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Abstract: Luminescent and scintillation ceramic materials with complex shapes, which can be created
by stereolithography 3D printing, are of interest for special phosphor and detector applications.
Starting powders for such ceramics may possess UV absorption bands; therefore, it is important
to study the possible influence of the powders’ luminescent properties on the printing process.
This paper deals with complex garnet oxides, Y3Al5O12 and Gd3Al2Ga3O12—well-known hosts
for luminescent materials. The photopolymerization rates of slurries based on the luminescent
powders produced by various chemical routes are studied, as well as available printing regimes.
The slurries containing Ce-doped powders with a broad absorption band in UV have significantly
lower photopolymerization rates compared to the undoped ones; a high Ce doping virtually hinders
printing with layers thicker than 25–50 µm. Furthermore, the choice of powder synthesis method is
shown to influence the printing process. Slurries with Tb-doped powder, with absorption lines at
shorter wavelengths, have good photopolymerization activity, close to that of the undoped powder,
and can be printed with layer thicknesses of 25–100 µm.

Keywords: 3D printing; cerium; garnet oxide; luminescence; phosphor; scintillator; stereolithogra-
phy; terbium

1. Introduction

Garnet oxides doped with lanthanides are a group of widely used luminescent materi-
als. Ce-doped Y3Al5O12 (YAG:Ce) is an established LED phosphor [1,2]. YAG doped with
Nd, Yb, or Er is widely applied in solid-state lasers [3–5]. Garnet oxides are scintillators
with existing or anticipated applications in areas such as space measurements [6], medical
and general X-ray imaging [7–9], and high-energy physics [10,11]. Gd3Al2Ga3O12 doped
with Ce3+ activator (GAGG:Ce) is a relatively novel but well-established scintillator with
competitive characteristics—a high density of about 6.63 g/cm3, main scintillation decay
component below 100 ns and light yield of 40–60 kph/MeV [12–14]. It can be produced in
the form of both single crystals [12–14] and translucent or transparent ceramics [15]. Tb-
doped (Gd,Y)3(Al,Ga)5O12 garnets (GYAGG:Tb) have slow luminescence decay kinetics in
the order of milliseconds, which restricts their use in modern photon-counting applications.
However, their light yield was shown to be very high, which makes this group of materials
interesting for the transformation of radiation to light in converters for nuclear batteries or
cathodoluminescent phosphors [16–18].

Luminescent ceramics could have advantages compared to single crystals if they can be
produced more cheaply, or if any special requirements exist regarding the material’s shape
or composition, e.g., in order to make a composite [19,20]. The fast development of additive
manufacturing methods, i.e., 3D printing, allows for the fabrication of ceramic objects of
complex shapes, which are unachievable using classical pressing or casting approaches.
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Example application areas of such ceramics include bone surgery and engineering [21–23].
Construction materials were the first type of material for which additive manufacturing
approaches were developed, but interest in functional materials has been increasing. A
possible application of 3D-printed scintillators is as a flow-through detector of radioactive
species in liquid media [24]. A metascintillator is another novel material concept, which
requires a dense solid material with multiple channels with diameters of about 100–200 µm.
This would serve as a heavy host, which should contain a fast component, e.g., in the form
of nanoparticles [25–27]. It is essential to be able to try various geometrical host parameters
in the development stage, which makes 3D printing an even more suitable approach.

Fe-containing garnet compounds, such as the well-known Y3Fe5O12 (YIG), or more
complex oxides, such as Y3Al5−xFexO12 and Gd3Al5−xFexO12 [28–31], are a related group
of materials with various magnetic properties, which have applications in spintronics
and magneto-optics. Most applications imply a thin-film form for the materials [28], but
some compounds could have a polycrystalline form [29] for which 3D printing could be a
formation technique, creating new possible applications.

Various additive manufacturing techniques were used to produce transparent or
translucent garnet ceramics. Extrusion-based 3D printing and free sintering were used to
make transparent YAG in [32]. YAG/YAG:Nd all-ceramic composites, as well as YAG:Lu
and YAG:Gd ceramics, were fabricated by a combination of direct ink-writing, vacuum
sintering, and hot isostatic pressing, as described in [33].

One of the most frequently developed methods of 3D printing that is suitable for
mass application, stereolithography, provides one of the best spatial resolutions, with an
acceptable building speed. Routine printers allow for a voxel (a minimal building volume,
3D pixels) lateral size in the range of 30–80 µm and a height in the range of 10–100 µm.
The high spatial resolution of the fabricated object is an important requirement for such
applications, as mentioned above. It should be noted that the practically achievable geo-
metrical element size that could be built using this technique contains several voxels. The
stereolithography method consists of the layer-by-layer polymerization of a photocurable
slurry, as a result of its illumination with UV light according to a desired pattern, leading
to layer-by-layer object formation. During the digital light processing (DLP) modification
of the method, which is applied in this work, the source of light is a digital UV projector.
To form a ceramic green body, the compound should contain the desired source powder,
i.e., a slurry with a high powder load should be prepared, based on a photopolymerizable
binder [34]. Oxide powders always scatter a projector’s light, which influences the printing
process; however, tuning the printing conditions and the slurry composition can achieve
results close to those that could be achieved by printing purely with plastic [21,35–37].
Furthermore, powders with UV-excited luminescence or an absorption band in that region
may partially absorb the light. One may expect this to significantly influence the volume
and dynamics of the curing process, thus affecting the printing.

This problem has only been tackled in a few publications [38–43]. Adding yellow
and red pigments of Pr- and Fe-doped ZrSiO4, respectively, to a zirconia-based slurry,
leads to a decrease in cure depth and excessive width; as a result, exposure had to be
increased in order to successfully print colored articles [38]. The authors of [39] report
that adding CoCl2 to an alumina-doped zirconia slurry led to an improvement in DLP-
printed green bodies and ceramics; however, this was not directly linked to the slurry
coloring. Ceria-stabilized zirconia-based composites were recently printed by laser [40] and
DLP stereolithography [41,42]. Ceria-doped zirconia was shown to display a significant
absorbance at 340–405 nm [40–42], which could be overcome by choosing the illumination
wavelength [36] or preparation of a special slurry formulation [42]. A recent paper reported
on the dependence of a polymerized layer thickness vs. laser power (wavelength not
specified) for SLA-printing from ZrO2-based slurries, colored by additions of Co3O4,
Ce2O3, and Er2O3 [43]. With the increase in the colorant content, a higher laser power was
required to achieve the same curing depth.
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Several works deal with luminescent garnets fabricated by stereolithographic methods.
YAG:Yb laser ceramics were demonstrated using stereolithography and free sintering (SiO2
was added as a sintering aid) [44]; it should be noted that both the absorption and emission
of YAG:Yb are in the IR region [45], so they are not supposed to influence the printing
process. The authors of [46] used two-phonon stereolithography to create micron-resolution
YAG:Nd objects with laser properties. Although YAG:Nd has absorption bands in the
near-UV region [47], the printing ink contained chlorides of the elements constituting the
abovementioned work, and there was no luminescent garnet phase. Ce-doped garnets have
broad absorption bands in near-UV and blue spectral regions [2]; nevertheless, a YAG:Ce
scintillator was fabricated using DLP stereolithography, and its properties were no worse
than those of the compound obtained using classical routes [48]. The use of laser SLA
stereolithography for the production of YAG:Ce/Al2O3 ceramics was demonstrated in [49].
However, the positions of absorption bands depend on the exact composition of the garnet,
since Ce3+ luminescence properties are strongly influenced by its local surroundings [50].
Therefore, the GAGG:Ce slurry was expected to perform differently, and this was studied
in the current work. Tb-doped GAGG powder was used as another potentially interesting
printing material with narrow absorption bands in the UV region.

High-quality powder is an important prerequisite for high-density ceramics. A copre-
cipitation approach was chosen in this work. This was proven to yield high-quality garnet
powders, which could be sintered to transparency if the synthesis conditions are properly
optimized [51,52]. Homogeneous precipitation was chosen as an alternative approach,
allowing for the production of powder with low agglomeration and high sinterability [53].

We studied the photopolymerization behaviors of slurries based on two promising
scintillator compositions, GAGG:Ce and GAGG:Tb, as well as YAG:Ce, as a well-known
material. The starting powders were synthesized in-house using different techniques. The
DLP 3D-printing method was used to shape the ceramics. This is one of the most widely
available techniques for a wide range of researchers. The powder properties’ influence on
the printing process and results is reported.

2. Materials and Methods
2.1. Starting Materials

The powders of Gd2.988Ce0.012Al2Ga3O12 (GAGG:Ce) compositions were synthe-
sized by two approaches—coprecipitation (CP) and homogeneous precipitation (HP). The
Y3Al5O12 (YAG white), Y2.97Ce0.03Al5O12 (YAG:Ce), Gd2.97Ce0.03Al2Ga3O12 (GAGG:Ce+),
Gd2.88Tb0.12Al2Ga3O12 and Gd3Al2Ga3O12 (GGAG white) powders were synthesized using
only the coprecipitation method. Powder synthesis, following the CP approach, included
the preparation of a nitrate solution, containing all the necessary elements, with a total
metal ion concentration of 1 mol/L. This was slowly added to an ammonium hydrogen
carbonate (NH4HCO3) solution (pH was maintained at 6.9–7.0 to ensure full precipitation),
before filtering and calcining the precipitate that was formed. Some additional synthesis
details are given in [54]. The homogeneous precipitation approach was adopted from [53]
and included the preparation of a nitrate solution with all metal ions at a total concentration
of 0.05 mol/L, where ammonium sulfate ((NH4)2SO4) was added to a concentration of
0.06 mol/L, and carbamide ((NH2)2CO) with a 40-fold molar excess relative to metal ions.
Then, the reaction volume was held at 90 ◦C for 5 h and cooled down; the pH of the
resulting suspension was approximately 7.5. After the synthesis, the powders were cal-
cined at temperatures of 1200–1300 ◦C, depending on the composition and synthesis route.
Finally, the powders were milled in a planetary ball mill (Retsch, PM100), using alumina
jars and balls, in pure isopropyl alcohol for 60 min. Powder abbreviations, compositions,
and calcining temperatures are given in Table 1.
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Table 1. Powders used in this study.

Abbreviation Synthesis Approach Composition Calcining Temperature (◦C)

YAG white Coprecipitation Y3Al5O12 1300
YAG:Ce CP Coprecipitation Y2.97Ce0.03Al5O12 1300

GAGG:Ce 1200 HP Homogeneous precipitation Gd2.988Ce0.012Al2Ga3O12 1200
GAGG:Ce 1300 HP Homogeneous precipitation Gd2.988Ce0.012Al2Ga3O12 1300

GAGG:Ce CP Coprecipitation Gd2.988Ce0.012Al2Ga3O12 1200
GAGG:Ce+ CP Coprecipitation Gd2.97Ce0.03Al2Ga3O12 1200
GAGG:Tb CP Coprecipitation Gd2.88Tb0.12Al2Ga3O12 1200
GAGG white Coprecipitation Gd3Al2Ga3O12 1200

All powders had good sinterability. This was tested by creating a cylindrical pellet
from each powder with a diameter of 20 mm and height of 1 mm by dry uniaxial pressing
at 64 Mpa, followed by sintering at 1600 ◦C in air. The relative green density of such pellets
was around 50% and that of sintered ceramics was no lower than 97%.

2.2. Slurry Preparation and 3D Printing

1,6-Hexanediol diacrylate (HDDA, 80%, Sigma-Aldrich, St. Louis, MI, USA) was used
as a reactive binder. This is a widely used monomer for the formation of stereolithography-
based ceramics due to its low viscosity and acceptable curing kinetics [34]. UV-photoinitiator
TPO-L (BASF, Ludwigshafen, Germany), with 1 wt.% of HDDA, was added to enable rad-
ical polymerization. BYK w9010 (BYK-Chemie GmbH, Wesel, Germany) was used as a
colorless rheological additive with a dosage of ~2 mg/m2 [36]. The slurries were prepared
by mixing all organic components and subsequently adding one of the powders in small
portions up to a load of 30 vol.%.

The viscosity measurements were performed using a Physica MCR-52 rheometer
(Anton Paar, Graz, Austria) in a shear rate range from 1 to 200 s−1 and a parallel-plate
geometry of 20.0 ◦C. The disk diameter was 25 mm, and the gap was 0.5 mm.

Three-dimensional printing, as well as polymerization depth measurements, were
performed using an Ember DLP 3D printer (Autodesk, Mill Valley, CA, USA) at ambient
room conditions, with a temperature of 22–26 ◦C and humidity of 20–35%. The illumination
spectrum of the printer’s projector ranged from 385 to 425 nm, peaking at 405 nm. Its
radiation power was measured with UV-light-meter Model 222 (G&R Labs, Santa Clara,
CA, USA) and amounted to 16.5 mW/cm2. The nominal in-plane resolution of the 3D
printer was 50 µm [35–37].

Two main 3D models were used in this work. The first one was a thin-wall tube with
holes of about 400 µm [36]. Its size was 3.8 × 3.8 × 6.0 mm. The second one was a flat
net-shaped body with a size of 12.25 × 13.00 × 1.0 mm. This was designed using the
FreeCAD software ver. 0.17 (see the .stl file in File S1).

Debinding of the green bodies was performed by continuously heating them to 550 ◦C
at a rate of 1 ◦C/min in air. Ceramics were sintered at either 1600 ◦C for 2 h in air or
at 1650 ◦C for 4 h in oxygen flow in chamber LHT 02/17 (Nabertherm) and tube RHTH
80-300/18 (Nabertherm) furnaces, respectively.

2.3. Characterization Techniques

The phase compositions of the powders were examined using X-ray powder diffrac-
tion on a D2 Phaser (Bruker, Billerica, MA, USA), with CuKα1,2 radiation. Particle size
distributions were measured using laser diffraction on a MasterSizer 2000 (Malvern, PA,
USA) with a water-filled dispersing unit Hydro G (see Supplementary Materials for details).
The specific surface values of the powders were determined according to the capillary nitro-
gen condensation method using BET model values on NOVAtouch NT LX (Quantachrome
Instruments, Anton Paar Group, Graz, Austria). The powder particles’ morphology and
ceramics’ cross-sections were studied using a JSM 7100F (Jeol, Japan) scanning electron mi-
croscope in secondary electron mode at an accelerating voltage of 10 kV. Low-magnification
images of the green bodies and sintered ceramics were taken by SEM SU1510 (Hitachi,
Japan) in secondary electrons and in back-scattering mode at 3–7 kV. Photographs of the
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green bodies and ceramics were obtained by the microscopes MET 5C and SM0745 (Altami
Ltd., St. Petersburg, Russia).

The thermogravimetry and differential heat flow (DSC) of the cured powder-loaded
slurries were performed using SDT Q600 (TA Instruments, New Castle, DE, USA) at a
constant heating rate of 2.5 ◦C/min, from room temperature to 550 ◦C with airflow.

Steady-state photoluminescence emission and excitation spectra were measured using
Fluorat-02-Panorama (Lumex, St. Petersburg, Russia) spectrofluorimeter with a xenon
lamp light source and optical fiber measurement attachment for powders. Scintillation
light yield was measured using photomultiplier R 1828-01 (Hamamatsu, Japan) coupled
with signal processing equipment of NIM standard (ORTEC, Atlanta, GA, USA). Pulse
height spectra of 137Cs source of 662 keV gamma-quanta were taken with the measured
samples, as well as with a reference GAGG:Ce single crystal (JCS Fomos-Materials) with a
light yield of 28.5 kph/MeV.

3. Results and Discussion

SEM images of the powders are given in Figure 1. One can see that the powders
synthesized via co-precipitation have crystallites with sizes of about 100–150 nm, and the
powders synthesized via homogeneous precipitation were in the range 200–1500 nm, with
a large fraction of particles >1 µm. All the powders contained dominant cubic garnet
phases, PDF # 46-0448 for GAGG and PDF # 33-0040 for YAG, according to the X-ray
powder diffraction (see Supplementary Materials, Figure S1). Both the GAGG HP powders
contained an impurity phase of Gd3GaO6 (PDF # 89-6631) or some isostructural Gd3GaO6-
based solid solution, and all the CP powders were phase-pure.
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The powders’ specific surface values (BET) and the characteristic percentile values
for their particle size distributions are given in Table 2. The mean primary particle sizes
of the CP powders, estimated using their specific surface values, were within the range
150–200 nm (assuming a spherical shape of the particles), which corresponds to the SEM
observations. The same estimation for the HP powders leads to values of 200–300 nm,
which is smaller than the size observed by SEM. A possible reason for this difference is the
internal porosity of the HP powders. Particle size distributions for the CP powders contain
two fractions according to a laser diffraction of about 100–150 nm (primary particles) and
about 1 µm (agglomerates). The HP powders’ distributions contain a single peak near
1 µm with a broad distribution, possibly corresponding to primary particles. All the CP
powders have d90 values below 1.2 µm (i.e., 90% of the particles or aggregates are smaller
than this value), and the HP powders are below 2.5 µm. Particle size distributions are given
in Figure S2 of the Supplementary Materials.

Table 2. Specific surface areas and percentile values of particle size distributions for the powders
used in this study.

Powder BET Specific Surface, m2/g d10, µm d50, µm d90, µm

YAG white 9.7 0.11 0.19 0.88
YAG:Ce CP 10 0.11 0.18 0.64

GAGG:Ce 1200 HP 5.2 0.46 1.00 2.10
GAGG:Ce 1300 HP 3.6 0.65 1.22 2.27

GAGG:Ce CP 7.3 0.10 0.18 1.00
GAGG:Ce+ CP 4.3 0.10 0.16 0.36
GAGG:Tb CP 8.2 0.11 0.35 1.21
GAGG white — 0.10 0.34 1.06
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Photoluminescence excitation spectra of Ce-doped GAGG powders show strong
absorption bands, with maxima at 345 and 445 nm (Figure 2). Most of this light is re-emitted
at higher wavelengths, but the emission bands for these powders are in the 470–600 nm
range, which is beyond the absorption band of the TPO-L photoinitiator. Therefore, the
absorbed light does not contribute to photopolymerization. A 405 nm LED emission
spectrum, like the one that is used as a light source in an Ember 3D printer, is also shown
in the figure. One can see that although the 460 nm YAG:Ce excitation band has a higher
peak intensity, GAGG:Ce bands have a larger overlap with the LED emission spectrum,
as well as with the absorption spectrum of TPO-L. However, the excitation spectrum of
GAGG:Tb powder does not overlap with the LED emission spectrum at all.
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Figure 2. (a) Photoluminescence excitation and emission spectra for YAG:Ce, GAGG:Ce, and
GAGG:Tb, all normalized by the most intensive peak. (b) Photoluminescence excitation spectra
for GAGG:Ce, YAG:Ce, and GAGG:Tb powders, as measured, with corresponding synthesis routes
and thermal treatment temperatures specified. TPO-L absorption spectrum (adapted from [55]) and
typical 405 nm LED spectrum are given in arbitrary intensity scales related to the powder’s spectra.

Photopolymerization curves are given in Figure 3. One can see that the undoped
powders fabricated by coprecipitation, both YAG white and GAGG white, as well as the
GAGG:Tb CP powder, have shown close polymerization thicknesses at an equivalent
dose, with the highest results among the studied powders. The slight difference between
the polymerization curves for suspensions with white YAG and GAGG powders can be
explained by their different densities (4.56 g/cm3 for YAG versus 6.63 g/cm3 for GAGG)
and different refractive indexes (n405 = 1.78 for YAG versus n405 = 1.95 for GAGG). The
penetration depth, Dp, and critical energy dose, Ec, of the slurries with different powders
were calculated based on the Jacobs Equation (1), derived from the Beer–Lamber law, and
are given in Table 3. Cp stands for curing depth at a given dose.

Cp = Dp ln (E/Ec) (1)

The doping of YAG by 0.03 formula units (f.u.) of Ce and doping of GAGG by 0.012 f.u.
of Ce caused a decrease in a polymerized layer thickness. Additional GAGG:Ce+ CP
coprecipitated powder, containing 0.03 f.u. of Ce (all the other characteristics were close to
the other GAGG:Ce CP powders), was tested; this caused a further decrease in polymerized
layer thickness (Figure 3b). Among the Ce-doped powders, the polymerizability decreases
with the increase in excitation band intensity in the row GAGG:Ce 1200 HP, GAGG:Ce
1300 HP, GAGG:Ce CP. This correlates with the fact that the garnet phase is formed at
higher temperatures in homogeneously precipitated powders, as evidenced by XRD.
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Table 3. Calculated penetration depth (Dp) and critical energy (Ec) of HDDA/w9010/TPO-L slurries
with 30 vol.% of different powders.

Powder Dp (µm) Ec (mJ/cm2) R2

YAG white 81 (16) 17 (7) 0.96
YAG:Ce CP 37 (3) 5 (1) 0.99

GAGG:Ce 1200 HP 86 (13) 24 (6) 0.98
GAGG:Ce 1300 HP 51 (1) 14 (1) 0.99

GAGG:Ce CP 63 (6) 26 (4) 0.99
GAGG:Tb CP 118 (13) 30 (5) 0.97
GAGG white 118 (4) 33 (1) 0.99

The polymerization depth of a slurry depends on the organic binder, viscosity, powder
load, particle size distribution, and residual gas caught inside the slurry [21,34–37]. How-
ever, if both the organic constituents and preparation technique are unified, the main factor
causing different slurry behaviors is the filling powder. The powder can either scatter or
absorb light in a suspension during the photopolymerization process. The light scattering
is mostly determined by the microstructure, particle size distribution, and differences in
the refractive indexes of the powder and the resin. These factors were equal or close for the
powders under study. Therefore, the powders’ luminescent properties are the main factors
influencing the slurries’ properties.

All suspensions in this work had viscosities in the close range of 0.3–0.5 Pa·s at 50 s−1.
This value is sufficiently low to provide a good slurry flow, which is suitable for printing on
machines with the simplest designs. The representative viscosity and shear stress curves
are given in the Supplementary Materials (Figure S3).

A net-shaped tube element was chosen as the model printing object to study how a
starting powder influences the available printing conditions. The green bodies were printed,
debinded, and sintered; exemplary stereomicroscopic images are given in Figure 4. The
thermal decomposition of polymerized organic binder in the green bodies was typical for
acrylate-based polymers and took place below 500 ◦C. Representative thermogravimetry
curves are given in the Supplementary Materials (Figure S4). The debinding behaviors of
GAGG:Ce CP and YAG:Ce are generally similar; however, a slight difference was observed
in white (undoped and Tb-doped) powders. The small printing volumes allowed us to use
a simplified binder burnout regime. The densities of all YAG ceramics (3D-printed and
pellets) were no less than 4.4 g/cm3, and GAGG was no less than 6.5 g/cm3. The grain
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sizes of the ceramics were in the range of 1–2 µm, and the samples contained few pores; a
typical cross-section is presented in Figure S5 of the Supplementary Materials.
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fabricated on a 25 µm layer.

YAG:Ce ceramic tablets (~1 mm thick) after sintering in both air and oxygen atmo-
spheres are opaque. Tablets of GAGG:Ce ceramics are barely transparent after sintering in
air; however, in an oxygen atmosphere, the transparency clearly improves and the total
transmittance reaches 47%. This difference in the behavior of the garnet ceramics of two
compositions can be explained by the different melting points of YAG:Ce and GAGG:Ce
(1970 ◦C vs. 1850 ◦C, respectively).

Both the YAG:Ce and GAGG:Ce ceramics obtained by 3D printing are opaque, perhaps
due to the relatively low filling in the green bodies (~30 vol.% vs. 50 vol.% for pressed
tablets). Thus, one way to increase ceramics’ transparency could be an increase in garnet
powder load of a suspension to at least 45–50 vol.%. This may require the use of more
reactive monomer(s) or/and UV photoinitiator(s) [42].

The different curing doses required for layer polymerization mean that longer expo-
sition times are needed for each layer. This practically limits the printing layer thickness,
as the long exposition times needed for DLP printing led to printed objects sticking to the
bottom window of the printing vat, which is made of polydimethylsiloxane and covered
with a FEP film. This causes either damage to the printed object or the quick degradation of
the vat window. At the same time, too thin a printing layer, for example, 10 µm, increases
the requirements for the printer’s precise mechanical alignment, which makes the forma-
tion process less stable. The doses required for printing with slurries containing various
powders were estimated based on the printing results and are summarized in Table 4.
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Table 4. Values of the minimum irradiation doses (in mJ/cm2) necessary to polymerize a given layer
of a suspension with various fillers.

Layer Thickness Powder

YAG:Ce CP YAG white GAGG:Ce 1200 HP GAGG:Ce 1300 HP

25 µm — — — Dose:50
50 µm Dose: 50 — Dose: 80 Dose:75
75 µm Dose: 120 — Dose: 130 Dose: 110
100 µm Printing unavailable Dose: 90 Dose: 145 Dose: 160

Layer Thickness Powder

GAGG:Ce CP GAGG:Ce+ CP GAGG:Tb CP GAGG white

25 µm Dose: 80 Dose: 130 Dose: 56 —
50 µm Dose: 100 Printing unavailable Dose: 70 —
75 µm Dose: 140 Printing unavailable Dose: 80 —
100 µm Dose: 190 Printing unavailable Dose: 110 Dose: 110

The larger the overlap between a photoluminescence excitation peak in a powder and
the LED emission band, the higher the required illumination dose and the thinner the layer
available for printing. Slurries based on undoped powders allow for the use of 100 µm
layers or printing. High-quality ceramics can be obtained at a layer thickness of 100 µm from
GAGG:Tb and GAGG:Ce CP powders, as well as from the HP powders. The thickest printing
layer available for YAG:Ce (0.03 f.u. Ce) poweder was 75 µm, and 25 µm was the maximum
thickness for GAGG:Ce+ CP (0.03 f.u. Ce) powder. SEM images of green bodies and ceramics
fabricated with printing layers of 50 µm and 100 µm are given in Figures 5 and 6.
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Stereolithography printing includes stages of slurry illumination (their duration is
determined by the required illumination dose) and mechanical movement of the object
being printed to allow for fresh building material to access the printing area. The latter
stage takes time and is the main source of possible defects in printed objects (interlayer
delamination, bubbles, etc.). Thus, a thicker printing layer allows for a faster and more
reliable process when surface finish and fine details are not crucial.

According to the printing results, most green bodies did not show any cracks or
delamination. However, after debinding and sintering, some of the samples printed with
layer thicknesses of 25 and 50 µm had occasional defects. Overexposure to UV light or a
non-optimized debinding process may have caused severe delamination in YAG white and
GAGG white samples.

Model 1 is a relatively simple object to print due to its small cross-section. After optimizing
the printing conditions, Model 2 was printed (Figure 7). This was more complicated due its
increased cross-section, which means that it stuck more to the vat bottom during printing
and required strong bonding to a building platform. Scintillation light yield was measured
for this ceramic object and for a reference sample, comprising a flat tablet created using the
same powder (Figure 8). Both ceramic samples demonstrated a similar scintillation light yield
and were equal about half the value of a single crystal, i.e., ~14.2 kph/MeV. It is important
to note that the scintillation light yield of a 3D-printed garnet ceramics was not inferior to
that measured for a flat tablet, despite the fact that a phosphine-oxide photoinitiator and a
phosphorus-containing rheological additive were used to create the former.
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To test the printing conditions, additional models were printed from GAGG:Ce CP
powders, forming orthogonal meshes with different cell sizes. The optical microscopy of
the sintered ceramics samples with a wall thickness of ~200 µm and lattice period either
200 µm or 1 mm is presented in Figure S6 of the Supplementary Materials.

Thus, we demonstrated that the formation of GAGG:Ce scintillation ceramics using a
desktop DLP 3D printer with a wavelength of 405 nm is possible (with a few limitations).
A relatively low suspension solid load of 30 vol.% was chosen to compare all the powders
under identical conditions. The maximum powder content varied across the used powders
while maintaining an acceptable slurry viscosity because they had different morphologies
and specific surface areas; the maximum content ranged up to 35 vol.%. A further increase in
solid load could be achieved in three ways: (1) choosing powders with low specific surface
area and uniform, sphere-like particles; (2) further testing and selecting dispersant(s) and
polymerizable binder composition; (3) using a thicker slurry consistency (paste-like); however,
the latter will require a different printer construction. A higher solid load, in its turn, could
influence photopolymerization. From our results and previous experience, undoped or Tb-
doped garnets could be printed from a 50 vol.% slurry, as the required illumination doses
are far from marginal for 30 vol.% slurries. Another way to improve the photopolymerizing
ability, if needed, is using more reactive mixtures of monomers and photoinitiators.

The use of printers with different illumination wavelengths could be considered. We
believe that printing with Ce3+-activated garnet powders (GAGG:Ce and YAG:Ce) using a
commercial Lithoz 3D printer (working wavelength of 460 nm) will likely be difficult due
to the strong absorption. Laser-based industrial SLA printers, e.g., Ceramaker 3DCeram,
with a curing laser wavelength of 355 nm, may also have problems with cerium-doped
powders [43]. Machines with a near-UV of 365 or 385 nm as a light source are probably
better-suited to the printing of Ce3+-activated garnet powder suspensions, as they fall
within the narrow window of UV transparency for these garnets.

4. Conclusions

GAGG:Ce and GAGG:Tb ceramic net-shaped objects with submillimeter features—a
wall thickness of 200–400 µm and round holes of 200–700 µm—were fabricated using
DLP 3D-printing. It was shown that the luminescent properties of the starting powders,
namely, the overlap of photoluminescence excitation band(s) with the 3D printer light
source emission, are a detrimental factor in curing dynamics, which limits the available
printing regimes. Therefore, thicker layers of YAG:Ce could be printed compared to
GAGG:Ce with equivalent dopant concentrations. Powders obtained by homogeneous
precipitation had a lower photoluminescence excitation band intensity and required a
lower illumination dose to be printed with a given layer thickness compared to powders,
synthesized by co-precipitation. To find a wide range of available printing parameters
to obtain luminescent ceramics using DLP, one should either choose a printer with an
appropriate light source, which does not overlap with powder absorption bands, or use
powders with underdeveloped luminescent properties.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/ceramics6010004/s1, File S1—file honeycombs.stl with a 3D model
used in this work; File S2—Figure S1: XRD patterns of the powders used in the work. Figure S2:
Particle size distributions of the powders used in the work. Figure S3: Viscosity and shear stress
vs. shear rate for the typical slurry used in the work. Figure S4: TG, DTG and DSC curves of the
cured composites. Figure S5: SEM images of the cross-section of a typical 3D-printed ceramic sample.
Figure S6: Optical microscopy images of sintered ceramics of additional printed geometries.
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