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Abstract: The role of magnetic islands in collisionless driven reconnection has been investigated
from the standpoint of a kinetic approach to multi-scale phenomena by means of two-dimensional
particle-in-cell (PIC) simulation. There are two different types of the solutions in the evolution of the
reconnection system. One is a steady solution in which the system relaxes into a steady state, and no
island is generated (the no-island case). The other is an intermittent solution in which the system
does not reach a steady state, and magnetic islands are frequently generated in the current sheet (the
multi-island case). It is found that the electromagnetic energy is more effectively transferred to the
particle energy in the multi-island case compared with the no-island case. The transferred energy is
stored inside the magnetic island in the form of the thermal energy through compressional heating,
and is carried away together with the magnetic island from the reconnection region. These results
suggest that the formation of a magnetic island chain may have a potential to bridge the energy gap
between macroscopic and microscopic physics by widening the dissipation region and strengthening
the energy dissipation rate.
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1. Introduction

A physical system, in which magnetic reconnection takes place as one of key processes,
evolves dynamically with time and reveals various interesting features such as rapid energy release,
intermittency, self-organization, and so on [1,2]. For triggering magnetic reconnection, microscopic
physics are required to generate an electric resistivity in the vicinity of a reconnection point. On the
other hand, once magnetic reconnection occurs, the field topology changes on a macroscopic scale and
global plasma transport takes place. Furthermore, the macroscopic plasma dynamics, in turn, affect
the microscopic reconnection physics through the compression of the reconnection region, the energy
inflow into and/or outflow from the reconnection region [3,4], turbulence and plasma instabilities [5,6],
and so on.

Thus, magnetic reconnection itself is a typical multi-scale phenomenon including microscopic
electron dynamics through global plasma transport. One of the big issues in magnetic reconnection
studies is how to construct the self-consistent model for these multi-scale processes, because there are
large scale gaps in space and time between the microscopic and the macroscopic processes. For example,
the dissipation time due to the binary collision in the solar corona is of the order of 1 million years.
On the other hand, a solar flare, which is expected to be controlled by magnetic reconnection, takes
place in a time frame ranging from a few minutes to a few hours [7]. Sweet [8] and Parker [9] separately
proposed the first quantitative model of magnetic reconnection in two-dimensional geometry to solve
this scale gap problem. After them, many researchers tried to construct various models to solve this
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problem [2], but the multi-scale physics of magnetic reconnection are not fully understood and remain
an unsolved issue [10].

The energetics of magnetic reconnection phenomena in nature are a typical example.
The microscopic dissipation region, in which the electromagnetic energy is effectively transferred to
the plasma energy, is localized in the vicinity of the reconnection point and its spatial scale ranges
from one electron Larmor radius to a few ion Larmor radii at most. Therefore, the total amount of the
released energy is too small to explain the wide-ranging energy spectrum of magnetic reconnection
phenomena such as solar flares [7].

Because the microscopic kinetic regions are surrounded by the global macroscopic system,
the microscopic dissipation process itself is always under the influence of macroscopic physics.
It is easy to expect that particle acceleration and heating may be enhanced through their mutual
interaction, because it may generate many reconnection points and widen the dissipation region
through the formation of a magnetic island chain and plasma instabilities in some cases [6,11–17].
Thus, the hierarchically connecting chains of magnetic islands represent an attractive idea to explain
the wide-ranging energy spectrum [11,12,18]. The problems are determining how and under what
conditions magnetic are islands generated and the energy dissipation enhanced.

In order to solve these problems, we developed a particle-in-cell (PIC) simulation model for the
magnetic reconnection study in an open system, known as “PASMO”, in which the information of
the macroscopic physics is introduced for boundary conditions, and only a microscopic reconnection
system is solved under given boundary conditions [3,4,19]. This PASMO code enables us to investigate
the long time scale behavior of magnetic reconnection as well as the microscopic triggering mechanism
of magnetic reconnection.

In this paper we investigate the role of magnetic islands in collisionless driven reconnection from
the standpoint of a kinetic approach to multi-scale phenomena using the PASMO code, focusing in
particular on energy transfer.

2. Simulation Model

Our PIC simulation model relies on the explicit electromagnetic scheme [20] and is implemented
on two-dimensional Cartesian coordinates (x, y). As an initial condition we assume one-dimensional
Harris-type equilibrium [21] with an anti-parallel magnetic field along the x-axis and a uniform guide
field along the z-axis as

P(y) = P0 +
B2

0
8π

sech2(y/L), (1)

B(y) = (B0 tanh(y/L), 0, Bz0), (2)

where B0, Bz0, and P0 are constant, and L is the scale height along the y-axis. The initial particle
distribution is assumed to be a shifted Maxwellian with spatially constant temperature (Ti0 = Te0)
and an average particle velocity which is equal to the diamagnetic drift velocity. In the PASMO
code, two types of the open boundary conditions are adopted, i.e., the inflow boundary condition at
the upstream boundary (y = ±yb), and the Neumann-type (floating) condition at the downstream
boundary (x = ±xb) [4,22]. An external driving field Ed(x, t) is assumed at the upstream boundary in
order to supply plasmas into the system, which is controlled by three parameters as, i.e., (1) an initial
non-uniformity scale of the driving field, which is called the inflow window size (Xslot), (2) expansion
speed of the driving field along the x-axis (vexp), and (3) a constant inflow rate of the magnetic
flux (Ed0).

In order to investigate the role of magnetic islands, we have carried out four simulation runs by
changing the inflow window size and the guide magnetic field, using the PASMO code. The typical
simulation parameters for the four cases are listed in Table 1, where ρi0 is the ion Larmor radius

associated with the total magnetic field Bt(=
√

B2
0 + B2

z0), lmi(=
√

Lρi0) is the ion meandering orbit
amplitude [3], the spatial scales are normalized by c/ωce0, and ωce0 is the electron cyclotron frequency
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associated with B0. The ratio Xslot/(2lmi) is introduced as a parameter to control the aspect ratio of the
current sheet.

Table 1. Simulation parameters, where ρi0 is the ion Larmor radius associated with the total magnetic

field Bt(=
√

B2
0 + B2

z0), lmi(=
√

Lρi0) is the ion meandering orbit amplitude [3], the spatial scales are
normalized by c/ωce0, and ωce0 is the electron cyclotron frequency associated with B0. The last column
stands for the status of magnetic island formation.

Case Bz0/B0 L ρi0 Xslot Xslot /(2lmi) Island

A 0.5 1.098 0.9245 8.786 4.360 no island
B 2.0 1.098 0.4623 8.786 6.166 no island
C 0.5 1.098 0.9245 17.57 8.720 multi-island
D 2.0 1.098 0.4623 17.57 12.33 multi-island

According to the previous simulations [4,22], collisionless reconnection is found to be triggered
when the current sheet is compressed by an external driving source and approaches a kinetic regime
with a typical spatial scale comparable to the ion Larmor radius. The value of the scale height is
determined so as to reproduce the same situation as the previous simulation runs. Simulation studies
of collisionless driven reconnection with no guide magnetic field [3,4] have also revealed that a steady
reconnection is realized for small inflow window sizes of Xslot/(2lmi) = 5.19 and 7.79, while the
reconnection system becomes intermittent for a large inflow window size of Xslot/(2lmi) = 10.39.
In order to examine whether this condition holds for a finite guide magnetic field, the values of the
parameters Xslot and Bz0/B0 are chosen. The other important parameters are fixed as: the mass ratio
Mi/Me = 100, ωpe/ωce0 = 6, vexp = vAx, and Ed0 = −0.04B0, where ωpe is the electron plasma
frequency associated with the initial number density at the center of the current sheet, and vAx is
the initial Alfvèn velocity associated with B0 at the upstream boundary. The condition vexp = vAx
is determined from the assumption that the frozen-in condition is satisfied and the plasma beta
is much smaller than a value of 1 near the upstream boundary. The simulation domain size is
Xl × Yl = 26.357c/ωce0 × 4.393c/ωce0. The total number of particles, which is a function of time in
the PASMO code, is 18 million in the initial profile and can increase to up to 90 million at a maximum,
including the uniform background particles of 20 per each space cell.

In the PASMO code, the space, time, velocity, and electromagnetic fields are normalized by
RN = c/ωce0, TN = 1/ωce0, the light velocity c, and B0, respectively. Thus, the current density and
the energy density in the two-dimensional system are expressed in the normalization unit of qc/R2

N and
Mec2/R2

N, respectively, where q is the electron charge. Because a few simulation runs are carried out for the
different guide magnetic fields in this study, the unit of time is changed to 1/ωpe from 1/ωce0 in this paper.

The time evolution of the external driving field Ed(x, t) for Case B is plotted in Figure 1. The driving
field is set to zero initially, and grows while keeping a bell-shaped spatial structure in some time interval
(0 < ωpet < 2584), reaching a constant and uniform profile of Ed(x, t) = Ed0 = (−0.04B0).
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Figure 1. Time evolution of the external driving field Ed(x, t) imposed at the upstream boundary for
Case B, where Xslot = 19.0ρi0, vexp = vAx, and Ed0 = −0.04B0.

3. Simulation Results

As listed in Table 1, when the ratio Xslot/(2lmi) becomes larger than the critical value Rcr which is
between 6.166 and 8.720, an intermittent behavior accompanied by the multi-island formation appears
in the dynamical evolution of a reconnection system. This result is consistent with the previous
simulation results [4] and suggests that the tearing instability may play an important role in the
formation of the multi-island state [6,18,23]. In this section we examine the role of magnetic islands in
collisionless driven reconnection by comparing the multi-island case with the no-island case. Since the
results of Cases B and D are similar to those of Cases A and C, respectively, we focus on the simulation
results in Cases B and D with Bz0/B0 = 2.0 hereafter.

3.1. Two Types of Solutions

Figure 2 plots the temporal evolutions of the reconnection electric field Ez (dotted) and the
electron current density Jez (solid) at the reconnection point for Cases B (left) and D (right), where the
reconnection electric field is defined by the off-plane component of the electric field at the reconnection
point. After the initial transient phase, the reconnection electric field reaches a constant value for the
Case B, which is equal to the driving electric field imposed at the upstream boundary. This result
means that the flux inflow rate is balanced with the reconnection rate and thus, the system relaxes into
a steady state. On the other hand, the reconnection electric field fluctuates around the driving electric
field with a large amplitude, and never reaches a constant value for Case D.

Figure 2. Temporal evolutions of the reconnection electric field Ez (dotted) and the electron current
density Jez (solid) at the reconnection point for Cases B (left) and D (right). The vertical dashed lines in
the right panel correspond to the period when the size of a magnetic island reaches its local maximum.
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The vertical dashed lines in the right panel of Figure 2 indicate the periods when the reconnection
rate reaches its local maximum value and the absolute value of the current density becomes locally
minimum. Let us examine what happens at these periods in the simulation domain using the data at
ωpet = 7753. The spatial profiles of the electron current density (color contours) and the magnetic field
lines (black lines) at ωpet = 7753 are drawn in Figure 3, where the top and bottom panels correspond
to the profiles for Cases B and D, respectively. It is clearly seen in Figure 3 that a large magnetic island
is formed around this period in the Case D, while there is no magnetic island in the Case B. Thus,
a large magnetic island is generated twice during the simulation run for the Case D. It is worth noting
that the effective resistivity at the reconnection point, Ez/Jez, reaches a maximum when the magnetic
island is generated. In this way, there are two different types of the solutions in the evolution of the
reconnection system. One is a steady solution in which the system relaxes into a steady state, and
no island is generated. This solution corresponds to Cases A and B with the small inflow window
size of Xslot/(2lmi) < Rcr. The other is an intermittent solution in which the system does not reach a
steady state, and magnetic islands are frequently generated in the central region of the current sheet.
This solution is realized in Cases C and D with the large inflow window size of Xslot/(2lmi) > Rcr.

Figure 3. Spatial profiles of the electron current density (color contours) and the magnetic field lines
(black lines) at ωpet = 7753 for Cases B (top) and D (bottom).

3.2. Role of Magnetic Islands

Let us examine the role of the magnetic island in the energy transfer process controlled by
magnetic reconnection. The total energy transferred from the electromagnetic field energy to the
particle energy during the time interval between t− ∆t and t, dWs(t), is given by

dWs(t) =
∫ t

t−∆t
dt

∫
Sd

dxdy{esnsE · us} (3)

= Ws(t)−Ws(t− ∆t) +
∫ t

t−∆t
dt

∫
{Fs(t, x) · ds}, (4)

where the subscript s(= ele/ion) stands for the electrons or the ions, and es, ns, u, and ds are the
charge, the number density, the fluid velocity of the species s, and the line element surrounding the



Plasma 2018, 1 73

integral domain Sd, respectively. Here, the particle energy Ws and the particle energy flux Fs of the
species s are defined as

Ws(t) =
∫

Sd

{1
2

ρmsu2
s + εs}dxdy, (5)

Fs(t, x) = {1
2

ρmsu2
s + εs}us − σs · us + qs, (6)

where ρm, ε, σi,j, and q are the mass density, the thermal energy density, the stress tensor, and the
heat flux, respectively. The total energy transferred from the electromagnetic field energy to the
electrons (dWele, dotted) and ions (dWion, solid) are plotted as a function of the time for Cases B (left)
and D (right) in Figure 4, where the time interval used for the energy integral is ∆t = 10.34ω−1

pe ,
and the integration is taken over the square domain Sd defined by −8.80 < x/(c/ωce0) < 8.80 and
−2.12 < y/(c/ωce0) < 2.12, which is located inside the simulation domain and the central current
sheet is also included. It is clear in Figure 4 that the magnetic energy is more effectively transferred to
the particle energy in the multi-island case (Case D) compared with that in the no-island case (Case B).

Figure 4. Temporal evolution of the total energy transferred from the electromagnetic energy to the
electrons (dotted) and ions (solid) during the time interval between t− ∆t and t for Cases B (left) and
D (right) with ∆t = 10.34ω−1

pe .

Equations (3) and (4) indicate that the total energy transferred from the electromagnetic field to
the particles consists of (1) the energy carried away from the square domain Sd in the form of the
particle energy flux and (2) the particle energy stored in the square domain Sd. Figure 5 plots the
temporal evolution of four components of the particle energy integrated over the square domain Sd
for Cases B (left) and D (right), where the solid, dashed, dot-dashed, and dotted lines stand for the
ion thermal energy WT,ion, the electron thermal energy WT,ele, the ion kinetic energy WK,ion, and the
electron kinetic energy WK,ele, respectively. The particle energies for the multi-island case (Case D) are
about twice as large as those for the no-island case (Case B). The ion thermal energy (solid line) is the
largest among the four energies for the both cases, and the electron kinetic energy (dotted line) is the
smallest. Consequently, the total ion energy is about twice as large as the total electron energy. In this
way, the central current sheet with magnetic islands can store larger particle energy, as compared with
the current sheet without any magnetic island.
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Figure 5. Temporal evolution of the particle energy integrated over the simulation domain for Cases B
(left) and D (right) where the solid, dashed, dot-dashed, and dotted lines stand for the ion thermal
energy, the electron thermal energy, the ion kinetic energy, and the electron kinetic energy, respectively.

Figure 6 shows the spatial profiles of the electron (left) and ion (right) temperatures at three
different time periods for Case D, where the particle temperature is defined by the average of the
diagonal components of the pressure tensor divided by ni/e Mec2 with the ion or electron number
density ni/e. Here, the periods ωpet = 5168 and ωpet = 7753 correspond to the times when the
magnetic island grows to its maximum size, and the intermediate period ωpet = 6461 corresponds to
the time when the first large magnetic island moves out of the simulation domain.

Figure 6. Spatial profiles of the electron (left) and ion (right) temperatures at three different time
periods for Case D, where solid, dotted, and dashed curves stand for the profiles at ωpet = 5168,
ωpet = 6461, and ωpet = 7753, respectively.

Both profiles are peaked at the center of magnetic islands at the periods ωpet = 5168 and
ωpet = 7753, while there is no such a peaked profile at the no-island state of ωpet = 6461. The peaked
value of the ion temperature is about twice as large as that of the electron temperature. These results
suggest that a magnetic island plays an important role as a particle energy container which can store a
large amount of the particles with the high temperature, and carry them from the reconnection region.

Next, let us consider how the particles (specifically, the ions) are heated in the presence of the
magnetic islands. The dominant mechanisms leading to the ion heating are the ion viscous heating
and the ion compressional heating, the rates of which are approximately given by the two-fluid
formulations as Hvisc = −πi,j∂iuj and Hcomp = −5/2p(∇ · u), where the stress tensor is assumed to
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be expanded into scalar and off-diagonal components as σi,j = −pIi,j − πi,j. Figure 7 shows the spatial
profiles of the ion viscous heating rate (top) and ion compressional heating rate (bottom) at the island
growing phase of ωpet = 7494 for Case D.

It is clearly seen in Figure 7 that the ion compressional heating rate becomes dominant inside the
magnetic island, while there is no clear structure in the ion viscous heating rate. This phenomenon can
be explained as follows. For the no-island case, most of the ions are accelerated by the electrostatic
field when they pass across the magnetic separatrix, and move into the downstream region. For the
one-island case, however, two reconnection points exist on the both side of a magnetic island. A left
wing of the magnetic separatrix corresponding to the right reconnection point is connected with the
field line covering the magnetic island, and a right wing of the magnetic separatrix corresponding to
the left reconnection point is also connected with the field line. In other words, the magnetic separatrix
lines starting from the two reconnection points wrap the magnetic island located inbetween. Thus, the
high-energy ion flows moving into the magnetic island are supplied from the upstream regions of the
two reconnection points. The convergent ion flows are trapped and are mixed inside the magnetic
island in the presence of a strong magnetic field, as shown in Figure 8. In this way, the compressional
ion heating mechanism is more effective for the multi-island case compared with the no-island case.

Figure 7. Spatial profiles of the ion heating rate (color contours) and the magnetic field lines (black lines)
at the island growing phase of ωpet = 7494 for Case D, where the top and bottom panels stand for the
ion viscous heating rate and ion compressional heating rate, respectively.

Figure 8. Spatial profile of the z-component of the magnetic field Bz at ωpet = 7753 for Case D.
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4. Discussion

We have investigated the role of magnetic islands in collisionless driven reconnection from
the standpoint of a kinetic approach to multi-scale phenomena by means of two-dimensional PIC
simulation. When the ratio of the inflow window size to the current sheet width Xslot/(2lmi) becomes
larger than the critical value Rcr ( 6.166 < Rcr < 8.720), an intermittent behavior accompanied by the
multi-island formation appears in the dynamical evolution of a reconnection system. This suggests
that this multi-island formation process can be explained in relation to the excitation of a tearing
instability [6,18,23]. The electromagnetic energy is more effectively transferred to the particle energy
in the multi-island case compared with that in the no-island case. The transferred energy is stored
inside the magnetic island in the form of the thermal energy through the compressional heating, and is
carried away together with the magnetic island from the reconnection region. This result suggests that
a chain of magnetic islands may have the potential to widen the dissipation region on a global scale,
and to strengthen the energy dissipation rate, as indicated by many papers [6,11–17,24].

However, several problems remain unresolved in relation to the role of magnetic islands in the
multi-scale magnetic reconnection phenomena. Firstly, the following unanswered questions remain:
Which physics determine the time scales so that a magnetic island can grow and move out from the
simulation domain in an externally driven system? Is the formation of magnetic islands intermittent or
periodic? In order to answer these questions, we need much longer time scale simulation runs.

The second problem relates to the dynamics of a multi-island system on a global scale. This
paper deals with the formation and dynamics of only a few magnetic islands. In general, however,
many magnetic islands with different spatial sizes are generated and evolve dynamically through
plasma instabilities, merging, turbulence, and other processes. Particle acceleration and heating also
take place in the evolving multi-island system through the Fermi acceleration [14,24].

The third problem is with respect to influence of the boundary model. In the PASMO code, an
external driving field, which takes a uniform and constant profile after an initial period, is assumed
at the upstream boundary in order to supply plasmas into a microscopic reconnection system from a
surrounding macroscopic system. In general, the microscopic reconnection system is always under the
influence of the macroscopic system which evolves dynamically with time. Therefore, the model of the
external driving field should be extended to more realistic one so as to include their mutual interaction.
It would thus be very interesting to clarify how the microscopic multi-island state is modified when
the external driving field is oscillating on a macroscopic time scale.

The fourth problem relates to how to interlock the microscopic system with the macroscopic
system self-consistently. Because the PASMO code has been developed for a kinetic system which is
open to the surrounding macroscopic system, the system size is too small to deal with hierarchically
connecting chains of magnetic islands. In order to solve this problem, we need a multi-hierarchy
simulation code which can deal with both microscopic physics and macroscopic physics, consistently
and simultaneously. The MHD-PIC interlocked model is a powerful tool for this [25]. We will apply
this model to the formation of a chain of magnetic islands on a global scale.
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