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Abstract: The production of scintillating ceramics can require the utilization of the phosphorus
compounds at certain stages of 3D-printing, such as vat polymerization, applied for the formation
of green bodies before sintering. The effect of phosphorus additive on the microstructure, optical,
and scintillation parameters of Gd1.494Y1.494 Ce0.012Al2Ga3O12 (GYAGG:Ce) ceramics obtained
by pressureless sintering at 1650 ◦C in an oxygen atmosphere was investigated for the first time.
Phosphorus was introduced in the form of NH4H2PO4 into the initial hydroxycarbonate precipitate
in a wide concentration range (from 0 to 0.6 wt.%). With increasing of phosphorus concentration,
the density and the optical transmittance of garnet ceramics show a decrease, which is caused by an
increase in the number of pores and inclusions. The light yield of fast scintillation, which is caused by
Ce3+ ions, was found to be affected by the phosphorus additive as well. Moreover, an increase in
phosphorescence intensity was recognized.
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1. Introduction

Garnet structure oxides doped with lanthanides are a group of widely used lumines-
cence, laser, and scintillation materials [1–15]. Y3Al5O12:Ce (YAG:Ce) and Lu3Al5O12:Ce
(LuAG:Ce) are well-established scintillators, which are widely used in radiation detection
applications in science and industry. Nevertheless, recently, along with binary compositions,
such as YAG:Ce and LuAG:Ce, multicationic garnets have been actively studied [1–3,5–9].
The garnet matrix has been developed to become more complex; yttrium is partially or
completely replaced by gadolinium or a Gd/Lu mixture in different ratios; and aluminum
is partially replaced by gallium [8–11]. In addition, garnets doped with other lanthanides,
or their combination are being actively studied [1,5–7,12]. Compositionally disordered
garnet structure compounds with a general formula (Gd,Y,Lu)3(Al,Ga)5O12, doped with
rare earth activator(s) and, facultatively co-doped with other element(s) became in the
focus of the research due to a unique set of features: high chemical stability, high density,
high effective atomic number, high light yield, fast scintillation kinetics, etc. [6,8–10,15–17].
It can be produced in the form of both single crystals [9,10,16–18] and translucent [15] or
transparent ceramics [8,10,13,19].

Luminescent ceramics have some advantages in comparison to single crystals of the
same structure and composition. Ceramics can be produced more cheaply, potentially any
shape, almost any size and/or composition. Also, new structures are accessible due to the
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versatility of ceramics, e.g., composites [20–23]. At the same time, the major functional
properties of highly transparent ceramics could be due to single crystals.

Various additive manufacturing techniques were applied to produce transparent [22,23]
or translucent [24,25] garnet ceramics. Material jetting [22] and direct ink write [23] methods
were used for the formation of green body further used for the sintering. YAG:Yb/YAG:Nd
and YAG:Er/YAG:Lu transparent all-ceramic composites of disk-like [22] or rod-like [23]
shapes were obtained by vacuum/air sintering with subsequent hot isostatic pressing.
Also new methods for sintering garnet ceramics under electron-beam [26] and laser [27]
irradiation seem promising. Nevertheless, one of the most frequently developed methods
of 3D-printing suitable for mass applications, is stereolithography. It provides one of the
best spatial resolutions, a smooth surface of printed objects with an acceptable building
speed and a possibility to use the pressureless sintering [24,25].

Obviously, the key properties of garnet ceramics depend on the chemical composition
and the perfection of the oxide matrix [12,14,15], the chosen activators [28–31], technological
factors [19,30–33], synthesis conditions [8] and post-processing treatment [31]. Another im-
portant factor is the nature and a concentration of impurities which come in the ceramics at
different stages of the technology. There are a plenty of publications describing the influence
of cations of various metals, such as alkali [32] and alkaline earth elements [9,16,17,31,33,34],
elements of the third [18,20] and fourth [34] groups. The effect of silicon [22,23,33–35] and
boron [33,36] additives has been also well clarified. Silicon is a widely used sintering addi-
tive [[33] and refs therein], which is utilized to prepare transparent or translucent garnet
ceramics. The disadvantage of using such sintering additives is their potential negative
effects on the luminescent and scintillation properties of the resulting ceramics [32,33,36].

Research on the influence of other non-metals, such as nitrogen, is much less de-
scribed [35]. Phosphorus is a typical non-metal element, a neighbor of nitrogen and silicon
in the periodic table. However, to the best of our knowledge, the effect of phosphorus addi-
tives on garnet ceramics has not been practically studied before. Only single article has been
recently published, where YPO4/YAG:Ce nanocomposites were purposefully synthesized
and studied in details [37]. At the same time, it is well known that phosphorus-containing
dispersants can be used in the preparation of slurries in ceramic technology [38,39], in-
cluding slurries for 3D-printing. Phosphoric acid ester derivatives have high wetting
characteristics for surface oxide powders. It allows to reach a high loading of slurries
with acceptable rheological properties [38,39]. The typical value of specific surface area
(SSA) is from 45 to 60 m2/g and from 3 to 12 m2/g, for garnet oxide powders annealed
at 850 and 1300 ◦C [24,25], respectively. The content of the dispersant in slurry is usually
proportional to the SSA of the ceramic powder and can be reached up to 3 mg for each
m2 [24,25]. According to our preliminary study, the phosphorus content in commercially
available dispersants is about 4 wt.%.

Moreover, UV photocurable slurries with ceramic particles for stereolithography 3D
printing may contain other phosphorus compounds, like UV photoinitiators of radical
polymerization of the class of phosphine oxides (BAPO, TPO, TPO-L, etc.). The typical con-
tent of such photoinitiators is ~1.0 wt.% based on the weight of acrylate monomers [24,25].
Thus, the potential content of phosphorus in the slurry can be quite high value (1–7 mg
for each g of powder or 1000–7000 ppm). The high sintering temperature could induce the
partial volatilization of phosphorus, which may result in loose microstructure of garnet
ceramics. The formation of impurity phases is also very possible.

Here, we report for the first time an effect of phosphorus impurity on the major
functional properties of doped GYAGG:Ce garnet scintillation ceramics. The key properties
of the sintered ceramics were correlated with the amount of phosphorus.

2. Materials and Methods
2.1. Synthesis of Initial Powders

Starting powder was fabricated by co-precipitation method [5–7,11–13,33]. High pu-
rity commercially available chemical reagents such as Gd2O3 (99.995%), Y2O3 (99.995%),



Ceramics 2023, 6 1480

AlOOH (99.998%), Ga (99.999%) and Ce(NO3)3 (99.95%) were used as raw materials to pre-
pare nitrate solutions. The solutions were mixed in the required proportions to obtain com-
position Gd1.494Y1.494Ce0.012Al2Ga3O12 and diluted to obtain the total Me3+ ion concentra-
tion of 0.5 mol/L. Next, the mixed solution was slowly added to the precipitant—a solution
of ammonium bicarbonate NH4HCO3 (99.95%) with a concentration of 1.5 mol/L—under
constant stirring with an overhead stirrer. The hydroxocarbonate precipitate was filtered,
washed with high-purity isopropyl alcohol (IPA)–distillated water mixture a few times,
and dried at 80 ◦C in an air-ventilated oven for 8 h. Further, the precipitate was divided
into four equal parts. One part was used as a reference (untreated) sample, the other three
parts were utilized to enhance the phosphorus content.

The NH4H2PO4 (99.5%) was used as a source of phosphorus, the details of introducing
are described elsewhere [33]. Three IPA-water solutions with different concentration of
phosphorus were prepared. Weighed portion of the precipitate was added in each solution.
These suspensions were stirred for a day, then dried at 80 ◦C, and samples were taken for
elemental analysis. The motivation of choosing this substance as a source of phosphorus is
presented in the Supplementary.

Finally, all four precursors with different phosphorus content were placed in corundum
crucibles with caps and calcined together in a muffle furnace at 850 ◦C for 2 h to form
the garnet phase. During annealing, the precipitate showed a weight loss of about 29%.
Afterward, the oxide powders were milled in a planetary ball mill with alumina jars
and beads to get a median particle size (d50) of 1.5–1.8 µm according to laser diffraction
measurements. The grinding conditions were identical for all compositions. Milling
media was IPA, rotation speed was 300 rpm; grinding time was 30 min, weight ratio of
IPA:powder:beads was 2:1:2. After milling the slurries were dried at 80 ◦C and sieved
through a 100-µm meshes. Samples were taken for elemental analysis. As the result, four
samples: nominally pure (#0) and, loaded with phosphorus (#1–3) were produced. The
stages of their production and characterization methods are described below.

2.2. Characterization of Initial Powders

Particle size distributions were measured using laser diffraction on a MasterSizer 2000
(Malvern, PA, USA) with a water-filled dispersing unit Hydro G. The specific surface area
(SSA) and pore volume of the powders were determined according to the capillary nitrogen
condensation method using BET and BJH models on NOVAtouch NT LX (Quantachrome
Instruments, New York, NY, USA). The phase compositions of the oxide powders were
examined using X-ray powder diffraction on a D2 Phaser (Bruker, Billerica, MA, USA) with
CuKα1,2 radiation.

Elemental analysis of precipitates and calcined powders was carried out via iCAP
6300 duo (Thermo Scientific, Waltham, MA, USA) spectrometer by the ICP AES method.
Before the measurement, the powders are dissolved in a mixture of ultra-pure nitric and
hydrochloric acids at temperature of 100 ◦C using a HotBlock (Environmental express,
Ocala, FL, USA) equipment.

2.3. Ceramics Fabrication

Green bodies were prepared by uniaxial pressing at 64 MPa into 1.5 mm-thick pellets
of 20 mm in diameter. The typical green density was about 35% of the theoretical density
of a single-crystal GYAGG:Ce (6.0 g/cm3). Then pellets were sintered at 1650 ◦C 2 h in an
oxygen atmosphere by using tube furnace.

Finally, surface of the ceramic samples was grinded with silicon carbide abrasive
papers and then polished with 0.5 µm and 0.1 µm diamond polishing pastes. The thickness
of the ceramic samples was ~1 mm. The polished samples intended for scanning electron
microscopy were additionally thermally etched for 10 min at 1200 ◦C to reveal grain
boundaries.
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2.4. Characterization of Ceramic Samples

The apparent density of the ceramic samples was measured using Archimedes’ method
in Lotoxane at room temperature. The uncertainty in this measurement was about 0.5%.

Ceramic microstructure was studied using a Jeol JSM-7100F (JEOL, Tokyo, Japan)
scanning electron microscope (SEM). SEM images were obtained in secondary electrons
and backscattered electrons modes. Platinum sputter-coating was used to ensure electrical
conductivity of surface ceramic sample. Local chemical compositions were estimated using
energy-dispersive X-ray spectroscopy (EDX) via X-Max 50 (Oxford Instruments, London,
UK) attachment. Processing of the SEM images to determine the average grain sizes and
estimate of the number of inclusions of ceramics was carried out using ImageJ software.

The full transmittance of the ceramic samples in the visible region of the spectrum
(400–700 nm) was determined on an Specord Plus spectrophotometer (Analytik Jena, Jena,
Germany) equipped with an integrating sphere. The photoluminescence (PL) spectra of
the ceramic samples were measured on a Fluorat-02 Panorama spectrofluorimeter (Lumex,
Moscow, Russia) with a xenon lamp excitation at room temperature.

The photoluminescence kinetics were studied on a FluoTime 250 luminescence spec-
trometer (PicoQuant, Berlin, Germany) using a pulsed LED excitation source with a wave-
length of 340 nm and a pulse width of 200 ps, corresponding to excitation of the 4f→5d1
interconfigurational transition of Ce3+ ions.

The light output (LO) of the samples was measured with a 137Cs (662 keV) source
by collecting the pulse height spectra with the XP2020 photomultiplier readout. Incident
γ-quanta interact with a whole volume of the sample, so the position of the γ-quanta
photo-absorption peak in the spectra is affected by the scattering of the scintillation light.
Therefore, the light output is smaller than the light yield (LY) due to the reduced light
collection factor in the translucent sample.

A thin layer of the sample, not more than 10 µm, absorbs α-particles in the material.
Due to this reason, measurement with α-particles in a 45◦ geometry [40] provides a light
yield of scintillation practically from the surface of the sample, which is not affected by
scattering. An α-particle source (~5.5 MeV, 241Am) was used to collect the pulse height
spectra with the XP2020 photomultiplier readout. A YAG:Ce single-crystal with ground
surfaces to mimic ceramics with a light yield of 4100 ph/MeV under α -particles excitation
and 25,000 ph/MeV under γ-quanta excitation was used in these measurements as a
reference.

3. Results

The results of quantitative elemental analysis of the phosphorus content in the initial
powders are presented in Table 1. Sample # 1 contains approximately Ce 1:1 P (mole ratio).

Table 1. The measurement contents of phosphorus in initial powders (wt.%) 1.

Sample # Hydroxocarbonate
Precipitates

Oxide Powders Calcined at
850 ◦C

0 - -
1 0.027 0.040
2 0.114 0.156
3 0.456 0.623

1 According to elemental analysis, the content of cerium in the hydroxocarbonate precipitates and powders
calcined at 850 ◦C is 0.139(1) and 0.191(1) wt.%, respectively, in good agreement with to the expected chemical
composition.

It is known [41,42] that ammonium dihydrogen phosphate completely decomposes
into gaseous products already at temperatures of about 550 ◦C. In the same time, based
on the results of elemental analysis, we do not observe significant loss (volatilization)
of phosphorus. One can assume that as-synthesized ReE (Y, Gd, Ce) oxides may easy
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react with NH4H2PO4 [37,43,44] at relatively low temperature and form the refractory and
extremely stable phosphates [37,45,46].

The BET specific surface area and the BJH porosity for garnet powder calcined at
850 ◦C were 55 m2/g and 0.3 cm3/g, respectively. According to X-ray diffraction analysis
all initial powders had a garnet crystal structure of Ia-3d with lattice parameter a = 12.232(5)
Å, in good agreement with the literature [7].

Diffractograms of ceramics obtained from sample # 2 and # 3 contain a few additional
weak lines, which can be attributed to (Y,Gd)PO4 with a tetragonal (I41/amd) xenotime
structure (Figure S1). Lines of monazite-type phosphates (typical for pure GdPO4) are not
observed. The resulting ceramic samples had a high density from 100 to 97.5% (Table 2).

Table 2. The average relative density of GYAGG:Ce ceramic samples (%).

Sample # 0 1 2 3

Relative density 100 99.7 98.8 97.5

Thus, the sinterability and densification of garnet powders with phosphorus are
apparently decreased. This behavior can be explained by two factors. Firstly, the presence
of an impurity of refractory orthophosphate possibly reduces the sinterability due to high
melting point of YPO4~2150 ◦C [46], which is higher than the melting point of YAG or
GAGG compounds [24]. Secondly, the density of yttrium orthophosphate is significantly
lower than the density of GYAGG:Ce ceramics (4.27 vs. 6.0 g/cm3).

The assumptions above are supported by the electron microscopy data (Figure 1).
According to SEM analysis, the grains sizes for GYAGG:Ce ceramics without phosphorus
(sample # 0) are up to 7 µm; generally the sample # 0 has a homogeneous microstructure,
which is typical for dense garnet ceramics [7,8,13,14,33]. According to the EDX analysis, the
element content (Gd 28 wt.%; Y 16 wt.%; Al 6 wt.%; Ga 25 wt.%; O~24 wt.%; Ce 0.2 wt.%)
was in good agreement with the synthesized composition. Just few pores and inclusions
have been observed. Total amount of inclusions and pores is 0.1(1)% (Table 3).

Table 3. The average grain size of garnet phase, total fraction of inclusions and pores in the GYAGG:Ce
ceramic samples.

Sample # 0 1 2 3

Average grain size (µm) 1.90 (1) 3.2 (2) 6.9 (2) 2.8 (2)
Fraction of inclusions + pores (%) 0.1 (1) 0.9 (5) 3.5 (5) 16.3 (9)

All the samples contain a number of pores with different shapes and sizes up to
3–5 µm, which progressively increases in number from 1 to 3 series. The number of impure
grains increases with the increase of phosphorus in the samples (Figure 1, Table 3) as well.
The chemical composition of these grains is slightly variable, in any case they are enriched
in phosphorus (up to 12 wt%) and gadolinium (up to 43 wt.%), and depleted in aluminum
(down to 1 wt.%) and gallium (down to 3 wt.%), and the same time the yttrium content
reaches the 12 wt.%. So, from the comparison of Figure 1d–f, we can conclude that the the
main inclusions in sample #3 are phosphates, in good agreement with our X-ray diffraction
data and results from [37].

In samples # 2 and # 3 there are also grains of aluminum-gallium oxide. Earlier,
appearance of the (Al,Ga)2O3 oxide phase was observed when Gd content was below the
stoichiometric garnet composition [14]. But in this work, their appearance is explained by
the fact that some of the yttrium and gadolinium atoms bind to inert phosphates.

The average grain size of GYAGG:Ce ceramics without phosphorus (sample # 0)
is 1.9 µm. An increase in the average grain size with an increase in the phosphorus
concentration in the garnet ceramics was found for sample 0, 1 and 2 (Table 3). The larger
grains were observed in sample # 2 (Figure 1c). The average grain size for sample # 3 is
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2.8 µm. It is possible that relatively small amounts of phosphorus lead to more active grain
growth due to increase in the defectiveness of the garnet structure. And in the case of an
excess of phosphorus (sample # 3), impurity phases come out in the form of individual
crystallites and have less effect on grain growth.
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Optical photographs and additional SEM images (secondary electrons mode) of the
ceramic samples are presented in Supplementary as Figure S2 and Figure S3, respectively.

The photoluminescent properties of ceramics are shown in Figure 2. Photolumines-
cence (PL) and photoexcitation spectra (PLE) of GYAGG:Ce ceramics with phosphorus
additives have the characteristic luminescence bands of Ce3+ in garnet matrices.

The peak position of the luminescence spectra does not depend on the concentration
of phosphorus, while for the excitation spectra, a shift of the excitation band maximum
corresponding to the f1d0-f05d1 transition is observed: from 430 nm for sample # 0 to 450 nm
for sample # 3. Worth noting, the luminescence intensity increases with the increasing
of phosphorus concentration, passing through a maximum for sample # 2, after which it
decreases when passing to sample # 3.

The LO of the ceramic samples correlates with their translucence. Changes in the LO
and optical transmission at 520 nm, which correspond to the maximum of the scintillation
spectrum, are shown in Figure 3. It is worth stating that there is a clear deterioration of the
LO with the transmittance reducing.

Figure 4 shows the pulse height spectra of samples measured upon excitation by alpha
particles. The position of the total absorption peak correlates with the scintillation yield of
the sample. The positions of the total absorption peaks are as follows: YAG:Ce reference
(208 ch.); #0 (331 ch); #1 (306 ch); #2 (261 ch); and #3—no resolved peak at all. Thus,
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there is a progressive decrease in the LY caused by the fast scintillation of Ce3+ ions as the
phosphorus concentration increases in the sample. Moreover, scintillation was practically
suppressed at the highest phosphorus concentration.
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The photoluminescence kinetics of the samples from different series are compared in
Figure 5. There is a progressive shortening of the initial stage of the kinetics curve with
increasing phosphorus concentration, which indicates quenching of the photoluminescence
of Ce3+ ions. This process contributes to the decrease in scintillation light yield. But this
is not the only process of deterioration; most likely, phosphorus creates a deep electron
trapping center, which competes with Ce3+ ions to catch non-equilibrium carriers and, at its
thermal ionization, provides phosphorescence. This suggestion is supported by an increase
in the intensity of the plateau in Figure 5b after the fast photoluminescence stage, which
indicates a significant increase in the phosphorescence of the emitting light.
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tent luminescence on the second time scale or longer is clearly observed.
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4. Discussion

The effect of phosphorus additives on the optical and physical properties of garnet
ceramics was found to be quite strong. Apparently, it is due to the relatively high chemical
activity of the as-synthesized oxide powders from the hydroxocarbonate precipitate. Phos-
phorus chemically binds the rare earth elements (Y, Gd, Ce) into inert orthophosphate. As
a result, during the process of creating garnet ceramics, a depletion in the concentration of
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rare earth elements relative to their stoichiometric composition occurs, viz., the phosphates
should form second phases (inclusions) in the garnet-type oxides. Recently, the localization
of phosphate with respect to cerium luminescence centers in the YAG host has been eval-
uated by high-resolution scanning transmission electron microscopy and shows distinct
YPO4 and YAG phases in nanocomposite [37]. Based on crystal chemistry, the incorpora-
tion of phosphorus into the garnet structure is practically impossible. Indeed, phosphorus
contents do not exceed 1 wt% P2O5 in garnet minerals [47,48], and are present mostly as
inclusions. To the best of our knowledge, in literature there is just one example, when
phosphate forms the garnet crystal structure. To achieve this, a very extreme synthesis
conditions were required. The Na3Al2(PO4)3 compound with garnet-like crystal structure
and its solid solutions were synthesized at high-pressure (>15 GPa) and high-temperature
(>1200 ◦C) conditions [49]. So, under ambient pressure phosphates will form a separate
phase(s).

Thus, governing the amount of phosphorus in the initial reagents and throughout
the whole process of making ceramics is an important issue. Even a trace concentration of
phosphorus in the ceramics results in an increase in phosphorescence. As a result, such
parameters of the scintillation material as the afterglow will suffer.

5. Conclusions

For the first time we systematically studied of phase compositions, microstructure,
and optical properties of GYAGG:Ce scintillation ceramics with different amounts of
phosphorus additives. This is considered to be important, in view of the utilization of the
phosphorus chemicals in 3D printing, for precursor densification. Major characteristics
of GYAGG:Ce ceramics were found to depend on the amount of phosphorus additives.
With increasing phosphorus, the number of defects in the ceramics (pores, secondary
phases) increases drastically. Optical transmittance, density, and scintillation yield under
alpha- and gamma-excitation are systematically decreased. Phosphorescence intensity
shows significant growth as well. All these circumstances require governing the amount of
phosphorus in the initial reagents and throughout the whole process of making ceramics.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ceramics6030091/s1, Figure S1: X-ray diffraction pattern of GYAGG:Ce
ceramics sample # 3; Figure S2: Optical images of GYAGG:Ce ceramics; Figure S3: Representative
SEM images (5000×) recorded in secondary electrons mode of mirror polished and thermally etched
surfaces of GYAGG:Ce ceramics.
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