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Abstract: New oxychloride lead borate glasses in the xPbCl2–(50-0.5x)PbO–(50-0.5x)B2O3 system
were synthesized with a maximum lead chloride content of 40 mol%. The characteristic temperatures
and mechanical and optical properties were studied. The incorporation of lead chloride led to a
significant expansion of the transparency range in the UV (up to 355 nm) and IR regions (up to
4710 nm). Decreases in the Vickers hardness, density, and glass transition temperature were the
consequences of a change in the structure. The studied glasses are promising materials for photonics
and IR optics. The structure of the PbCl2–PbO–B2O3 system was analyzed in detail using vibrational
spectroscopy and X-ray diffraction.

Keywords: oxychloride glasses; lead chloride; optical absorption; glass network structure

1. Introduction

The variety of compositions and extremely interesting properties of glasses based on
boron oxide have attracted the attention of many researchers. In the last few decades, the
importance of borate glasses has increased because they exhibit an exceptional combination
of properties, such as transparency in a wide spectral range, mechanical strength, chemical
resistance, as well as thermal shock and crystallization resistance [1].

Borate glasses containing lead compounds have unique characteristics. The inclusion
of PbO and PbX2 (X = F, Cl, and Br) in glass compositions leads to a significant increase
in electrical conductivity [2], transparency in the IR and UV ranges [3,4], high refractive
indices [5], and optical nonlinearity [6].

Oxyhalide glasses are very promising as matrix materials for applications such as
modern laser systems and fiber communication lines [7]. The incorporation of lead halides
(PbX2) into glasses leads to low phonon energies, which makes them promising materials
due to a decrease in nonradiative losses because of multiphonon relaxations [8]. The optical
properties of glasses of the PbX2–PbO–B2O3 system doped with d-elements [5,9] and
f -elements [4,10,11] have been studied. The positive effect of lead halides on their spectral
and luminescent properties has been proven. However, the preparation and usage of many
oxyhalide glasses are often limited due to their high tendency to crystallize, the toxicity
of reagents, and the rather high content of OH− groups [4,10]. There is no information on
the preparation of borate glasses with a PbCl2 content of more than 25 mol% and there are
limited data on their optical properties in the IR region and their structures.

This work aimed to develop a synthesis technique for new oxychloride lead borate
glasses with a large amount of lead chloride (up to 40 mol%) and to investigate their optical,
mechanical, and thermal properties.
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2. Materials and Methods

The glasses were synthesized with the general formula xPbCl2-(50-0.5x)PbO-(50-
0.5x)B2O3, where x varied from 0 to 40 mol% with a 5 mol% step. PbCl2, PbO powder
preparations (99.9, Himkraft, Kaliningrad, Russia) and B2O3 glassy strips (99.9, Reachim,
Moscow, Russia) were used as initial components for synthesis. The necessary amounts
of components were weighed using an Explorer Ohaus PA64 electronic balance (Ohaus,
Shanghai, China). The mixture was homogenized by repeated grinding in an agate mortar.
The sample weight for one experiment was ~15 g. The charge was placed in a corundum
crucible with a cover and melted for 30 min at 900 ◦C in a PM-12M1 muffle furnace (EVS,
St. Petersburg, Russia) under ambient atmosphere. The melt was then cast into a glassy
carbon mold and quickly pressed by another glassy carbon mold. To reduce quenching
stresses, the glasses were annealed in a SNOL 7.2/1100 furnace (Umega Group, Ukmergė,
Lithuania) at 240 ◦C for samples with PbCl2 content ≥20 mol% and at 300 ◦C for samples
with PbCl2 content ≤ 15 mol%. The residual stress was controlled by using the optical
polarization method with a PKS-250M polariscope-polarimeter (Zagorsk Optical and Me-
chanical Plant, Sergiev Posad, Russia). Plane-parallel samples of 2 mm thickness were
polished using a T-080.00.00 stone-cutting machine (Togran, Moscow, Russia).

The amorphous nature of the glasses was confirmed by X-ray diffraction analysis using
an Equinox 2000 X-ray diffractometer (Thermo Fisher Scientific, Saint-Herblain, France)
with CuKα radiation (λ = 1.54060 Å) in the 2Θ angle range from 10◦ to 100◦, with a 0.01◦

scanning step and 2 s/step exposure. The diffraction patterns were analyzed using Match!
software (2003–2015 CRYSTAL IMPAC T, Bonn, Germany).

We used X-ray fluorescent spectroscopy (XFS) to estimate the element composition of the
synthesized glasses. The measurements were carried out using a TESCAN VEGA3-LMU scan-
ning electron microscope (TESCAN ORSAY HOLDING, Brmo, Czech Republic) equipped
with an X-MAX-50 EDS detector (Oxford Instruments, Abingdon, UK) at 30 kV voltage.

The absorption spectra were recorded using a JASCO V-770 spectrophotometer
(JASCO Corporation, Tokyo, Japan) in the range of 190–2700 nm. The absorption spectra
were obtained using a Bruker Tensor 27 FT-IR spectrometer (Bruker, Berlin, Germany) in
the 1.25–27.00 µm range.

The refractive index of glass samples was measured on a Metricon 2010 refractometer
(Metricon, Pennington, NJ, USA). The measurement method was based on determining the
critical angle of incidence at which light began to penetrate the sample volume through the
surface of the measuring prism, similar to the Abbe refractometer. The refractive index was
measured at three wavelengths: 633, 969, and 1539 nm.

Glass transition (Tg), crystallization (Tc), and melting (Tm) temperatures were deter-
mined by differential scanning calorimetry (DSC) using an SDT Q-600 thermal analyzer
(TA Instruments, New Castle, DE, USA) at 10 ◦C/min rate from RT to 800 ◦C. Aluminum
oxide (Al2O3) was used as a reference. For analysis, glass samples were preliminarily
ground into powder. At the same time, thermogravimetric analysis was performed to
assess the volatilization of glass components.

The structure of the glasses was studied using Fourier transform IR spectra and Raman
spectra (RS). FT-IR spectroscopy was performed on a Bruker Tensor 27 spectrometer (Bruker,
Berlin, Germany). For FT-IR measurements, the glass samples were ground into a fine
powder and then mixed with KBr powder in a weight ratio of 0.01:0.19. The prepared
mixture was pressed into pellets, which were immediately measured (in the range of
400–8000 cm−1) to avoid exposure to atmospheric moisture. Raman spectra were recorded
in the 80–3500 cm−1 range using standard laser excitation on a Vertex 70 FT-IR spectrometer
with the Raman module RAM II (Bruker, Berlin, Germany) equipped with a 1064 nm
neodymium laser. The laser power was 350 mW. Powder preparations were used for
Raman measurements.

The glass density was determined using the hydrostatic weighing method with a
MERTECH M-ER 123 ACF JR balance and special equipment (MERTECH, Moscow, Russia).
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Vickers hardness of glasses was measured by indenting a diamond pyramid with
a square base and an angle between the faces equal to 136◦. To increase the statistical
reliability, the measurements were carried out 5 times for each of the four weight loads
(50, 100, 150, and 200 g), and the measurement results were averaged. For each point, the
average deviation was calculated, and these were then averaged. Samples were measured
using a PMT-3 tester (LOMO, St. Petersburg, Russia).

3. Results and Discussion
3.1. Glass Composition and Structure Characterization

The compositions of the obtained glasses are shown in Figure 1.
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Figure 1. The compositions of glasses in the PbCl2–PbO–B2O3 system: 1—our work; 2—[2]; 3—[12];
4—[13,14]; 5—[5]; 6—[15]; 7—[16]; 8—[4,10,11].

The diffraction patterns of the synthesized glasses confirmed the amorphous nature of
the samples (Figure 2).
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Figure 2. XRD patterns of glasses in the xPbCl2–(50-0.5x)PbO–(50-0.5x)B2O3 system.

Figure 2 shows that the glass halo underwent significant changes upon the addition
of PbCl2, which indicated a change in the short-range order structure. We assumed that
at high PbCl2 concentrations, the local glass structure tended toward the structure of
crystalline PbCl2 but with a greater degree of disorder, which was specific for the glassy
state (Figure S1) [17,18]. Heavily doped glasses (>20%) were possibly partly crystallized
(nanocrystals formation), but the limited resolution of the patterns did not allow a clear
conclusion. When glasses with a PbCl2 content of more than 40% were synthesized, partial
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crystallization of the melt occurred with the formation of the PbCl2 phase (Figure S1). The
PbCl2 phase was rhombic (space group Pnma, a = 7.623 Å, b = 9.048 Å, c = 4.535 Å, Z = 4).
Card ID 01-084-1177 (MATCH) or pdf 26-1159 PCPDFWIN.

The synthesis of oxychloride glasses is complicated due to the high hygroscopic-
ity of Cl-containing components. In the process of glass melting, in addition to direct
volatilization, pyrohydrolysis occurs [4]:

PbCl2 + H2O→PbO + 2HCl↑ (1)

An exchange reaction is also possible [19]:

3PbCl2 + B2O3→3PbO + 2BCl3↑ (2)

The results of the elemental analysis (Table S1) showed that the Cl/Pb ratio in the
synthesized glasses remained almost the same as in the initial batch (Figure 3).
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Figure 3. Comparison of Cl/Pb ratio in the batch and glasses synthesized in the xPbCl2–(50-0.5x)PbO–
(50-0.5x)B2O3 system.

To evaluate the volatilization of the glass components during synthesis, we applied a
direct weighing technique. It was shown that volatilization remained almost constant for
all compositions with PbCl2 below 35 mol% (Figure 4). Thus, we assumed that B2O3 and
water volatilized simultaneously with PbCl2. However, there was no way to confirm this
assumption, since the XFS technique is limited in detecting light elements such as boron
(ZB = 5). This is the reason that the data in Table S1 are presented in the form of ratios
of elements.
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The synthesized glasses contained a small amount of aluminum (Table S1) because
of the dissolution of the corundum crucible by the aggressive PbO-based melt. However,
Al2O3 has a positive effect on the spectral and mechanical properties of glasses due to
it being a network former [20]. We did not observe significant losses of PbCl2 during
synthesis, which made it possible to correctly describe the physicochemical properties of
the glasses based on their batch composition.

The glass structure was studied by Raman spectroscopy in the 80–3500 cm−1 range,
which was divided into 3 parts for detailed analysis: 80–250 cm−1 (Figures 5, S2 and S3),
250–1750 cm−1 (Figure 6), and 1750–3500 cm−1 (Figure S4). In Raman spectroscopy, vibra-
tions with wavenumbers less than 400 cm−1 are usually attributed to vibrational modes
associated with heavy metal atoms. In addition, the frequencies of halide compounds with
predominantly ionic bonds are generated in this range [21,22].
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We observed a broadened peak in the 80–250 cm−1 range (Figure 5), which was a
superposition of several fundamental modes and a bosonic peak [4,23]. The assignment
of vibrational modes to the corresponding structural groupings is presented in Table 1.
The observed broadened peak underwent significant changes depending on the glass
composition. For the 50PbO–50B2O3 glass composition, we observed 4 main modes at 80,
90, 105, and 135 cm−1 (Figure S2). These were the result of bending vibrations in PbO4
structural units [23], stretching of the ionic component of the Pb–O bond [24], Pb2+ cations
in the glass network [25], and covalent symmetric stretching of the Pb–O bond in PbO4
tetrahedra [26], respectively. In lead borate glasses with a high PbO content, [PbO4]2−

pyramids are glass network-forming units and most of the lead went into building these
pyramids. The rest of the lead acted as a charge compensator in the form of free Pb2+ ions.
[PbO4]2− units preferentially bridge bonds with BO3 groups rather than BO4 groups [25].
The dominant units in these glasses are BO3 and [PbO4]2− with Pb—O—B bridges between
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them. The introduction of lead chloride caused a sharp decrease in mode intensity around
135 cm−1, indicating the destruction of these bridges [25].

In addition, local peaks with maxima at 80 and 90 cm−1 were strongly smoothed
and had reduced intensities, which also indicated the disappearance of PbOn units in the
glass network. On the other hand, we observed a generation of new bands at 91, 105, and
120 cm−1. They belonged to vibrations of Cl− [27] ions, Pb2+ [28] cations, and stretching
vibrations of the Pb–Cl bond [29]. The further growth of PbCl2 concertation up to 40 mol%
resulted in the generation of new modes at 150–180 cm−1 [27], while the modes related
to the structural units of PbOn practically disappeared. Cl− acts as a non-bridging anion
and two halogen anions replace one O2−. This leads to the destruction of [PbO4]2− units
and the formation of Pb2+ cations. The appearance of Raman bands related to vibrations of
chlorine anions and the Pb–Cl bond directly indicated the formation of new chlorine- and
lead-containing structural units. It was suggested that such units could be presented as
Cl−Pb2+[BO4/2]− complexes [2]. This composition of structural units could be explained
by the fact that chlorine entered the glass network only in interstitial positions and acted
as a non-bridging anion in the glass network [2,25]. Because the strength of an ionic
bond is inversely proportional to the square of the ionic radius, substitution of O2− with
rO2− = 1.40 Å by Cl− with rCl− = 1.81 Å further weakened the bonds in the glass network.
Thus, depolymerization and weakening of the glass network occurred with the formation
of isolated ion-containing structural units.

Table 1. Interpretation of Raman bands in glasses.

Range of 80–250 cm−1 Range of 250–1750 cm−1

Wavenumber, cm−1 Interpretation Reference Wavenumber, cm−1 Interpretation Reference

80 Bending vibrations in
structural units of PbO4

[23,30] 310 Vibrations of [PbO4]2− units [23,31]

90
Stretching of predominantly

ionic Pb–O bonds in
polyhedral PbOn units

[23,24] 476 Pb–O bond vibrations [32,33]

570 Oscillations of borate
tetrahedrons BØ4

− [23,25]

91
Vibrations associated with

PbCl2, presumably Cl− [21,22,27,34,35] 620 Deformation modes of BO3
metaborate chains [23,26]

710 BO3 deformation modes in ring
metaborate groups [23,26]

105 Cations Pb2+ [25,28,36] 870 Oscillations BØ4
− in

pentaborate groups [26,37]

120 Pb-Cl stretching vibration [22,29], 910 Oscillations BØ4
− in ortho- and

pentaborate groups [26,37]

135
Symmetric Pb–O stretching in

the [PbO4]2− pyramid
configuration

[25,26,32,38] 980 Oscillations BØ4
− of diborate groups [26,39,40]

150–180
Valence vibrations of Pb–Cl,

bending vibrations of the
Pb–Cl bond

[22,27,32,34,35,41] 1050 Oscillations BØ4
− of diborate groups [23,39,40]

1075 Oscillations BØ4
− of diborate groups [23,39]

1285

B-O− stretches in metaborate triangles
(BØ2O−), mostly forming chain

structures. A minor fraction:
BØ3 extensions

[23,25,33]

We observed several characteristic bands related to different groups in the glass
structure in the 250–1750 cm−1 range (Figure 6). An increase in PbCl2 content resulted in a
decrease in band intensities.

The band around 310 cm−1 indicated the existence of PbO4 polyhedral units in the net-
work [23]. This was caused by the superposition of two bands centered at 280 and 330 cm−1,
which were attributed to vibrations of these units in PbO crystals with orthorhombic and
tetragonal symmetry, respectively [18]. The decrease in the band intensity indicated the
destruction of PbO4 tetrahedra in the network with PbCl2 content growth. The band at
476 cm−1 was also assigned to Pb–O bond vibrations and it underwent similar changes [33].

The 570 cm−1 band was associated with the borate tetrahedron (BØ4
−) and it decreased

with PbCl2 content growth. The BO3—PbO4 bridge bond formed a fourfold coordination
of boron with oxygen [23].

Bands at 620 and 710 cm−1 were assigned to the deformation modes of metaborate
chains and rings, respectively [23,26,37]. They also lost their intensity with PbCl2 content
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growth. However, the band at 710 cm−1 conserved its shape even for systems with 40 mol%
of lead chloride, which indicated greater stability of the ring metaborate groups.

The 870 and 910 cm−1 bands decreased while the PbCl2 content grew to 20 mol% and
then remained constant with further PbCl2 content growth. The 980, 1050, and 1075 cm−1

bands referred to the presence of BØ4
− in diborate groups and showed a similar evolution

with PbCl2 content growth.
The 1285 cm−1 band referred to B-O− extensions in metaborate triangles (BØ2O−),

mostly forming chain structures, and to BØ3 stretching. The band intensity strongly
decreased with PbCl2 content growth.

For the 50-50 glass composition, the intensity of the bands related to the BO4
− vibra-

tions was noticeably lower than for the bands related to the BO3 vibrations, primarily at
710 and 1285 cm−1. We observed a reduction in the I710/I1285 ratio with PbCl2 content
growth resulting from destruction of the Pb-O bond. The glass network was rearranged to
a more ionic and depolymerized one, with the gradual replacement of BO3 groups by BO4
groups [25].

In the range up to 3500 cm−1 (Figure S4), only water oscillations were observed.
The FT-IR spectra showed several bands (Figures 7 and S5), interpreted in Table 2.
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The 470 cm−1 band referred to the vibrations of Pb2+ cations and its intensity increased
with PbCl2 content growth. The 660 cm−1 band referred to vibrations of free BO4 groups.
It was practically absent in the 50-50 glass but it manifested itself and increased with PbCl2
content growth.

The 691 cm−1 band was associated with B-O vibrations in the PbO—BO3 bridge and
the band intensity rapidly decreased with PbCl2 content growth, which directly indicated
the destruction of PbO4 tetrahedra.

Peaks in the 800–1200 cm−1 range referred to vibrations of the B–O bond in units of
BO4. The bands were retained and even slightly increased with PbCl2 content growth,
which indicated the retention of BO4 units in the grid.

Peaks in the 1300–1700 cm−1 range were attributed to bond fluctuations in the BO3
groups. Their intensities decreased with PbCl2 content growth, which indicated the de-
struction of the corresponding structural units.

We should note that the FT-IR data were in full agreement with the Raman spec-
troscopy data. PbCl2 content growth resulted in the generation of new lead–chloride
structural-chemical units, accompanied by a significant decrease in concentrations of BO3
groups and PbO4 tetrahedra.
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Table 2. Interpretation of FT-IR bands in glasses.

Wavenumber, cm−1 Corresponding Vibrational Mode Reference

~466 Lead cation oscillations Pb2+ [42,43]
~560 Oscillations of free BO4 groups [44]
~610 bending vibrations of the B–O–B bonds in the BO3 group [45]
~691 B-O oscillations associated with the PbO—BO3 bridge in the lead borate network [45,46]
~760 Bending vibrations of the O3B–O–BO4 bond [5]

~800–1200 Tensile vibrations of the B–O bonds of the tetrahedral block BO4 in ortho-, pyro-,
and metaborate groups [5,45,46]

970 Tensile vibrations of B–O bonds in BO4 groups [45,46]
~1050–1150 Tensile B-O oscillations in BO4 units from tri-, tetra-, and pentaborate groups [4,5]
1300–1700 Bond fluctuations in BO3 groups [4,5,45,46]

~1505, 1559, 1611 Asymmetric relaxations of B–O bond stretching of BO3 trigonal blocks [44]
~2350 Asymmetric modes of CO2 stretching [47]
~3445 Stretching vibrations of OH− groups [4,44,47]

3.2. DSC Characterization and Physical Properties

The presented DSC data (Figures 7, S6–S10, Table 3) led us conclude that for the glasses
of this system, the glass transition temperature (Tg) decreased with PbCl2 content growth.
For the boundaries of PbCl2 composition, the difference was 80 ◦C. Such a significant
change in the glass transition temperature (Tg) has been observed by other researchers and
was attributed to structural changes in the glass network [16,48,49].

Table 3. Glass characteristic temperatures *.

Glass Composition, mol% Tg, ◦C Tx1, ◦C Tc1, ◦C Tx2, ◦C Tc2, ◦C Tm1, ◦C Tm2, ◦C ∆T = (Tx1 − Tg), ◦C

50PbO–50B2O3 331 - - - - - - -
10PbCl2—5PbO–45B2O3 327 405 427 485 540 522 601 78
20PbCl2–40PbO–40B2O3 303 402 447 - - 383 604 99
30PbCl2–35PbO–35B2O3 279 408 436 - - 390 470 129
40PbCl2–30PbO–30B2O3 251 381 397 428 - 381 467 130

*—the determination error for all characteristic temperatures was ±1 ◦C.

The incorporation of halogen ions (Cl, Br, I) into the gaps of the borate network led to
a violation of the order of the BO3 groups. The overall disorder in halogen-doped glass
occurred mainly due to the expansion of the boron–oxygen network [50,51]. Glasses with
PbCl2 concentrations < 20 mol% consisted mainly of BO3 units, which had a relatively
open structure. The large Cl− ions could be easily incorporated in the network only in
interstitial positions. With the further addition of PbCl2 (>20 mol%), the B–O network
began to expand due to PbCl2. The network retained its connectivity, but it contained
large voids that allowed the placement of Cl− ions. The expansion of the B–O network,
and hence the progressive weakening of the structure, manifested itself in a significant
decrease in the glass transition temperature (Tg) [16]. This mechanism was confirmed by
our structural studies.

At the same time, the DSC curves showed that the characteristics of crystallization
in the studied glasses changed. The 50PbO–50B2O3 sample did not exhibit an exothermic
peak corresponding to crystallization. However, we observed a broadened exothermic peak
of crystallization with PbCl2 content growth. A further increase in PbCl2 content resulted
in the splitting of the peak into two components. At 40 mol% PbCl2, we observed only the
crystallization peak with a lower Tc.

The lead borate oxychloride glasses demonstrated two endothermic peaks at con-
tinuous heating, marked as Tm1 and Tm2 (Figure 8). This indicated the stepwise na-
ture of the glass softening. We observed the final melting temperature of the studied
glasses at ≤600 ◦C, which made it possible to classify these glasses as low-melting glasses
(Figures S6–S10).
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One of the most important criteria for glasses is the thermal stability coefficient (∆T),
defined as the difference between the onset of crystallization (Tx) and glass transition
(Tg) [52] temperatures (Table 3). For all glass compositions, ∆T was higher than 70 ◦C. This
meant that the studied glasses were resistant to crystallization. An increase in ∆T indicated
an increase in glass stability with PbCl2 content growth [53–55].

According to the TGA data, volatilization of the studied glasses began in the tempera-
ture region of 540–630 ◦C, and PbCl2 content growth intensified the volatilization (Figure 9).
In contrast, the 50PbO–50B2O3 glass did not volatilize up to 800 ◦C. Since the crystallization
of the corresponding compositions occurred before active volatilization had begun, one
could conclude that it was possible to create glass-crystalline materials based on glasses
without changing the chemical composition.
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Figure 9. Results of thermogravimetric analysis of synthesized glasses.

Based on the data from measuring the density (ρ) of the glass samples, the molar
volume Vm was calculated using formula (3):

Vm = M/ρ, (3)

where M is the average molecular weight of the glass [9].
The glass density gradually decreased with increasing PbCl2 content in glass (Figure 10).

In similar oxychloride glass systems [5,16,49], the same dependencies were observed.
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Figure 10. Dependence of density (black) and molar volume (blue) on the content of PbCl2 in
xPbCl2–(50-0.5x)PbO–(50-0.5x)B2O3 glass.

An increase in PbCl2 concentration caused the density decrease and molar volume
growth that were associated with a change in the structure of the glass network [5]. The
big Cl− ion occupies more space than the smaller O2− and expands the glass network,
thereby increasing the molar volume [9,12], which was consistent with the data on the
glass structure.

Glass samples containing a larger amount of PbCl2 had lower Vickers hardness
(Figures 11 and S11). Similar results for the same glass systems were presented in [14,48].
The transition from triangular BO3 groups to tetrahedral BO4 groups reduced the hardness
and increased the non-bridging oxygens in binary [56] and ternary [57] borate glass systems.
The trend towards a decrease in Vickers hardness with increased PbCl2 composition was
associated with the formation of a larger number of depolymerizable boron structural units
and a decrease in the rigidity of covalent bonds within them [58]. According to [20], the
Vickers hardness of lead borate glasses mainly depends on the nature of the types of lead
and boron structural units present in the glasses.
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3.3. Optical Properties

The optical absorption spectra obtained in the UV, visible, and near-IR regions of the
glasses under study are shown in Figure 12. The optical absorption coefficient, α(λ), was
calculated from the absorption, A(λ), based on the following relation [9]:

α(λ) = 2.303
A(λ)

d
, (4)
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where d is the thickness of the glass sample.
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On the other hand, the optical absorption coefficient, α(ν), for amorphous materials is
given by the Tauc equation [13]:

α(ν) = const

[(
hν− Eg

)2

hν

]
, (5)

where hν is the photon energy and Eg is the optical energy gap. Thus, based on the Tauc
plots (Figure 13), the optical gap (Eg) of the studied glasses was estimated.
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Figure 13. Tauc plots of optical absorption spectra of synthesized glasses.

The Tauc energy (optical band gap) increased linearly with an increase in the PbCl2
content (Figure 14). This was the reason for the shift of the short-wavelength absorption
edge of the glasses to the UV region (inset in Figure 12, Table 4).

The absorption edge in oxide glasses corresponds to the transition of an oxygen
electron to the excited state [59]. The more weakly these oxygen electrons are bound,
the more easily absorption occurs. In glasses, non-bridging oxygen is more negative
than bridging oxygen. Increasing the proportion of ionized oxygen by converting it from
bridging to non-bridging oxygen raises the valence band top, which leads to a decrease in
the band gap (Eg) [60].
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Table 4. Optical properties of glasses.

Glass Composition, mol%
Short-

Wavelength
Absorption Edge λ, nm

Tauc
Energy
Eg, eV *

Urbach
Energy
Ee, eV *

Average
Absorption

Coefficient, cm−1

Long-
Wavelength

Absorption Edge
λ, nm

Absorption of
the OH− Group

Band, cm−1

50PbO–50B2O3 365 3.307 0.468 5.7 3611 15.5
5PbCl2–47.5PbO–47.5B2O3 365 3.320 0.393 3.6 3626 22.0

10PbCl2–45PbO–45B2O3 363 3.327 0.504 4.7 3664 22.4
15PbCl2–42.5PbO–42.5B2O3 360 3.378 0.432 4.4 3690 20.3

20PbCl2–40PbO–40B2O3 360 3.376 0.435 5.0 3739 12.4
25PbCl2–37.5PbO–37.5B2O3 359 3.389 0.505 5.2 3788 11.9

30PbCl2–35PbO–35B2O3 357 3.406 0.377 2.4 4349 14.6
33PbCl2–33PbO–34B2O3 356 3.414 0.453 4.6 4370 10.9

35PbCl2–32.5PbO–32.5B2O3 356 3.423 0.434 4.4 4462 9.5
40PbCl2–30PbO–30B2O3 355 3.440 0.427 3.8 4710 9.4

*—the determination errors for Eg and Ee were ±0.005 eV.

In our case, the increase in the optical energy gap (Eg) with PbCl2 content growth
could be explained by a decrease in the content of non-bridging oxygen together with
BO3 groups. On the other hand, the expansion of the band gap can be explained in
terms of the Eg values of the initial glass components: EPbO

g = 2.8 eV; EB2O3
g = 5.4 eV; and

EPbCl2
g = 4.9 − 5.0 eV [61].

The absorption coefficient, α(ν), in amorphous materials in the optical region near the
absorption edge at a certain temperature obeys an empirical relation known as the Urbach
rule [62]:

α(ν) = α0exp(hν/Ee), (6)

where hν is the photon energy, α0 is a constant, and Ee is the energy, which is interpreted as
the width of the localized state in the normal bandgap known as the Urbach energy. The
Urbach energy values were obtained by finding the reciprocal of the tangent of the slope of
the graph plotted in the ln(α(ν)) − hν coordinates and are presented in Table 4.

The origin of exponential absorption is still a matter of debate, but it is generally
believed that random potential fluctuations are associated with any lattice distortions,
which can affect the Urbach energy by the generation of energy states within the band
gap [13]. The nonlinear change in the Urbach energy depending on the PbCl2 concentration
may have been due to the uneven distribution of defects in the studied glasses. Similar
results for the Urbach energy were presented in [5,9].

For the mid-IR spectrum range, we found that an increase in PbCl2 concentration
shifted the long-wavelength absorption edge to the IR region (Figure 15, Table 4) due to
the replacement of atoms with a low atomic number (B, ZB = 5) by atoms with a high
atomic number (Pb, ZPb = 82). The glass matrix became heavier when we increased the
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total concentration of lead compounds (PbCl2 and PbO). This resulted in the shift of the
long-wavelength absorption edge in the IR region and the expansion of the transparency
range of the glasses [63]. The addition of a low-energy phonon component (PbCl2 is
230 cm−1 compared to borate glass ~1500 cm−1) also increased the transparency range in
the IR region.
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We observed a decrease in the intensity of the absorption band of hydroxyl groups
with PbCl2 content growth (Figure 15, Table 4). According to the FT-IR spectroscopy results
of the starting reagents, B2O3 had the largest content of OH− groups (Figure S12). To
reduce the content of OH− groups, it is possible to use dry boron oxide [64] and bubble the
melt with dry oxygen [65].

The theoretical refractive index of the studied glasses, (n), was calculated using
Equation (7) [38]:

n = χ(PbCl2)·n(PbCl2) + χ(PbO)·n(PbO) + χ(B2O3)·n(B2O3), (7)

where χ(PbCl2), χ(PbO), and χ(B2O3) are the molar fractions of the corresponding glass
components; n(PbCl2), n(PbO), and n(B2O3) are the refractive indices of pure lead chloride,
lead oxide, and boron oxide, respectively.

The refractive index was determined experimentally at three wavelengths: 633, 969,
and 1539 nm (Table 5). The dispersions of the refractive index depending on the wavelength
are presented in Figure S13.

Table 5. The values of the calculated and experimental refractive indices (n) of glasses in the
xPbCl2–(50-0.5x)PbO–(50-0.5x) system.

Glass Composition, mol%

Refractive Indices (n)

Estimated,
±0.01

Experimental, ±0.001

633 nm 969 nm 1539 nm

50PbO–50B2O3 2.04 1.914 1.895 1.890
5PbCl2–47.5PbO–47.5B2O3 2.05 1.969 1.930 1.903

10PbCl2–45PbO–45B2O3 2.06 1.989 1.949 1.932
15PbCl2–42.5PbO–42.5B2O3 2.06 1.991 1.963 1.940

20PbCl2–40PbO–40B2O3 2.07 2.009 1.969 1.954
25PbCl2–37.5PbO–37.5B2O3 2,08 2.017 1.978 1.960

30PbCl2–35PbO–35B2O3 2.09 2.040 2.000 1.981
33PbCl2–33PbO–34B2O3 2.09 2.051 2.010 1.991

35PbCl2–32.5PbO–32.5B2O3 2.10 2.058 2.016 1.997
40PbCl2–30PbO–30B2O3 2.10 2.076 2.032 2.013
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The values of the calculated refractive index were slightly overestimated relative to the
experimental ones. We assumed that this was due to some difference in the nominal and ac-
tual compositions of the glasses, primarily due to the incorporation of Al2O3 (n = 1.70–0.76)
into the glasses, as determined by XPS [66].

4. Conclusions

For the first time we investigated the properties of glasses in the xPbCl2–(50-0.5x)PbO–
(50-0.5x)B2O3 system with a wide range of PbCl2 concentrations from 0 to 40 mol%. This
allowed us to fill gaps in the fundamental data for the system under study, which has
applications for the production of optical fibers with extended transmission ranges for use
in medical lasers and telecommunication systems.

The introduction of PbCl2 modified the structural network and led to drastic changes
in the glassy network, resulting in a significant decrease in the numbers of BO3 groups
and PbO4 tetrahedra, Tg reduction by 80 ◦C with a simultaneous increase in resistance to
crystallization by 52 ◦C, glass molar volume growth of 30%, Vickers hardness reduction by
2 times, and refractive index growth from 1.9 to 2.1.

The decrease in bridge oxygen content with PbCl2 content growth resulted in the
expansion of transparency in the UV region by 10 nm. The increase in heavy metal content
in the glass matrix resulted in a decrease in the phonon energy, which resulted in the
expansion of the IR range to 4700 nm.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/ceramics6030083/s1, Figure S1. Comparison of XRD patterns of glasses
in the xPbCl2–(50-0.5x)PbO–(50-0.5x)B2O3 system with crystalline PbCl2; Table S1. The composition
of glasses according to the XFS data; Figure S2. Decomposition of the 50PbO–50B2O3 glass Raman
spectrum into Gaussian; Figure S3. Decomposition of the 40PbCl2–30PbO–30B2O3 glass Raman
spectrum into Gaussian; Figure S4. Raman spectra of xPbCl2–(50-0.5x)PbO–(50-0.5x)B2O3 glasses
(1750–3500 cm−1 range); Figure S5. FT-IR spectra of synthesized glasses; Figure S6. DSC curve for
glass composition 50PbO–50B2O3 and characteristic temperatures; Figure S7. DSC curve for glass
composition 10PbCl2–45PbO–45B2O3 and characteristic temperatures; Figure S8. DSC curve for glass
composition 20PbCl2–40PbO–40B2O3 and characteristic temperatures; Figure S9. DSC curve for glass
composition 30PbCl2–35PbO–35B2O3 and characteristic temperatures; Figure S10. DSC curve for
glass composition 40PbCl2–30PbO–30B2O3 and characteristic temperatures; Figure S11. Dependence
of Vickers hardness on the applied load in xPbCl2–(50-0.5x)PbO–(50-0.5x)B2O3 glasses; Figure S12.
FT-IR spectra of the initial reagents, with the indicated band of the OH− group; Figure S13. The
dispersion of the refractive index of xPbCl2–(50-0.5x)PbO–(50-0.5x)B2O3 glasses.
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