent to each

other; thus (5) and (6) deduce to the following relations

dr
dτ

= ∇kG, (7a)

dk
dτ

= −∇G, (7b)

dω
dτ

=
∂G
∂t

, (7c)

dt
dτ

=
∂G
∂ω

. (7d)

In principle, (2) can be solved to obtain, for instance, ω = ω(k; r, t); in other words,
there are only three independent variables in (2). Choose r, t, and k to be independent
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variables and ω a dependent variable, i.e., G(k, ω; r, t) = G(k, r, t; ω(k, r, t)) then take
partial derivatives of (2) with respective to the three independent variables k, r, and t,
respectively, it obtains the following three relationships

∇kG +
∂G
∂ω
∇kω = 0, (8a)

∇G +
∂G
∂ω
∇ω = 0, (8b)

∂G
∂t

+
∂G
∂ω

∂ω

∂t
= 0. (8c)

With the aid of (8a) and (7d), (7a) becomes

dr
dτ

= ∇kG = − ∂G
∂ω
∇kω =

dr
dt

dt
dτ

=
∂G
∂ω

dr
dt

,

which leads to
dr
dt

= ∇kω = vg. (9)

With the aid of (8b) and (7d), (7b) becomes

dk
dτ

= −∇G =
∂G
∂ω
∇ω =

dk
dt

dt
dτ

= − ∂G
∂ω

dk
dt

,

which leads to
dk
dt

= −∇ω. (10)

With the aid of (8c) and (7d), (7c) becomes

dω
dτ

=
∂G
∂t

=
∂G
∂ω

∂ω

∂t
=

dω
dt

dt
dτ

= − ∂G
∂ω

dω
dt

,

which leads to
dω
dt

=
∂ω

∂t
. (11)

Equations (9) to (11), subject to a set of initial conditions, determine the ray trajectory
in the phase space (i.e., r–k space). In essence, these are the Hamilton’s equations of motion
withω and k to be the Hamiltonian and momentum of the ray.

3.2. Ray Trajectories of Sounding Pulses-Spread-F

This ray tracing technique is applied to explain the virtual height spread (e.g., Figure 5b)
of the ionogram trace observed in the HF heating experiments. Digisonde (ionosonde),
an HF radar, is a remote-sensing device for monitoring the plasma density profile of the
bottom-side ionosphere. It transmits sounding pulses upward and records the return echoes
in an ionogram as the virtual height trace. Digisonde radiates at a large cone angle, each
sounding pulse can be decomposed into many rays, which have different ray trajectories,
and only backscattered rays can return to the digisonde and are recorded as the ionogram
echoes. In the unperturbed ionosphere, only a few rays, which are close to the vertical
transmission, are backscattered. Thus, the virtual height traces of the sounding echoes
in the ionogram have narrow virtual height spreads. However, when the ionosphere is
perturbed in the presence of large-scale field-aligned density irregularities, ray trajectories
can be significantly modified as elaborated in the following.

A carton of large-scale FAIs appearing in the F region of the ionosphere is presented
in Figure 9a; x and z axes are in the horizontal and vertical directions. A sounding pulse of
the digisonde is decomposed into a bunch of rays as also shown in Figure 9a. Only plasma
affects ray trajectory, thus, from the ground to the reference layer, z = 0, rays are assumed to
propagate in a free space, where the plasma density is still low and FAIs do not extend to.
Ray trajectories from z = 0 up to their reflection layers and returning to z = 0 are determined
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via ray tracing technique. In this region, the background plasma has a density distribu-
tion N(z) = N0

(
1 + z

L
)
, where N0 and L are the plasma density at the reference layer,

z = 0, and the inhomogeneity scale length of the background plasma, respectively. FAIs are
represented by a single sinusoidal function with a spatial period d and an amplitude ∆N,
i.e., NI(x, z) = ∆N sinκ(x sinθd + z cos θd), where κ = 2π/d and θd is the magnetic dip
angle; θd = 50◦, 75.6◦, and 78◦ at Arecibo, HAARP, and EISCAT, respectively.

Figure 9. (a) Field-aligned density irregularity (FAI) geometry and digisonde beam. (b) and (c) Vertically incident ray
trajectories of (b) O-mode ray of 2.8 MHz and (c) X-mode ray of 2.8 MHz, in the presence of 0 to 10 % FAI. The axes x and z
in (b) and (c) are normalized to k0 =ω0/c.

In the model, plasma is uniform in the y direction, only two-dimensional trajectories
on the x-z plane are considered in the numerical analysis; (9) and (10) become

dx
dt

=
∂ω

∂kx
and

dz
dt

=
∂ω

∂kz
, (12)

and
dkx

dt
= − ∂ω

∂x
and

dkz

dt
= − ∂ω

∂z
. (13)

Because the ionospheric plasma and FAIs can be stationary in the propagation period
of a ray, ∂ω/∂t = 0, (11) leads to dω/dt = 0; thusω = ω(kx, kz, x, z) is a constant of
motion. With the aid of the dispersion relationω = ω(kx, kz, x, z), right-hand side terms
of the Equations in (12) and (13) can be expressed explicitly.

Digisonde transmits linearly polarized sounding pulses, which can be decomposed to
RH- and LH-polarizations representing O-mode and X-mode sounding pulses. The disper-
sion equations for obliquely propagating O-mode and X-mode heating waves are given
approximately by

[ωω2 − (ω2
p + k2c2)] +

k2
‖

k2 Ω(ω2 − k2c2) ∼ 0 (14)

and

ω2(ω−Ω)−ωω2
p − (ω−Ω)

(
k2
‖ +

1
2

k2
⊥

)
c2 ∼ 0. (15)

where the parallel and perpendicular (to the magnetic field) components, k‖ and k⊥
of the wavevector are related to the x and z components, kx and kz of the wavevec-
tor by k‖ = −kxcos θd + kzsin θd and k⊥ = kxsin θd + kzcos θd; ω2

p = ω2
p0[1 + z

L +

∆N
N0

sin κ(x sin θd + z cos θd)] and ω2
p0 = N0e2

mε0
. With the aid of (14) and (15), right hand

side terms of the equations in (12) and (13) can be expressed explicitly for the O-mode and
X-mode sounding rays, respectively.

In the numerical calculation, FAIs are represented by a single sinusoidal function with
a spatial period of 200 m and an amplitude ∆N; the background plasma density has a
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linear scale length L = 30 km. Figure 9b demonstrates the change of the trajectory of a
vertically incident O-mode ray of 2.8 MHz in the presence of FAIs with the amplitude
∆N increased from 0 to 0.1 N0, where N0 is the plasma density at a reference layer, z = 0,
having a plasma frequency ωp0 = 2.26 MHz (i.e., 3.2/

√
2 MHz). In the absence of FAIs

(∆N = 0), the vertically incident ray is backscattered. However, in the presence of FAIs
(∆N/N0 = 0.01 to 0.1), the vertically incident ray is not backscattered anymore.

A similar demonstration for the vertically incident x-mode ray of 2.8 MHz is presented
in Figure 9c. As shown, the vertically incident ray is backscattered also only in the absence
of FAIs (∆N = 0). In fact, the vertically incident ray is ducted by the FAIs (for ∆N/N0 ≥
0.03), the return signal propagates along the geomagnetic field, rather than propagating
vertically downward. The x and z axes in Figure 9b,c are normalized to k0 = ω0/c,
where f0 = ω0/2π is the frequency of the sounding pulse. For example, at 2.8 MHz,
1/k0 = c/ω0 = 17.05232 m; thus, the (x, z) axes for 2.8 MHz ray are normalized to
17.05232 m. The normalization is inversely proportional to the frequency, thereby it
decreases to 13.64 m for 3.5 MHz ray.

Therefore, in the presence of FAIs, the traces in an ionogram are not contributed by the
returns of the vertically incident rays. In order to achieve backscatter, the incident direction
of the ray at the reference layer, z = 0, must have an off vertical angle. The trajectories of
backscatter rays in the presence of 15% FAIs for both O- and X-mode sounding signals
from 3.5 to 4 MHz are determined. 15% FAIs are relatively large for the general situation;
it is adopted in the simulations for a better contrast. The results are shown in Figure 10,
the backscatter trajectories in the absence of FAIs are also plotted for comparison.

Figure 10. (a) Trajectories of backscatter rays of 3.5 to 4 MHz in the absence of FAI and in the presence of 15% FAIs, (a)
o-mode rays and (b) x-mode rays.

As shown in Figure 10a, the trajectories of the O-mode backscatter rays [3.5 (red),
3.6 (green), 3.7 (black), 3.8 (pink), 3.9 (blue), 4 (brown) MHz] are modified significantly by
the FAI from those (light pink) in the absence of FAI, however the incident off-vertical angles
are very small (< 1◦); on the other hand, as shown in Figure 10b, the off-vertical angles of
the x-mode backscatter rays in the presence of FAI are very large, and this off-vertical angle
(> 15◦) increases as the frequency of the sounding signal decreases. The off-vertical angle
also increases with the increase of the FAI amplitude. In general, multiple incident rays (at
different oblique angles) are backscattered to the digisonde receiver to produce multiple
sounding echoes at the same radar frequency but at different return times [35], resulting in
the spread of the virtual height traces. In the HF heating experiments, large-scale FAIs are
generated by the O-mode heating waves, causing a spread of the virtual height traces like
the natural Spread-F; the heating-wave-induced Spread-F is termed “Artificial Spread-F”.
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4. Parametric Instabilities Excited in HF Heating Experiments

Plasma supports high-frequency and low-frequency modes; in the absence of external
sources, these modes present in plasma as thermal fluctuations. A large-amplitude, high-
frequency wave, Ep

(
ω0, kp

)
, (either electromagnetic (EM) or electrostatic (ES)), can be

a pump wave, which excites high- and low-frequency plasma waves concurrently [39].
The electric field of the high frequency pump wave sets up a quiver motion in the electron
plasma at velocity veq(t). On the other hand, electrons and ions oscillate together to
maintain quasi-neutrality, i.e., nes(ωs, ks) ∼= nis(ωs, ks) = ns(ωs, ks), in the low
frequency plasma wave field; it facilitates the low-frequency plasma wave to buildup
plasma density perturbation ns(ωs, ks). A coupling of the pump wave and the low-
frequency plasma wave induces a high-frequency space charge current density, −ensveq,
in the electron plasma. Such a current drives beat waves, E(ω, k) and E

′(
ω ′, k′

)
, with

the wavevectors and frequencies satisfying the matching conditions:

ω0 = ω + ω∗s = ω ′ −ωs and kp = k + ks = k′ − ks

These beat waves, in turn, also couple with the pump wave to induce in the electron
plasma a low-frequency nonlinear force, which has the same frequency and wavevector as
the density perturbation, ns(ωs, ks), to drive this density perturbation. When the couplings
generate large enough positive feedback to overcome linear losses of the coupled waves,
instability is excited to grow the coupled plasma waves exponentially in the expense of
the pump wave energy. This is called “parametric instability”; a pump wave, Ep

(
ω0, kp

)
,

decays to two sidebands, E(ω, k) and E
′(
ω ′, k′

)
, through coupling to a low-frequency

decay mode, ns(ωs, ks). Parametric coupling is imposed by the frequency and wavevector
matching conditions; further, the instability requires the pump electric field intensity to
exceed a threshold. When the decay mode, ns(ωs, ks), has a finite oscillation frequency,
two sidebands cannot satisfy the same dispersion relation concurrently. The frequency-
upshifted sideband, E

′(
ω ′, k′

)
, has large frequency discrepancy from the plasma mode

and can be disregarded to simplify the parametric coupling to be three-wave interaction.
Parametric excitation of Langmuir/upper hybrid waves, φ(ω, k), and low-frequency

plasma waves, ns(ωs, ks), by the electromagnetic or Langmuir/upper hybrid pump waves,
Ep
(
ω0, kp

)
, in the bottom-side of the ionosphere, are explored in the following, where

Ep, φ, and ns denote electric field of a pump wave, electrostatic potential of the Lang-
muir/upper hybrid sideband, and density perturbation of a low frequency decay mode,
respectively. Langmuir waves can have large oblique propagation angles (with respect

to the geomagnetic field B0 = −^
zB0), upper hybrid waves have near 90◦ propagation

angles, and low-frequency plasma waves include ion acoustic/lower hybrid waves as well
as purely growing modes.

The most likely parametric instabilities excited directly by a HF heating wave in the
bottom-side of the ionosphere include 1) oscillating two-stream instability (OTSI), and 2)
parametric decay instability (PDI), in both mid-latitude and high-latitude ionosphere [4,40,41].
The sidebands are Langmuir waves and upper hybrid waves. The instabilities with Lang-
muir waves as sidebands must compete with those excited in the upper hybrid resonance
region, where the upper hybrid waves are the sidebands of the instabilities. The wavenum-
ber k0 of the HF heating wave is much smaller than the wavenumbers of the electrostatic
sidebands and decay modes, thus a dipole pump, i.e., k0 = 0, is generally assumed. As the
excited Langmuir/upper hybrid sidebands grow to large amplitudes, they also become
pump waves to excite parametric instabilities [42,43].

When the theory is used to explain the observations, it is noted that HFPLs and HFILs
are monitored by UHF and VHF backscatter radars; those lines are associated with plasma
waves propagating oblique to the geomagnetic field at an angle conjugate to the magnetic
dip angle. Moreover, upper hybrid waves, lower hybrid waves, and field-aligned purely
growing modes cannot be detected.
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The coupled mode equation for the Langmuir/upper hybrid sideband φ(ω, k) is
derived from the electron continuity and momentum equations, together with the Poisson’s
equation, to be [44]{[

(∂t + νeh)
2 + Ω2

e

](
∂2

t + νeh∂t + ω2
p − 3v2

te∇2
)
∇2 − Ω2

e

(
ω2

p − 3v2
te∇2

)
∇2
}
φ

= ω2
p

{[
(∂t + νeh)

2∇ + Ω2
e∇z

]
·
〈

Epn∗s
n0

〉
+ Ωe(∂t + νeh)

^
z·
〈
∇
(

n∗s
n0

)
× Ep

〉}
,

(16)

where 〈 〉 represents a filter, which only keeps terms with the same phase function
as that of the function φ on the left-hand side; Ωe = eB0/m, ωp =

(
n0e2/m0

)1/2,
vte = (Te/m)1/2, and m, are the electron cyclotron frequency, plasma frequency, ther-
mal speed, and mass, respectively. (16) is derived from the fluid equations, however the
kinetic effect of electron Landau damping is included phenomenologically in the colli-
sion damping rate, i.e., νeh = νe + νeL, which is the effective electron collision frequency,
where νe = νen + νei, a sum of the electron-neutral elastic collision frequency, νen, and the
electron-ion Coulomb collision frequency,
νei ∼= 2.632

(
n0/T3/2

e

)
ln Λ ∼=39.5

(
n0/T3/2

e

)
∼= 4.87× 10−7

(
f2
p/T3/2

e

)
, here lnΛ ∼= 15 is as-

sumed; n0 is in cm−3, Te is in K, and fp is the electron plasma frequency],

and νeL = (π/2)1/2
(
ω2ω2

p/kzk2v3
te

)
exp

(
−ω2/2k2

zv2
te

)
, a phenomenological collision

frequency to represent electron Landau damping.
The low-frequency wave fields move both electrons and ions, hence the formulation

of the coupled mode equation for the low-frequency decay mode, ns(ωs, ks), includes
electron and ion fluid equations. Because electrons and ions move together in the low
frequency field, the formulation is simplified by introducing quasi-neutral condition:
nsi ∼= nse = ns. The ion fluid equations are similar to the electrons except that the electron
mass m is changed to the ion mass M, the charge −e changed to e, and the collision terms
in the electron and ion fluid equations are modeled differently by νei(ve − vi) + (νen + νeL)
ve and νie(vi − ve) + νivi, respectively, where νi = νin + νiL, νin is the ion-neutral collision
frequency, νiL ∼= (π/2)1/2(ω2

s /kzVs
)
(Te/Ti)

3/2 exp
(
−ω2

s /2k2
zv2

ti

)
represents ion Landau

damping on the low frequency decay mode, and Vs = (Te/M)1/2.
Neglecting the electron inertial term and the ion convective term in the momentum

equations, these two momentum equations are combined into a one fluid equation, where
the relations νie =

(m
M
)
νei and mΩe = MΩi are applied. This equation is then combined

with the ion continuity equation to derive a coupled mode equation, for the low-frequency
(ion acoustic/lower hybrid) decay mode [45]
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(17)

where Ωi is the ion cyclotron frequency, Cs = [(Te + 3Ti)/M]1/2 the ion acoustic
speed, and M the ion (O+) mass; (m/M)νe << νi is applied; νes = νe + νeLs, and νeLs =

(π/2)1/2
(
ω2

sω
2
p/kzk2v3

te

)
exp

(
−ω2

s /2k2
zv2

te

)
. The coupling terms ap = 〈ve·∇ve〉 and

JB = 〈neve〉 arise from plasma nonlinearities. The linear responses of the electron density
and velocity to the total high frequency wave fields are used to present these coupling terms.

In the following, parametric decays of an O-mode EM dipole pump, Ep
(
ω0, kp = 0

)
,

into Langmuir/upper hybrid sidebands, φ±(ω±, k±), and a low-frequency decay mode,
ns(ωs, ks), (a purely growing or an ion acoustic mode / FAI or a lower hybrid mode) in the

spatial region below the HF reflection height are studied. φ+ and ns denote the sideband’s
electrostatic potentials and the density perturbation of purely growing or ion acoustic/FAI
or lower hybrid mode, respectively; φ+ = φ(ω, k1) and φ− = φ′

(
ω, k′1 = −k1

)
, i.e.,

ω± = ω and k+ = k1 = −k−; k1 =
^
zk1z +

^
xk1; ω = ω0−ω∗s and ks = −k1 are
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imposed by the frequency and wavevector matching conditions. The O-mode heating
wave field is given to be

Ep =

(
^
x + i

^
y
)

Ep +
^
zEpz + c.c., (18)

where Ep,z = Ep,z exp(−iω0t), Ep,z = E0,z/2, and c.c. represents complex conjugate.
It is noted that E0,z varies with the location (i.e., altitude); for instance, in the upper

hybrid resonance region, E0 ∼= E0 and E0z ∼= 0, thus Ep ∼=
(

^
x + i

^
y
)

Ep + c.c. ∼=

E0

(
^
x cosω0t +

^
y sinω0t

)
, where, neglect D region loss, E0 =

√
30PG/R , P is the radiated

power of the HF heater, G is the heater antenna gain, and R is the distance between the
HF antenna and the excited upper hybrid resonance region; usually, it expresses PG = Peff,
and Peff is called effective isotropic radiated power (EIRP). Near the HF reflection height,

E0 ∼= 0 and E0z ∼=
√

2E0 and thus Ep ∼=
^
zEpz + c.c. ∼= ^

z
√

2E0cosω0t.
With the aid of (18), Equations (16) and (17) become{[

(∂t + νeh)
2 + Ω2

e

](
∂2

t + νeh∂t + ω2
p − 3v2

te∇2
)

∂2
z + (∂t + νeh)

[
(∂t + νeh)

(
∂2

t + νeh∂t + ω2
p − 3v2

te∇2
)
+ Ω2

e∂t

]
∇2
}
φ±

= ω2
p

{[
(∂t + νeh)

2 + Ω2
e

]
∂z

(
Epzns±

n0

)
+ (∂t + νeh)

(
∂x + i∂y

)
(∂t + νeh + iΩe)

(
Epns±

n0

)} (19)

and{[
∂t(∂t + νi)−C2

s∇2
][

∂t(∂t + νes)∇2 + Ω2
e∂2

z

]
+ ΩeΩi∂

2
t∇2

}
(ns/n0)

= −
( e

mω
)2
(m/M)

{(
1− Ω2

e
ω2

)−1
∂t

[
(∂t + νes) + i

Ω2
e (ω2

u− ω2)
ω2

pω

]
∇2 + Ω2

e ∂2
z

}
×{[(

1 + Ωe
ω

)−1(
∂x + i ∂y

)
Ep + ∂zEpz

]
∇2φ∗+ +

[(
1 + Ωe

ω

)−1(
∂x − i ∂y

)
E∗p + ∂zE∗pz

]
∇2φ−

}
,

(20)

where n∗s+ = ns(ωs, ks = − k1) = ns−
Equations (19) and (20) are analyzed in the k-ω domain, where the spatial and

temporal variation of physical functions in (19) and (20) are set to have the form of
p = p exp[i(κ·r−vt)], where κ and v = vr + iγ are the appropriate wavevector
and complex frequency of each physical quantity. Thus (19) and (20) are converted to the
coupled algebraic equations to be

[
ω2 + iνehω −

(
ω2

k + Ω2
e sin2 θ

)]
k2φ± = ±iω2

p

(
1−Ω2

e/ω2

1−Ω2
e cos2 θ/ω2

)(
kzEpz +

kx + iky

1 + Ωe/ω
Ep

)(
ns±
n0

)
(21)

and{
ωs(ωs + iνi)

[
ωs(ωs + iνes + iνi/ξ)−

(
k2C2

s + ΩeΩiξ
)]

sin2 θ+ Ω2
e k2C2

s cos2 θ
}(

ns
n0

)
= −i

(
keΩe
mω

)2(m
M
){ 1

1+ Ωe
ω

[
ωs(ω2

u − ω2)
ω2

pω

]
sin2 θ+ cos2θ

}
×{

kz

(
Epzφ

∗
+ + E∗pzφ−

)
+ 1

1+Ωe/ω

[
kx

(
Epφ

∗
+ + E∗pφ−

)
+ iky

(
Epφ

∗
+ − E∗pφ−

)]} (22)

where sin2 θ = k2/k2, ω2
k = ω2

p + 3k2v2
te andω2

u = ω2
p + Ω2

e; (21) is simplified with

the condition (Ωe/ω)4 << 1; ξ = 1 + (M/m) cot2 θ.
In the following, the coupled mode algebraic Equations (21) and (22) are employed to

analyze parametric instabilities excited in the ionospheric HF heating experiments.

4.1. OTSI and PDI near the HF Reflection Height

The RH circularly polarized HF heating wave propagates to the region near the

reflection height, and it converts to the O-mode with the electric field Ep ∼=
^
zE0zcosω0t,

where E0z ∼=
√

2E0.
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4.1.1. OTSI—Excitation of Langmuir Sidebands φ±(ω,±k) Together with Purely Growing
Density Striations ns(ωs = iγs, ks) by the HF Heating Wave

The parallel (to the magnetic field) component ksz of the wavevector of the small-scale
purely growing mode ns(ωs = iγs, ks) is not negligibly small, and the density striations
are mainly driven by the parallel component of the ponderomotive force induced by the
high frequency wave fields. Apply the condition ΩeΩiξ ~ Ω2

ek2
z/k2 >> k2C2

s to simplify
(22) and setωs = iγs and ω = ω0 + iγs, (21) and (22) are combined to be

{(
γ2

s + Ω2
i

)[
γs(γs + νi) + k2C2

s

]
−Ω2

i k2C2
s

}
=

e2k2 cos2 θ

mM

(
γ2

s + Ω2
i cos2θ

)[ ∆ω2

∆ω4 + ω2
0(2γs + νeh)

2

]
|E0|2,

(23)
where ∆ω2 = ω2

p + 3k2v2
te + Ω2

e sin2θ−ω2
0.

Set γs = 0 in (23), the threshold field is obtained to be

∣∣∣E0(otsi)(θ)
∣∣∣
th
=
|E0z|th√

2
=

(mM)1/2

e
Cs

[(
∆ω4 + ω2

0ν
2
eh

)
/∆ω2

]1/2

cos θ
. (24)

It shows that the threshold field of OTSI varies with the propagation angle θ and
wavelength λ of the Langmuir sidebands as well as the location of excitation (i.e., ∆ω2).
The threshold field (24) has the minimum

∣∣∣E0(otsi)(θ)
∣∣∣
m

=
(2mM)1/2

e
Cs

(ω0νeh)
1/2

cos θ
. (25)

when the (k,θ) lines are excited in a preferential layer at altitude h(k,θ), where ω2
p(h) =

ω2
p(k, θ) = ω0(ω0 + νe)− 3k2v2

te − Ω2
e sin2θ and ∆ω2(k, θ) = ω0νeh.

4.1.2. PDI—Decay of HF Heating Wave to Langmuir Sideband φ(ω, k) and Ion Acoustic
Wave ns(ωs, ks)

The coupled mode equations (21) and (22) are combined to a dispersion equation

[ω(ω + iνeh)−ω2
kθ] [ω

∗
s (ω

∗
s−iνi)−k2C2

s

]
=

(
1−Ω2

e/ω2
0

1−Ω2
e cos2 θ/ω2

0

) (
e2k2

zω
2
p

2mMω2
0

)
|E0|2. (26)

When the instability is excited at the matching height h of its Langmuir sideband

(k, θ), i.e., ωr = ωkθ =
(
ω2

p + 3k2v2
te + Ω2

e sin2θ
)1/2

and ωsr = kCs, the minimum
threshold field is obtained to be∣∣∣E0(pdi)(k, θ)
∣∣∣
m
=
|E0z|th√

2
=

(
1−Ω2

e cos2 θ/ω2
0

1−Ω2
e/ω2

0

)1/2(
2mM

e2

)1/2 (νehνi ωsr ω
3
0
)1/2

kcosθωp
. (27)

Equations (25) and (27) show that the layers of exciting OTSI and PDI move downward
and the threshold fields increase as the oblique propagation angles θ of the OTSI and PDI
lines increase. When the heating wave field E0 is large, the Langmuir sidebands excited
by the OTSI and PDI will have angular (θ) and spectral (k) spread lines, distributed in
altitude layers, where are higher and narrower for the OTSI excitation layer than that for
the PDI layer.

4.2. Upper Hybrid OTSI and PDI Excited near the Upper Hybrid Resonance Layer
4.2.1. OTSI—HF Heating Wave Decaying to Upper Hybrid Sidebands and Field-Aligned
Density Irregularities

The O-mode HF heating wave can access the upper hybrid resonance layer, which
is located below the O-mode HF reflection height. In high-latitude regions, such as
at Tromso, Norway and Gakona, Alaska, RH circularly polarized heating wave can
be transmitted along the geomagnetic field. In the region near the upper hybrid reso-
nance layer, the heating wave field still remain at RH circular polarization, i.e., Ep =
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1
2

(
^
x + i

^
y
)

E0 exp(−iω0t) + c.c.; the heating wave decays to two upper hybrid sidebands

φ+

(
ω±, k± = ±^

x k
)

and a field-aligned purely growing mode ns

(
ωs = iγs, ks = −

^
xk
)

,

whereω± = ω = ω0 + iγs.
Equations (21) and (22) are analyzed in the same way to be combined into a dispersion

equation for the upper hybrid OTSI to be[(
γ1 +

k2C2
s

ω2
LH

)(
γ1 + 2m

M +
k2v2

te
Ω2

e

)
+

2γ1k2v2
te

3 Ω2
e

] [
Γ2 + ν2

e

(
ω2

0 + Ω2
e

)2
/ω2

0

]
= (2/3)

[
Γ
(

1 − Ωe
ω0

)
− ν2

e

(
1 + Ω2

e
ω2

0

)
− (5/4)

(
kλD
ω0

)2
(

1 + 6mΩ2
e

5Mk2v2
te

)(
ω4

0 − Ω4
e

)] [
ωp

Ωe(ω0 + Ωe)

]2( keE0
m

)2
,

(28)

where γ1 = γs/νe, kD = ωp/vte and Γ = ω2
p + 3k2v2

te + Ω2
e + ν2

eh − ω2
0.

With Γ = Γ0 = a +

[
a2 + ν2

e

(
ω2

0 + Ω2
e

)2
/ω2

0

]1/2
,

where a =
(

1 + Ω2
e/ω2

0

) [
ν2

e + (3/2)ΩeΩi
]
/(1 − Ωe/ω0), the minimum threshold

field is obtained to be

|Euotsi|m =

√
6mCs

e(1− Ωe/ω0)
3/2

[
Γ0

(
1 +

k2v2
te

2ΩeΩi

)]1/2

. (29)

4.2.2. PDI—Decay of HF Heating Wave to an Upper Hybrid Sideband φ(ω, k) and a Lower
Hybrid Decay Wave ns(ωs, ks)

A dispersion equation is derived, by combining (21) and (22), to be

(−Γ + iνeω) ω∗s

{
ω∗s [ω

∗
s−i(νes + νi/ξ)]−ω2

Lks

}
=

(
eΩe

mω

)2(m
M

) ( 3k2v2
te

4ω

)
(

1 + Ωe
ω

)2 k2E2
0, (30)

where νi << νes is assumed.
The minimum threshold field

∣∣Eupdi
∣∣
m of the instability excited at the matching height

of its upper hybrid sideband φ(k, θ) is obtained to be

∣∣∣Eupdi

∣∣∣
m
=
(m

e

)(
1 +

Ωe

ω0

)[
νe

(
νes +

νi

ξ

)] 1
2
(
ξ

3

) 1
2
(
ω2

0

k2v2
te

)
, (31)

where νe = νei + νen, νes = νe + νeLs,
and νeLs = (π/2)1/2(M/m)3/2

[
ω4

LHξ/k3v3
te(ξ− 1)1/2] exp[−Mω2

LHξ/2mk2v2
te(ξ− 1)

]
.

The plasma frequency at the matching height is

ωp =
(
ω2

0 − Ω2
e − 3k2v2

te

)1/2
<
(
ω2

0 − Ω2
e

)1/2
; in other words, the preference region of

exciting upper hybrid PDI is below the upper hybrid resonance layer.
The definitions of the symbols in (25), (27), (29), and (31) are summarized in the

following: The ion acoustic speed Cs = [(Te + 3Ti)/M]1/2 and the electron thermal
speed vte = (Te/m)1/2; ω0, ωsr, ωLH = (ΩeΩi)

1/2, ωp, and Ωe,i are the HF heating
wave, ion acoustic, lower hybrid, electron plasma, and electron and ion cyclotron radian
frequencies; νeh = νen + νei + νeL = νe + νeL, νen is electron-neutral elastic collision
frequency, νei is the electron-ion Coulomb collision frequency, νe = νen + νei, and νeL is
twice of the electron Landau damping rate; νes = νe + νeLs, and νeLs is twice of the
electron Landau rate on lower hybrid wave; νi = νin + νiL, νin is the ion-neutral collision
frequency, νiL is twice of the ion Landau damping rate on ion acoustic wave; ξ = 1 +
(M/m)( k2

z/k2); θ is the oblique angle of the wavevector with respect to the geomagnetic
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field; Γ0 = a +

[
a2 + ν2

e

(
ω2

0 + Ω2
e

)2
/ω2

0

]1/2
accounts for frequency mismatch, where

a =
(

1 + Ω2
e/ω2

0

) [
ν2

e + (3/2)ΩeΩi
]
/(1 − Ωe/ω0).

4.3. Height Separations of the Instability Layers in the Bottom-Side of the Ionosphere

Let hr/ωpr, hp/ωpp, and hu/ωpu be the HF reflection height, Langmuir PDI height,
and upper hybrid resonance layer height, and the corresponding electron plasma frequency
at each height, respectively. In the small region from the upper-hybrid resonance layer
to the HF reflection layer, a linear increasing plasma density profile n = n0 (1− ∆h/L)
is assumed, where n0 is the electron density at hr (i.e., ω2

pr = ω2
0), L is the linear scale

length, and ∆h is the distance below hr (i.e., ∆h = hr − h). With the aids of the HFPL
dispersion relation and the definition of the upper-hybrid resonance frequency, this leads
to ω2

pr − ω2
pp ∼ 12k2

Rv2
te = ω2

0
(
∆hp/L

)
andω2

pr − ω2
pu ∼ Ω2

e = ω2
0(∆hu/L); then,

∆hp = hr − hp and ∆hu = hr − hu are derived to be

∆hp = hr − hp =

(
12k2

Rv2
te

ω2
0

)
L (32)

and

∆hu = hr − hu =

(
Ω2

e

ω2
0

)
L, (33)

where kR is the wavenumber of the UHF radar.
The following parameters corresponding to the HAARP site are adopted:

vte = 1.33× 105 m/s, kR = 3π, Ωe = 2π× 1.45× 106 Rad/s, and f0 = 4.3 MHz. Then (32)
and (33) give ∆hp ~ 0.0258L and ∆hu ~ 0.114L ~ 4.4∆hp, leading to ∆hu − ∆hp ∼ 3 km
for L ~ 34 km.

4.4. Impact of Double Resonances on Parametric Excitation of Upper Hybrid PDI

Double resonances is the situation where the upper-hybrid sideband of the upper-
hybrid PDI excited in the upper hybrid resonance region is also in resonance with electrons
at the Doppler-shifted nth harmonic cyclotron resonance, i.e., ω ∼ ωuk = nΩe + kzvte,

where the upper-hybrid frequencyωuk =
(
ω2

0 + Ω2
e + 3k2v2

te

)1/2
. The frequency match-

ing conditionω0 = ω+ωs of the upper-hybrid PDI, can be satisfied ifω0 > nΩe but close
to nΩe. The lower-hybrid wave frequency at HAARP is given to be fLk = fLH

√
ξ ∼ 8.3×√

ξ kHz, where ξ = 1 + (M/m)(kz/k⊥)
2. For ξ = 3, fLk ~ 14.4 kHz.

A frequency sweep method can be applied to achieve a double resonance situation.
It slowly sweeps the heating wave frequency from nΩe to a frequency covering the lower-
hybrid wave frequency fLk and the Doppler-shifted frequency ∆f = kzvte/2π. The linear
velocity response of the electrons in the upper-hybrid wave field Eu = −ikφ + c.c. is given

to be vu = −
[
ke/m

(
ω2 −Ω2

e
)](

ω
^
x + iΩe

^
y
)
φ + c.c.. At the Doppler-shifted cyclotron

harmonic resonance,ω = nΩe + kzvte, there is an additional resonance response, ascribed
to the finite Larmour radius effect; it is derived to be

vur = i(ke/mωve)
[
n2Λn(βe)/βe

](
ω

^
x + iΩe

^
y
)
φ + c.c., where βe = k2v2

te/Ω2
e,

Λn(βe) = In(βe) exp(−βe), and In(βe) is the modified Bessel function of the first kind.
The total electron velocity response to the upper-hybrid wave becomes

vut = −
[
ke/m

(
n2 − 1

)
Ω2

e
)
]
[
1− i n

(
n2 − 1

)
ΩeΛn(βe)/βeνe

](
ω

^
x + iΩe

^
y
)
φ + c.c.;

the electron ponderomotive force, driving the lower-hybrid waves, is then enhanced by
g2 =

〈
|vut|2/|vu|2

〉
. It lowers the threshold field, given in (31), by a factor

g =
{

1 +
[
n
(
n2 − 1

)
ΩeΛn(βe)/2βeνe

]2}1/2
and elevates the growth rate by g2; thus,
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the upper-hybrid and lower-hybrid waves will be intensified as the finite Larmour radius
factor βe = k2v2

te/Ω2
e is not too small. For βe ≥ 0.1, it requires that the wavelength λu of

the upper-hybrid wave is less than 0.3 m, i.e., λu ≤ 0.3 m.

4.5. Instabilities under Double Resonance Situation

It was shown by Huang and Kuo [46] that when the heating wave frequency ω0 is near
the third harmonic electron cyclotron resonance frequency, i.e., ω0 ∼ 3Ωe, upper-hybrid
OTSI is suppressed by the parametric excitation of the electron Bernstein sidebands and
small-scale FAIs. As a result, the source upper hybrid waves of the downshifted maximum
(DM) lines of the stimulated electromagnetic emissions (SEEs) [47] is effectively suppressed;
it explains the quenching of the DM feature in the SEE spectrum observed in the ionospheric
heating experiments. However, the upper-hybrid PDI, which decays the HF pump wave
into upper-hybrid sidebands and lower hybrid decay modes, can still be excited in the
region below the upper-hybrid resonance region. Asω0 < 3Ωe, upper-hybrid (OTSI and
PDI) instabilities are excited in the upper-hybrid resonance region as well as in a large
region underneath. In this case, upper-hybrid instabilities deplete the HF heating power
considerably before the HF heating wave reaches the PDI layer, thus the Langmuir PDI
is suppressed.

On the other hand, as the heating wave frequencyω0 is ramping-up swept to exceed
nΩe (i.e., ω0 > nΩe), the frequency matching condition, ω0 = ωuk +ωLk, of the upper-
hybrid PDI and the gyro-harmonic resonance condition ωuk = nΩe + kzvte, can be

satisfied simultaneously in the same altitude region, whereωuk =
(
ω2

uh + 3k2v2
te

)1/2
and

ω2
uh =ω2

pu + Ω2
e. Although double resonance suppresses upper-hybrid OTSI, it enhances

the excitation of upper-hybrid PDI as discussed in Section 4.4; however, the upper-hybrid
PDI zone is narrow; the instability will not be able to suppress the Langmuir PDI/OTSI.
Langmuir PDI generated both up-going and down-going HFILs; but only the down-
going HFILs will continuously propagate downward. On the other hand, the strongly
excited upper-hybrid sidebands propagate downward and upward as electrostatic pump
waves [48] that can cascade to down-going Langmuir sidebands and up-going ion-acoustic
waves as well as up-going Langmuir sidebands and down-going ion-acoustic waves over
an additional altitude range below h = hr. In terms of the wavevector matching conditions
for the generation of up-going/down-going HFILs, the cascade processes are illustrated in
Figure 11a,b, respectively [49]. Upward propagating upper-hybrid waves stop at a height
near the HF reflection layer (at h = hr, as shown in Figure 11b).

The Langmuir sidebands in the two cascade instabilities have different wavenumbers
and the oblique angles to the magnetic field. The cascade process involving up-going
Langmuir sidebands (Figure 11b) has a higher threshold field (due to larger oblique angle)
and lower growth rate (due to smaller wavenumber) than the other one involving down-
going Langmuir sidebands (Figure 11a). Because the mode characteristic of the HFILs
is not sensitive to the background plasma density variation, down-going HFILs mainly
attribute to those generated via Langmuir PDI.
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Figure 11. Cascade of down-going and up-going upper hybrid waves, in terms of the wavevector matching condition, over
an altitude range is illustrated; (a) cascade to down-going Langmuir sidebands and up-going ion acoustic waves; and (b)
cascade to up-going Langmuir sidebands and down-going ion acoustic waves.

5. Harmonic Electron Cyclotron Resonance Interactions

The motion of an electron, starting at origin and interacting with the excited upper

hybrid wave field, E(r, t) = 1
2π

∫ [(
x̂ kx +

^
zkz

)
/k
]

Ek cos (kxx + kzz −ωt) dk, in a

uniform magnetic field
^
zB0, is considered, where |kz| < |kx| and Ek is an even func-

tion of k; thus, the initial wave field amplitude at origin is given by Eu0 = E(0, 0) =∫
Ek dk/2π. The trajectory of the electron is governed by the equations: dr(t)/dt = v(t)

and dv(t)/dt = −eE(r, t)/m − Ωv(t)× ^
z, where Ω = eB0/mc is the electron cyclotron

frequency. The trajectory equations are integrated to be

r(t) = r0(t) −
(

c
B0

) ∫ t

0
H
_
(t − s)·E[r(t), t] ds, (34)

v− = v⊥0 e−i(Ωt +θ0) −
∫ dk

2π

{
eEkx

m

∫ t

0
e−iΩ(t−s) cos [kxx(s) + kzz(s)−ωs]ds

}
, (35)

vz = vz0 −
∫ dk

2π

{
eEkz
m

∫ t

0
e−iΩ(t−s) cos[kxx(s) + kzz(s)−ωs]ds

}
, (36)

where r0(t) = H
_
(t) · v0/Ω, v0 = v(0) = v⊥0

(
^
x cos θ0 +

^
y sin0

)
+

^
z vz0,

and H
_
(t) =

(
^
x

^
x +

^
y

^
y
)

sin Ωt −
(

^
x

^
y − ^

y
^
x
)
(1− cos Ωt) +

^
z

^
zΩt; v− = vx − ivy;

Ekx = kxEk/k and Ekz = kzEk/k.
At Doppler-shifted cyclotron resonance,ω = nΩ + kzvz1, the trajectory would be that

determined by the resonant (secular) terms together with small perturbations oscillating at
high frequencies due to the non-resonant interactions. vz1 = (ω− nΩ)/kz is the harmonic
cyclotron shifted wave phase velocity along the magnetic field and the resonant electrons
propagate along the magnetic field in the same direction as that of the wave whenω > nΩ.

In the present work, we will focus on the generation of energetic electrons, rather than
the bulk heating, which is not directly relevant to the experimental observations. Hence,
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the non-resonant interaction terms in the trajectory functions (34) to (36) are neglected to
focus only on the resonant trajectory. The x coordinate of the electron is obtained to be [21]

x(t) =
v(t)
Ω

sin θ(t)− v⊥0
Ω

sin θ0 , (37)

where θ(t) = θ0 +Ωt + ϕ(t); v⊥(t) =
[
(v⊥0 + β)

2 + α2
]1/2

and α and β are determined
self-consistently to be

α =
∫ dk

2π

{
eEkx
2m

∫ t

0

[
Jn−1(w′)sin Θ′− − Jn+1(w′) sin Θ′+

]
ds
}

, (38)

β = −
∫ dk

2π

{
eEkx
2m

∫ t

0

[
Jn−1(w′) cos Θ′− + Jn+1(w′) cos Θ′+

]
ds
}

; (39)

where Jm(w′) is the Bessel function of order m, w = kxv⊥/Ω, and w′ = w(s); Θ′± =
Φ + (n± 1)ϕ′+ kz(z′ − vz1s), Φ = −η sin0 + nθ0,η = kxv⊥0/Ω,ϕ′ = ϕ(s), z′ = z(s),
and ϕ(t) = tan−1[α/(v⊥0 + β)].

Substituting (37) into (35) and (36) yields

v− = v⊥(t)e
−iθ(t), (40)

vz = vz0 −
∫ dk

2π

{
eEkz
m

Jn−1(η)
∫ t

0
Jn(w′) cos[Φ + nϕ′+ kz(z′vz1s)]ds

}
, (41)

z = vz0t−
∫ dk

2π

{
eEkz
m

Jn−1(η)
∫ t

0
(t− s) Jn(w′) cos[Φ + nϕ′kz(z′ − vz1s)]ds

}
(42)

With the aid of (38), (39), and (41), the temporal evolution of the electron temperature
and electron distribution function can be determined. In the collisionless limit, the evolu-
tion of the distribution function follows the equation dfe(v, r, t)/dt = 0 along the trajec-
tories governed by (37) and (40) to (42). This equation provides the relation fe(v, r, t) =
fe(v0, 0, 0), subjected to the fact that (v, r) are related to (v0, 0) through (37) and (40) to
(42). Therefore, for a given initial distribution fe(v0, 0, 0), (e.g., a Maxwellian fe(v0, 0, 0) =

(m/2πT0)
3/2 exp

[
−(m/2T0)

(
v2

0 + v2
z0
)]

), the time evolved distribution function under the reso-
nance heating limit may be determined. The kinetic perpendicular temperature T⊥(t) is then given
by T⊥(t) =

∫
dv0

(
mv2
⊥/2

)
fe(v0, 0, 0) = (m/2) dv0

{
[v⊥0 + (β, t)]2 + α2(t)

}
fe(v0, 0, 0).

In the following formulation of harmonic cyclotron resonance interaction between
electrons and upper hybrid waves [23], the approximation z ∼= vz0t is applied, the new
notations F = α and G = v0 + β, are introduced, and the relations cosϕ = kxG/wΩ and
sinϕ = kxF/wΩ are employed.

5.1. Second Harmonic Cyclotron Resonance Case (n = 2)

We keep only the J1 term in (38) to (42) and J1(w)≈ w/2 for |w| < 1; (38) and (39) are
converted to the differential equations

dF
dt

= a2F + b2G, (43)

dG
dt

= b2F− a2G, (44)

where a2 =
∫
(kxeEkx/4mΩ) cos[Φ + kz(vz0 − vz1)t] dk/2π and b2 =

∫
(kxeEkx/4mΩ)

sin[Φ + kz(vz0 − vz1)t] dk/2π. After the spectral integration, we obtain a2 =
γ2 sin[kz(vz0 − vz1)t + 2θ0] and b2 = −γ2 cos[kz(vz0 − vz1)t + 2θ0], where γ2 =(

k2
meEu0v0/4mΩ2

)
sin θ0; the even function property of Ek is applied and km is close

to the wavenumber of the spatial spectral peak of the upper hybrid wave. The value of
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γ2 depends on the initial velocity (speed and phase angle) of the electron and the field
intensity. The difference between the parallel velocities vz0 and vz1 causes detuning on
the resonance, which results in the reduction of the acceleration. We consider the optimal
case that vz0 = vz1 = (ω− nΩ)/kz; thus a2 and b2 are constant parameters, and (43)
and (44) are solved analytically. Equations (43) and (44) can be decoupled to become two
second-order differential equations:

d2F
dt2 = γ2

2F and
d2G
dt2 = γ2

2G. (45)

Equations in (45) are solved with the initial conditions: F(0) = 0, F′(0) = b2v⊥0,
G(0) = v⊥0, and G′(0) = −a2v⊥0, the results are

F = −v⊥0 cos 2θ0 sin hγ2t and G = v⊥0[cos hγ2t − sin2θ0sin hγ2t]. (46)

The resonance electrons have the energy

2(t) = mv2/2 ≈ mv2
⊥/2 = 0[cos h2γ2t− sin 2θ0sin h2γ2t] , (47)

where 0 = mmv2
⊥0/2 is the initial electron transverse kinetic energy. The acceleration time

depends on the available interaction time τ, which is determined by the shortest Coulomb
collision time τe, and the transit time, τT , governed by the size of the interaction region.
Thus, τ = τeτT/(τe + τT). Since vz is assumed to be small, τT >> τe, andτ ≈ τe.

5.2. Third Harmonic Cyclotron Resonance Case (n = 3)

Keeping only the J2 term in (38) to (42) with J2(w) ≈ w2/8 for |w| < 1 and applying
the relations cos 2ϕ = k2

x

(
G2 − F2

)
/w2Ω2 and sin 2ϕ = 2 k2

xFG/w2Ω2, the differential
forms of (38) and (39) are derived to be

dF
dt

= 2a3FG − b3

(
F2 −G2

)
, (48)

dG
dt

= 2b3FG + a3

(
F2 −G2

)
, (49)

where a3 =
∫ (

k2
xeEkx/16mΩ2

)
cos[Φ + kz(vz0 − vz1)t] dk/2π and b3 =∫ (

k2
xeEkx/16mΩ2

)
sin[+kz(vz0 − vz1)t] dk/2π. The integrations are carried out to give

a3 = γ3 cos[kz(vz0 − vz1)t + 3θ0] and b3 = γ3 sin[kz(vz0 − vz1)t + 3θ0], where γ3 =(
k2

meEu0/16mΩ2
)

. In the optimal situation, vz0 = vz1 = (ω− nΩ)/kz, a3 = γ3 cos 3θ0

and b3 = γ3 sin 3θ0 are constant parameters. Set X3 = a3F + b3G and Y3 = a3G− b3F ,
where X2

3 + Y2
3 = γ2

3

(
F2 + G2

)
= γ2

3v2
⊥(t), (48) and (49) can be combined into two

second-order differential equations

d2X3

dt2 = 2X3

(
X2

3 + Y2
3

)
and

d2Y3

dt2 = 2Y3

(
X2

3 + Y2
3

)
. (50)

Two equations in (50) are combined to

d [(dX3/dt)2+(dY3/dt)2]
dt = 2 dX3

dt
d2X3
dt2 + 2 dY3

dt
d2Y3
dt2

= 4X3

(
X2

3 + Y2
3

)
dX3
dt + 4Y3

(
X2

3 + Y2
3

)
dY3
dt =

d (X2
3+Y2

3)
2

dt ,
(51)
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which leads to an adiabatic invariant relationship(
dX3

dt

)2
+

(
dY3

dt

)2
=
(

X2
3 + Y2

3

)2
. (52)

Again, with the aid of (50), we obtain

X3
d2X3

dt2 + Y3
d2Y3

dt2 = 2
(

X2
3 + Y2

3

)2
=

d2
(

X2
3 + Y2

3

)
dt2 −

[(
dX3

dt

)2
+

(
dY3

dt

)2
]

. (53)

Substituting (52) into (53), we obtain a single decoupled equation

d2
(

X2
3 + Y2

3

)
dt2 = 6

(
X2

3 + Y2
3

)2
. (54a)

Expressed in terms of the energy 3 = mv2/2 of the resonance electrons, (54a) becomes

d2
3

dt2 =

(
12γ2

3
m

)2

3

. (54b)

Equation (54b) is integrated to become a first order differential equation

d3

dt
=
(

8γ2
3/m

)1/2(3
3 −3

0 sin23θ0

)1/2
. (55)

Equation (55) indicates that the electron energy may grow explosively with an ex-
plosive time τx ∼

(
m/20γ2

3
)1/2, i.e., 3 ∼

(
m/2γ2

3
)
(τx − t)−2 for sin 3θ0 ∼ 0. The ex-

plosive time is inversely proportional to the product of the electron initial energy and the
power density of wave and the acceleration time depends on the available interaction time
τ ∼ τe, the shortest Coulomb collision time; thus, 3 ∼

(
m/2γ2

3
)
(τx − τe)

−2.

5.3. Fourth Harmonic Cyclotron Resonance Case (n = 4)

We keep only the J3 term in (38) to (42) and J3(w) ≈ w3/48 for |w| < 1. Applying the

relations cos 3ϕ = G
(

G2 − 3F2
)

/
(

F2 + G2
)3/2

and sin 3ϕ = F
(

3G2 − F2
)

/
(

F2 + G2
)3/2

,
(38) and (39) have the differential forms

dF
dt

= a4F
(

3G2 − F2
)
+ b4G

(
G2 − 3F2

)
, (56)

dG
dt

= −b4F
(

3G2 − F2
)
+ a4G

(
G2 − 3F2

)
, (57)

where a4 =
∫ (

k3
xeEkx/96mΩ3

)
cos[Φ + kz(vz0 − vz1)t] dk/2π and b4 =∫ (

k3
xeEkx/96mΩ3

)
sin[Φ + kz(vz0 − vz1)t] dk/2π. The integrations are performed to

obtain a4 = γ4 sin[kz(vz0 − vz1)t + 4θ0] and b4 = −γ4 cos[kz(vz0 − vz1)t + 4θ0], where
γ4 =

(
k4

meEu0v0/96mΩ4
)

sin θ0. Again, in the optimal case that vz0 = vz1 = ( ω− nΩ)/kz,
a4 = γ4 sin 4θ0 and b4 = −γ4 cos 4θ0 become constant parameters. Substituting X4 =
F2 +−G2, Y4 = G2 − F2, and Z4 = FG into (56) and (57), we obtain

dX4

dt
= 2X4(a4Y4 − 2b4Z4), (58a)

dY4

dt
= 4Y4(a4Y4 − 2b4Z4)− 2a4X2

4, (58b)
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dZ4

dt
= 4Z4(a4Y4 − 2b4Z4) + b4X2

4. (58c)

Substituting the relation a4Y4 − 2b4Z4 = (1/2X4) dX4/dt, given by (58a), into (58b)
and (58c), two equations are derived to be

d
(

Y4/X2
4

)
dt

= −2a4 and
d
(

Z4/X2
4

)
dt

= b4, (59)

which lead to Y4/X2
4 = −2a4 t + C and Z4/X2

4 = b4 t, where the integration constant
C = v−2

0 ; employing these two relations, (58a) is integrated to obtain X4 =(
C2 − 4a4Ct + 4γ2

4t2
)−1/2

, which gives the energy function

ε4(t) =
ε0[

sin2 4θ0(1− t
τx

)2
+ cos2 4θ0

] 1
2

, (60)

where the time constant τx = m sin4θ0/4γ4ε0. In the explosive case, i.e., cos 4θ0 = 0 and
sin 4θ0 = 1, ε4(t) = ε0/|(1− t/τx)|, where τx = m/4γ4ε0.

We now use (47) and (60) and solve (55) to determine the electron energy distributions
over the initial energy ε0 and the phase angle θ0 of the initial transverse velocity for the
three cases (n = 2, 3, and 4).

In the numerical evaluations, the parameter values used in the (1) second harmonic
case are Eu0 = 0.015 V/m, λm = 0.5 m, and the interaction time τ = τeiτen/(τei + τen),
where τei = 0.25ε3/2

0 and τen = 0.00285ε−1/2
0 ; (2) third harmonic case are Eu0 = 0.025 V/m,

λm = 0.5 m, and the interaction time τ = τeiτen/(τei + τen), where τei = 0.111293ε3/2
0 and

τen = 0.00277ε−1/2
0 ; and (3) fourth harmonic case are Eu0 = 0.0295 V/m, λm = 0.25 m,

the interaction time τ = τeiτen/(τei + τen), where τei = 0.06257ε3/2
0 and τen = 0.00277ε−1/2

0 ,

and the explosive time τx =
(

473.5 ε3/2
0 |sin θ0|

)−1
.

The numerical results of the three cases are plotted and presented in Figure 12a–c.
As shown, ultra-energetic electrons are generated in all three cases. These ultra-energetic
electrons enhance airglow and produce ionizations when colliding with the background
neutral particles.

Figure 12. The dependencies of the steady state electron energy ε on the initial energy ε0 and the phase angle θ0 of the
initial transverse velocity after acceleration by upper hybrid waves through (a) second harmonic, (b) third harmonic, and (c)
fourth harmonic resonance interactions.

It is realized that the geomagnetic field varies slightly with the altitude and it takes
time and interaction length to energize electrons in the resonance interaction. Theoret-
ical results [23] indicate that the excited upper hybrid waves have a frequency band-
width. In the parametric coupling, the upper hybrid wave frequency is fuk = f0 − fLks,
where f0 is the heating wave frequency and the lower hybrid frequency fLks = fLHξ

1/2.
In HAARP, the lower hybrid resonance frequency is fLH ∼ (ΩeΩi)

1/2/2π ∼ 8.3 kHz.
For ξ = 1 to 10, fLks ∼ 8.3 to 26.3 kHz. Hence, fuk has a bandwidth of 18 kHz, which
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covers the change of the ionospheric electron gyro frequency over an altitude range of over
10 km. This interaction length is crucial for producing energetic electron flux for ionizations.

The plasma frequency increases faster than the decrease of the gyro frequency in the
upward direction. Thus, the resonance interaction region is extended only downward from
the upper hybrid resonance layer and with the presence of the downward propagating
upper hybrid waves. This explains why the artificial ionization layers descend during their
development as observed in electron cyclotron harmonic resonance heating experiments.

6. Production of Artificial Ionization Layer (AIL)
6.1. Down-Going Upper Hybrid Waves and Artificial Ionization Layer (AIL) Location

Upward-propagating upper-hybrid waves reflect at a height near the HF reflec-
tion layer (h = hr) to become down-propagating upper hybrid waves. These waves

(ωuk, k =
^
xk +

^
zkz) continuously propagate down from the upper-hybrid resonance layer,

h = hu, along the geomagnetic field, to a height h, and it evolves to (ωuk, k1 =
^
xk1 +

^
zk1z);

its wavevector changes the magnitude and direction (i.e., the oblique angle,
θ1 = tan−1(k1/k1z), to the geomagnetic field) due to the dropping of the plasma density.

In the propagation, the wave frequency and the horizontal component of the wavevec-
tor do not change, i.e., ωuk(hu) = ωuk(h) and kcosθ = k1 sin(θ1 − θ), where θ is the
conjugate of the geomagnetic dip angle α ~ 76◦, which set up two equations for k1 andθ1
to be

θ1 = θ+ sin−1[(k/k1) cos θ]

and

k2
1 − k2 =

{[
ω2

p(h)−ω2
p(hu)

]
+ Ω2

e cos2 θ1

}
3v2

te
.

These two equations are solved to obtain k1z(h) = k1cos θ1 =
(

k2
1 − k2 cos2 θ

)1/2
cos θ

− (k/2) sin 2θ, which increases with an increase of k1 and with the decrease of θ as waves
propagate down; upper-hybrid waves then convert linearly into oblique propagating
Langmuir waves [49].

The process is presented in Figure 13, in which the blue curve, ω/ωp =[
1 +

(
Ω2

e + 3k2v2
te

)
/ω2

p

]1/2
, and red curve,ω/ωp =

[
ω2

p(ha) + Ω2
e sin2 θa + 3k2v2

te

]1/2

/ωp are the dispersion curves of the upper-hybrid wave (k = kx, i.e., |kz/kx| << 1) and
the Langmuir wave (k = k1) at the parametric excitation layer (at h = hp) and at the
AIL (at h = ha), respectively, where ωp = ωp

(
hp
)

and θa is the oblique angle (to the
geomagnetic field) of the Langmuir wave at AIL location (h = ha).

As the upper-hybrid wave propagates downward, its frequency does not change,
but the wavenumber increases and the wavevector inclines toward the magnetic field.
As shown in Figure 13, the cross shifts horizontally to the right to the circle (o) on the
red curve to become an obliquely propagating Langmuir wave. The downward change
of the wave location can also be represented by rescaling the vertical axis by the ratio[
ω2

p(ha) + Ω2
e sin2 θa

]1/2
/ωp

(
hp
)
, which essentially moves the Langmuir wave curve

(red curve) up to the dot curve, ω/
[
ω2

p(ha) + Ω2
e sin2 θa

]1/2

=
{

1 + 3k2v2
te/
[
ω2

p(ha) + Ω2
e sin2 θa

]}1/2
. The dot curve intersects with the blue

curve at a point also marked with a cross (x), which then represents the new mode
appearing in the AIL. It shows that the upper-hybrid wave converts to an obliquely

propagating Langmuir wave with kL = kL

(
^
x sin θa +

^
z cos θa

)
. Because the horizon-

tal component of the wavevector does not change, i.e., kL sin(θa − θ) = km cos θ, thus
kL = km cos θ/ sin(θa − θ), where km is the initial wavenumber of the upper-hybrid wave
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in a range (k1, k2). The converted Langmuir wave further cascade if it still has a large am-
plitude.

Figure 13. Mode conversion as the upper hybrid wave (the crossing point x on the blue curve)
propagates down to becoming a parallel propagating Langmuir wave (the circle o on the red curve)
in the artificial ionization layers (AIL) region.

6.2. Generation of Energetic Electrons

The excited upper-hybrid and lower-hybrid waves accelerate electrons to higher
energy. As the heating wave frequency ramps up, the harmonic cyclotron resonance
region moves downward because the electron cyclotron frequency increases with lowering
the altitude; thus, the double resonance layer shifts downward for shorter wavelength
upper hybrid waves; it extends the generation region of the upper-hybrid waves, and also
enhances the harmonic cyclotron resonance interaction between the excited waves and the
electrons because shorter wavelength upper-hybrid waves provide stronger finite Larmour
radius effect, as discussed in Section 5.

Those electrons at Doppler shifted cyclotron harmonic resonance interaction with
the excited waves (i.e., ωuk = nΩe + k1zvez), can be energized to high energy while
moving down along the geomagnetic field if the interaction persists long enough. Con-
stant vez is assumed because the cyclotron harmonic resonance interaction mainly accel-
erates the gyration speed of the electron. However, if resonance interaction occurs at
h = hu, i.e., ωuk = nΩe + kz0vez, where kz0 = kz(hu), the resonance condition will
be detuned as the electron moves downward, and the magnitude |∆ω| of the detun-
ing frequency ∆ω = ωuk − [nΩe + k1z (h)vez] = − [ k1z (h)− kz0]vez increases with
the downward distance. It means that the interaction becomes weaker in time. On the
other hand, if ωuk > nΩe + kz vez at h = hu, i.e., ω0 > nΩe by, e.g., 100 kHz,
then ∆ω = ωuk − [nΩe + k1z (h)vez] = ∆ω0 − [ k1z (h)− kz0]vez, where ∆ω0 =
ωuk − (nΩe + kz0 vez) > 0, which is a gain factor; ∆ω0 decreases as the electron moves
downward with the wave. Hence, the interaction is continuously enhanced, and reaches
cyclotron harmonic resonance at h = hi, where nΩe + k1z (hi)vez = ωuk, and resonant
electrons can gain considerable energy from the upper hybrid waves.

The power transfer from wave to the electron moving along the magnetic field, i.e.,
P|| = −e Ezvez, depends on the phase of Ez which varies with time due to ∆ω 6= 0.
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Although the phase is distributed randomly from 0 to 2π, there are electrons of appropriate
phases that will gain energy from the wave, i.e., P|| > 0 and vez increases; consequently,
∆ω decreases to give a positive feedback to enhance wave–electron interaction. When
∆ω drops to a negative value, the feedback of the interaction becomes negative; thus,
a sufficient large ∆ω0 is necessary to give adequate positive feedback interaction period
for the generation of energetic electrons. On the other hand, if ∆ω0 is too large, the initial
electron–wave interaction will be too weak to lock in the positive feedback in the inter-
action, or the available interaction spatial distance will be too short to generate energetic
electrons. A frequency ramp-up sweep serves the purpose of setting the proper gain factor
for achieving continuous positive feedback during the wave–electron interaction in the
available altitude range.

6.3. Spatial Bunching to Buildup Energetic Electrons Density in a Thin Layer for AIL Production

Only a small fraction of electrons in a height layer can achieve cyclotron harmonic
resonance with the upper-hybrid waves at h = hi; as the upper-hybrid waves propagate
down, more electrons along the path can meet the condition to be in cyclotron harmonic
resonance with the upper-hybrid waves. These electrons can bunch together in a layer,
where significant ionizations occur to form an AIL.

Because the cyclotron harmonic resonance interaction mainly accelerates the electron
gyration speed, constant vez is adopted to illustrate the bunching phenomenon in Figure 14.
As shown, down-going electrons initially located higher with slightly larger initial vez (or
at the same location but starting later), and those located lower with smaller initial vez (or
at the same location but starting earlier), can bunch together at h = ha. Although the
three bunches between two dash lines in Figure 14 show the accumulation of energetic
electrons at three different times, the time delay (difference) of the bunch converts to the
spatial difference of the starting location. In essence, Figure 14 also illustrates that groups of
energizing electrons starting at different altitudes can bunch together at the same location
and time. Such a bunching process builds up the density of energetic electrons at h = ha,
where an AIL is produced.

Figure 14. Trajectories of electrons with different velocities and starting time at z = 0. Electron
bunching as a function of position and time is illustrated.

7. Nonlinear Plasma Waves
7.1. Nonlinear Schrodinger Equations for the Langmuir Waves and Upper Hybrid Waves

O-mode heating wave passes the upper hybrid resonance layer before reaching the re-
flection height in an over-dense ionosphere; Langmuir and upper hybrid (electron plasma)
parametric instabilities are excited concurrently by the HF heating wave; those waves form
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standing waves across the magnetic field B0 = −^
z B0 and propagate along the magnetic

field (± ^
z direction).

7.1.1. Density Irregularities Generated by the Parametrically Excited Electron Plasma
Waves

Ponderomotive forces [14,47], induced by the excited Langmuir and upper hybrid
(electron plasma) waves, are exerted on electrons; ions follow the electron motion, via the
induced self-consistent electric field, to maintain quasi-neutrality. Density irregularities
along the geomagnetic field are then generated. The governing equation of plasma density
irregularity δn(z) = δne = δni, driven by the axial component of induced ponderomotive
force, is derived as follows.

The continuity and momentum equations are given to be

∂tδne + n0∇·δve = 0 = ∂tδni + n0∇·δvi , (61)

me [(∂t + νe)δve + 〈ve· ∇ ve〉] = −mev2
te∇z

δne

n0
eδE, (62)

mi [(∂t + νi)δvi + 〈vi ·∇ vi〉] = −3miv2
ti∇z

ni
n0

+ eδE, (63)

where vte,i = (Te,i/me,i)
1/2 and 〈 〉 operates as a mode type filter.

With the aid of (61), (62), and (63) are combined to be[
∂t(∂t + νin)− C2

s∇2
z

]δn
n0

=
me

mi
∇2

z

〈
v2

e
2

〉
, (64)

where the electron inertial term is neglected; Cs = [(Te + 3Ti)/mi]
1/2 is the ion acoustic

speed, and mi the ion (O+) mass; meνe << miνi and mi |〈vi ·∇ vi〉| << me|〈ve ·∇ ve〉|
are applied.

Because δne is a non-oscillatory density perturbation, |[∂t(∂t + νin)](δn/n0)| <<∣∣∣C2
s∇2

z(δn/n0)
∣∣∣, and (64) is approximated to obtain (δn/n0) ∼= −(me/mi) V2

ep/2/C2
s ,

where Vep is the electron velocity perturbation by the electron plasma wave field.

7.1.2. Nonlinear Envelope Equation of the Electron Plasma Waves

Only electrons respond effectively to the Langmuir and upper hybrid wave fields, and
the formulation involves electron fluid equations (61) and (62), which can be combined to
an equation for the electrostatic potential φep of the electron plasma waves, given by the
electron plasma wave field Eep = −∇φep.

The continuity and momentum equations and the Poisson’s equation for the electron
plasma wave density, velocity, and electrostatic potential perturbation, Nep, Vep, and φep,
are given to be

∂t Nep +
〈
∇· (n0 + δn)Vep

〉
= 0, (65)

(∂t + νe)Vep − Ωe Vep × ẑ = −3v2
te∇

Nep

n0
+

e
me
∇φep, (66)

∇2φep =
eNep

ε0
, (67)

where Ωe = eB0/me; the convective term in (66) is separately included in (62).
Equations (65) to (67) are then combined to a nonlinear equation for the electron plasma
wave potential φep{[

(∂t + νe)
2 + Ω2

e

](
∂2

t + νe∂t +ω2
p − 3v2

te∇2
)
∇2 − Ω2

e

(
ω2

p − 3v2
te∇2

)
∇2
}
−φep

∼= −
(
ω2

p − 3v2
te∇2

) [
(∂t + νe)

2∇2 + Ω2
e∇2

z

]
φep

〈
δn
n0

〉
,

(68)
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where 〈 〉 stands for a filter, which keeps only terms having the same phase function
as that of the function φep on the left-hand side.

Set φep = ϕ(t, z) e−iωept cos k⊥x eikzz + c.c.,

whereωep =
[
ω2

p +
(

k2
⊥/k2

)
Ω2

e + 3k2v2
te

]1/2
> Ωe, k2 = k2

⊥ + k2
z, and |kz| � |k⊥| for

Langmuir waves and |k⊥| >> |kz| for upper hybrid waves; from the electron momentum
equation, we have

Vepx ∼ −i

[
ωep

ω2
ep − Ω2

e

][
ek⊥ϕ(t, z)

me

]
e−iωept sin k⊥x eikzz + c.c. = Ṽepx + c.c.

Vepy ∼ −i
(

Ωe

ωep

)
Vepx + c.c. = Ṽepy + c.c.

Vepz ∼ −
[

ekzϕ(t, z)
meωep

]
e−iωept cos k⊥x eikzz + c.c. = Ṽepz + c.c.

lead to
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and the formulation involves electron fluid equations (61) and (62), which can be com-
bined to an equation for the electrostatic potential   of the electron plasma waves, 
given by the electron plasma wave field 𝐄  =  − .  
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〈V2 〉 =   V  + V + V    
 12 em  +  

 −    k +  1ω k  |(t, z)| . (69) 

We now neglect the collision, and set A =  3v  and B = ½    
   k + k , where B is applied for the two cases: 1) |k | ≫ |k | for 

Langmuir waves and 2) |k | >> |k | for upper hybrid waves; (68) reduces to −2i    2ik A – A –  B||   =  0. (70) 

This is a one-dimensional nonlinear Schrodinger equation.  

We now neglect the collision, and set A = 3v2
te and B =

(
e2

memiC2
s

)[(
ω2

ep+ Ω2
e

ω2
ep− Ω2

e

)
k2
⊥ + k2

z

]
,

where B is applied for the two cases: 1) |kz| � |k⊥| for Langmuir waves and 2) |k⊥| >>
|kz| for upper hybrid waves; (68) reduces to

− 2iωep∂t − 2ikzA∂z −A∂2
z − B|ϕ|2ϕ = 0. (70)

This is a one-dimensional nonlinear Schrodinger equation.

7.2. Analysis

In the following, (70) is analyzed by first converting it to an eigenvalue equation,
which is derived by introducing ϕ = ϕ(ξ, t) = φ(ξ)e−i($t+θ), where ξ = z − Vt;
V = Akz/ωep; (70) becomes

φ′′ + 2aφ + 2bφ3 = 0, (71)

where φ′′ = d2
ξφ; a = ωep$/A and b = B/2A. Consider (φ, ξ) as the equivalent spatial

coordinate and time of a system, (71) represents an equation of motion of a unit mass object
moving in this one-dimensional space and being accelerated by a force of −2(aφ + bφ3).
Multiply φ′ to both sides of (71), it leads to

d
dξ

[(
dφ
dξ

)2
+
(

aφ2 + bφ4
)]

= 0. (72)

It is recognized that the quantity in the parenthesis on the LHS of (72) is invariant
with ξ. This quantity is the total energy, H, of the object, in which the first term represents
the kinetic energy, T, and the second term the potential energy, P. The object is trapped in
the potential well P(φ) = aφ2 + bφ4; it moves back and forth in the potential well to have
an oscillatory trajectory in the case of H 6= 0, and a non-oscillatory trajectory in the case of
H = 0 and a < 0.
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7.2.1. Periodic Solutions

For H 6= 0, (71) is solved analytically in the cases of

1. H > 0 and a > 0

Set η1 =
[
2a/

(
1− 2k2

1

)]1/2
ξ, φ(ξ) = φ10y1(η1), and k2

1 =
(

1− 2k2
1

)
bφ2

10
2a =

1
2

(
1− 1√

1+2bH/a2

)
< 1

2 , where φ2
10 = a

b

(√
1 + 2bH/a2 − 1

)
, (71) is normalized to be

y′′1 +
(

1− 2k2
1

)
y1 + 2k2

1y3
1 = 0, (73a)

where y′′1 = d2

dη2
1

y1. The solution of (73a) is a Jacobi elliptic (cosine amplitude) function

cn (η1, k1); thus,
φp1(ξ) = φ10 cn (η1, k1),

which is a symmetric alternate function.

2. H > 0 and a < 0

Again, set η2 =
[
2a/

(
1− 2k2

2

)]1/2
ξ, φ(ξ) = φ20y2(η2),

and k2
2 =

(
1− 2k2

2

)
bφ2

20
2a = 1

2

(
1 + 1√

1+2bH/a2

)
> 1

2 , whereφ2
20 = − a

b

(√
1 + 2bH/a2 + 1

)
,

(71) is normalized to be
y′′2 +

(
1− 2k2

2

)
y2 + 2k2

2y3
2 = 0 , (73b)

where y′′2 = d2

dη2
2

y2. (73b) has the same form as (73a), its solution is also a Jacobi elliptic

function cn (η2, k2). Thus,
φp2(ξ) = φ20 cn (η2, k2);

likewise, it is a symmetric alternate function.

3. a < 0 and H < 0

Set η3 =
[
−2a/

(
2− k2

3

)]1/2
ξ, φ(ξ) = φ30y3(η3), and −

(
2− k2

3

)
bφ2
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, where φ2
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, (71) is normalized to be
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3
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3 = 0, (73c)

where y′′3 = d2

dη2
3

y3. The solution of (73c) is a Jacobi elliptic (delta amplitude) function

dn (η3, k3); thus,
φp3(ξ) = ξ30 dn (η3, k3),

which is a non-alternate periodic function.

7.2.2. Solitary Solution

A localized solution of (71) requires φ = 0 = φ′ as |ξ| → ∞ ; thus H = 0 in the case of

a < 0 is considered. Set x =
√

2|a|ξ, φ(ξ) = φs0Ys(x), and where φs0 =
√

2|a|
b , (71) is

normalized to be
Y′′s − Ys + 2Y3

s = 0, (74)

where Y′′s = d2

dx2 Ys. Compare (74) with (73b) and (73c), the solution of (74) is cn (x, 1) =
dn (x, 1) = sechx. Thus

φs(ξ) =

√
2|a|

b
sech

√
2|a|ξ, (75a)
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This is a solitary solution that φs = 0 = φ′s as |ξ| → ∞ . Its width (∝ 1/√(2|a| ) ) is
inversely proportional to its amplitude. The cubic nonlinearity of the medium mitigates
wave dispersion in the propagation; when the nonlinear effect (∝ square of the amplitude)
and the dispersion effect (inversely proportional to the square of the width of the wave
packet) reach a balance, a shape-preserved solitary wave is formed and trapped in the
self-induced density well (∝ −φ2

s ).
With the aid of (75a), the induced density cavity is given to be

δn ∼= −4
|$|
ωep

n0sech2
√

2|a|ξ, (75b)

7.3. Discussion

Langmuir waves and Upper hybrid waves are excited by the O-mode HF heater
through parametric decay instabilities in HF heating experiments. Those waves are excited
in narrow spatial regions below HF reflection layer and the upper hybrid resonance layer,
respectively. Artificial density cusps, manifested by bumps in the virtual height spread of
the ionogram trace (Figure 2), are induced. The two bumps are in the plasma frequency
regions corresponding to the excitation regions of the Langmuir PDI and upper hybrid PDI.

The experimental results also show that the heater caused a significant range spread
of the sounding echoes; the range spread was mainly downward, different from the
upward spread phenomenon caused by large-scale field-aligned density irregularities.
Thus, the observation manifests not only the generation of density ledges signified by
bumps expanding the virtual height spread upward, but also the generation of density
irregularities along the magnetic field over a large altitude region below the heater-induced
density ledges.

The theory and analysis presented in Sections 7.1 and 7.2 show that the localized
Langmuir and upper hybrid waves generated by the HF heater form cavitons near the
HF reflection layer and near the upper hybrid resonance layer, which induce bumps in
the virtual height spread of the ionogram trace similar to that induced by the density
cusp at E-F1 transition layer; incoherent scatter radar (ISR) will be another remote-sensing
instrument to diagnose the formation of cavitons, cross checking ionograms’ inference.
The down-going Langmuir waves and upper hybrid waves evolve into nonlinear periodic
waves propagating along the magnetic field, which backscatter incoherently the sounding
pulses to cause downward virtual-height spread.
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