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Abstract: Glass-ceramic nanopowder with a composition of 55SiO2-35CaO-10MgO (mol %) was syn-
thesized by the sol–gel method and was heat treated at three temperatures (T1 = 835 ◦C, T2 = 1000 ◦C,
T3 = 1100 ◦C) in order to obtain different materials (C1, C2, C3, respectively) varying in crystal struc-
ture. Bioactivity and oxidative stress were evaluated in simulated body fluid (SBF) for various time
periods (up to 10 days). The structure of the synthesized materials and their apatite-forming ability
were investigated by X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR),
Scanning Electron Microscopy and Energy Dispersive Spectroscopy (SEM/EDS). The antibacterial
properties of the synthesized materials were evaluated against three Gram-positive and four Gram-
negative bacterial strains and their biocompatibility was verified on a primary cell line of human
gingival fibroblasts (HGFs) by the MTT (3-[4, 5-dimethylthiazol-2-yl]-2, 5 diphenyl tetrazolium
bromide) assay. The crystallization of the materials was increased by sintering temperature. Heat
treatment did not inhibit the bioactive behavior of the materials as apatite formation started after
3 days in SBF. C2, C3 showed some indications of apatite forming even from the first day. Regarding
cell viability, a variety of biological behaviors, concerning both dose and time points, was observed
between the positive control and the tested materials by both the MTT assay and oxidative stress
analysis. In conclusion, the nanobioceramic materials of this study possess a multitude of attractive
physicochemical and biological properties that make them suitable candidates for bone regeneration
applications, fillers in nanocomposite scaffolds, or as grafts in bone cavities and periodontal lesions.

Keywords: silica-based nanoparticles; bioactivity assay; oxidative stress; antibacterial properties;
biocompatibility assay; human gingival fibroblast (HGFs)

1. Introduction

Bioactive ceramics and glass-ceramics are a unique group of synthetic materials that
react with biological fluids, presenting enhanced capability of biointegration [1–6]. Nu-
merous studies, both in vitro and in vivo, have demonstrated the ability of these mate-
rials to bond with living tissues, especially bone, through the development of a surface
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apatite layer [7–13]. Their physical, chemical, biological, and mechanical properties are
of paramount importance and determine their suitability for various biomedical applica-
tions [14–19], for example, in bone regeneration and dentine bonding of root filling materials.

Bioceramic nanoparticles have attracted the interest of the scientific community be-
cause of their advantages and attractive properties, including high surface area, green
catalytic capability, green adsorbents capability, targeted drug delivery potential, and non-
hemolytic or even antibacterial properties [20–26]. There is a growing body of literature
aiming to evaluate the toxicity of nanomaterials and correlate it with specific nanoparticle
properties. The biocompatibility and cytotoxicity of biomaterials are key issues that must
be addressed at a pre-clinical stage, before biomedical applications [27–30]. Research has
shown that the smaller the size of the bioactive glass particles (nanoparticles), the higher
their bioactivity and the more suitable they are for biomedical applications. However,
different types of silica-based nanomaterials, such as fumed silica, non-porous silica, and
porous silica materials, have different cytotoxicity responses, with the last ones exhibiting
the lowest values in a broad range of cell types [31–38].

The results of recent in vivo studies with bioactive glass nanoparticles indicated that
these materials do not produce toxic shock or systemic toxicity and inflammation, and
exhibit antimicrobial properties [21,39–42]. One of the most common tests for the evaluation
of biological responses, according to ISO 10993, is the in vitro test of cellular toxicity. Many
research groups characterize cell cytotoxicity as the initial step in determining whether or
not a material’s biocompatibility is achieved [33,43,44].

Bioactive glass-ceramics can be synthesized with either melt-derived or sol–gel meth-
ods. The sol–gel method is commonly used for the synthesis of ceramic nanoparticles.
It is an inorganic polymerization reaction based on a dual hydrolysis/polycondensation
mechanism that can be accordingly modulated for the desired result. The process involves
the use of alkoxide precursors diluted in a solvent (i.e., alcohol) in the presence of water.
By monitoring the basic parameters affecting the formation of nanoparticles, such as the
H2O/alkoxide ratio, sintering temperature and time, aging temperature, and drying condi-
tions, it is possible to produce either a sol having a colloidal nanoparticle dispersion or a gel
where the macromolecule that spreads throughout its volume is formed [17,45–47]. This
method results in materials with high surface area, which is correlated with an increase in
the growth rate of apatite layer and better bioactivity.

There are two dominant categories in ceramic biomaterials, calcium-phosphate ceram-
ics, and calcium-silicate ceramics, which have comparable biological properties. Calcium-
silicate ceramics have shown higher bioactivity than calcium phosphates and fast apatite-
forming ability [48,49]. They have also been associated with enhanced proliferation and
differentiation of various cell types [50,51]. Although calcium silicates have similar proper-
ties to calcium-phosphate ceramics, they are more soluble, which causes cell death through
significant increase in pH and alkaline-induced toxicity [52,53].

Magnesium—an important trace element of bone and extracellular matrix (ECM)—is
closely linked to cellular differentiation and calcification of hard tissues and it also has
an indirect effect on metabolism. The addition of magnesium to calcium-silicate systems
affects their mechanical properties, reduces pH, accelerates bone formation, directly stimu-
lates osteoblast proliferation, and enhances cellular differentiation [54–57]. Consequently,
calcium-silicate nanomaterials containing Mg possess superior mechanical properties, en-
hance bone formation, and lead to higher expression of osteogenic differentiation gene
markers [58–65].

The objective of the present study was to synthesize bioceramic nanomaterials in
the ternary SiO2-CaO-MgO system through the sol–gel method and to evaluate their
in vitro bioactivity, biocompatibility, and antibacterial properties after thermal treatment at
various temperatures.
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2. Materials and Methods
2.1. Glass-Ceramic Synthesis of Bioceramic Nanopowder

In the present study, the Stöber-based sol–gel method that was developed for the
synthesis of silica nanoparticles was used to synthesize a bioceramic nanopowder of the
composition 55SiO2-35CaO-10MgO (in mol %) by an acid-based catalyzed hydrolysis
of TEOS [66–70]. In brief, silicon oxide in the form of tetraethyl orthosilicate (TEOS)
solution was added in a mixture of d.d.H2O, ethanol and 2M nitric acid (HNO3). Then,
while maintaining continuous magnetic stirring at 400 rpm and after the completion of
the hydrolysis of TEOS, the remaining reagent-soluble calcium and magnesium nitrates
(Ca(NO3)2·4H2O, Mg (NO3)2·6H2O) were added in the mixture. Mechanical stirring was
applied for 1 h at room temperature, and then the beaker containing the mixture was
placed in a conventional ultrasonic bath, whereupon the 2M ammonia solution was added
dropwise, at a rate of 1 mL/min. Gelation was achieved at around 14 h after the addition of
ammonia by the conversion of the solvent to a soft gel. The mixture was dried at 75 ◦C for
2 days to complete the aging stage and receive a dry gel. In order to decompose the formed
agglomerates, the synthesized material was subjected to wet mechanical ball milling after
the sintering process [71–77]. The milled material was then dried in a low temperature
oven at 30–40 ◦C and stored in a desiccator.

2.2. Morphological and Structural Characterization of Synthesized Bioceramic Nanopowder
2.2.1. Differential Thermal and Thermogravimetric Analysis (TG-DTA)

The thermal behavior and properties of the synthesized powder were analyzed using
differential thermal analysis and thermogravimetric analysis (TG-DTA). A quantity of
36.5 mg of the initial nanopowder was heated from 26 ◦C to 1380 ◦C with a heating rate of
10 ◦C/min, using a Setaram SETSYS 16/18 (1750 ◦C rod) device. All measurements were
performed in alumina crucibles and under air flow (50 mL/min).

Based on the results of the thermal analysis performed after the aging stage, and,
in particular, on the characteristic crystallization temperature (Tc), glass transition tem-
perature (Tg), and peak temperature (Tc, pk), the initial powder was divided into three
isomeric quantities, and each one was heated to a different temperature in the region of
800–1100 ◦C [78]. The three temperatures selected for further study were: 835 ◦C (C1),
which corresponds to the beginning of the crystallization process, 1000 ◦C (C2), which
corresponds to the end of the crystallization process, and 1100 ◦C (C3), which corresponds
to the temperature where the ternary system exhibits no further crystallization. All the
samples were heated from room temperature with a heating rate of 10 ◦C/min under air
and then allowed to cool to room temperature.

2.2.2. Structural Characterization

The synthesized materials were in the nanoscale level as evidenced by Dynamic Light
Scattering (DLS) measurements [66]. Structural characterization of the synthesized bioce-
ramic nanopowder was carried out by X-ray diffractometry (XRD) and Fourier transform
infrared spectroscopy (FTIR), while their morphology was evaluated with Scanning Elec-
tron Microscopy and Energy Dispersive Spectroscopy (SEM-EDS). All the FTIR spectra
were obtained with the KBr pellet technique using a Perkin-Elmer FTIR spectrometer,
model Spectrum 1000, in the MIR spectral region (4000–400 cm−1), with a resolution of
4 cm−1 and 32 scans. The XRD measurements were performed using a two-cycle Rigaku
Ultima+ X-ray diffractometer (operating at 40 kV/30 mA, with CuKα radiation, in Bragg–
Brentano geometry) and the operating conditions were: step 0.02◦, count 2.5 s/step, in the
angle range of 5–75◦. The XRD patterns were identified with JCPDS-ICDD. Open-source
FullProf Suite program (version January 2021) was used for the Rietveld analysis [79].
The morphological characterization and evaluation, and the stoichiometric composition
of the samples were evaluated with SEM-EDS using a JEOL electron microscope, model
JMS-6390LV, equipped with an Oxford INCA Energy Dispersive Spectroscope. For the
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microanalysis, the samples were coated with a carbon layer of about 200 Ǻ to achieve
conductivity of the materials under study.

2.3. In Vitro Apatite-Forming Ability in Simulated Body Fluid

The in vitro apatite-forming ability of the heat-treated bioceramic powders was evalu-
ated by immersion in a conventional simulated body fluid (c-SBF) under renewal condi-
tions [69,80]. The bioceramic powder mass to the liquid volume ratio of the solution was
constantly kept at 1.5 mg/mL [80]. The replacement of the SBF solution was performed 6 h
after the first immersion, then at 24 h (1 day) and then every other 2 days (0, 1, 3, 5, 7, and
10 days). All samples remained at a constant temperature of 37 ◦C in an incubator. After
each time point, the samples were centrifuged and dried in a low temperature incubator at
30–40 ◦C. All experiments were performed in triplicate.

2.4. Preparation of Cell Lines of Human Fibroblasts (Human Gingival Fibroblasts, HGFs)

Primary cultures of HGFs were established from gingiva biopsy of a healthy donor
during the extraction of premolars or third molars, after approval by the Ethical Committee
of the Institutional Review Board (#11/23 November 2017 Absence of inflammation and
root caries were the necessary conditions in order to perform the biopsy. More specifically,
small pieces (1–2 mm) of gingival tissue were placed in 25 cm2 culture flasks with Dul-
becco’s modified essential medium (DMEM, Biochrom, Cambridge, UK) supplemented
with 10% fetal bovine serum (FBS, GibcoBRL) and antibiotics/antimycotics (penicillin,
streptomycin, amphotericin B (GibcoBRL, Grand Island, NY, USA). Cell culture was per-
formed in a sterilized incubator at 37 ± 1 ◦C and 5% CO2, 95% atmospheric pressure,
and 100% humidity. When the flask became 80–90% confluent, cells were transported by
trypsinization (solution trypsin 0.25% 1 mM EDTA solution (GIBCO/Invitrogen)) to a
larger flask of 75 cm2. HGFs from 3rd to 6th passages were used.

Mitochondrial Activity—MTT Assay

In order to measure the cell viability, the indirect biocompatibility test of MTT (3-
(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) was performed. Eluates were
collected after 24 h incubation time with the nanoparticles at a concentration of 1 mg/mL
in Dulbecco’s minimal essential medium, DMEM. After centrifuging, the supernatant was
collected and passed through 0.22 µm filters. More specifically, cells of HGFs (3 × 104 cells
per well) were seeded in 96-well plates to allow cell attachment. After 24 h of cell culture,
DMEM was removed and replaced with eluates of the three tested materials at two con-
centrations (125 and 250 µg/mL). HGFs cultured in DMEM supplemented with FBS and
antibiotics served as positive control, while HGFs cultured in DMEM without FBS served
as negative control. Analysis of mitochondrial activity and thus cell proliferation was suc-
ceeded by measuring the mitochondrial dehydrogenase activity of living cells verified by
the capability of transforming the yellow tetrazolium salt into blue formazan crystals. After
1, 3 and 5 days, the culture medium was removed from each well, followed by washes with
PBS, and then DMEM was placed in each well. Following that, MTT solution was added
in each well (10% of the total volume per well) and 3 h incubation at 37 ◦C and 5% CO2
followed. After this period, the medium containing the MTT solution was discarded, and
the insoluble formazan was dissolved with dimethyl sulfoxide (DMSO). Cell viability was
evaluated by measurement of optical density with an ELISA-spectrophotometer (Epock,
Biotek) at double wavelength (at 540–630 nm). The experiments were performed in tripli-
cate. Statistical analyses were performed using Microsoft Excel 2007. Independent sample
t test was used to compare between means. In all statistical analysis, level of significance
(p-value) was set at α = 0.05. The level of statistical significance was 0.05 (p < 0.5).
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2.5. Antibacterial Assay

Seven bacteria were used in the experiments: Bacillus cereus, Staphylococcus aureus
ATCC 6538, Listeria monocytogenes Scott A, Escherichia coli O157:H7 (non-toxigenic) NCTC
12079, Salmonella enterica serovar Typhimurium, S. enterica serovar Enteritidis PT4, and
Pseudomonas aeruginosa. Cultures were resuscitated from frozen stocks by streaking onto
plate count agar (PCA) plates. To prepare cultures for the experiments, 10 mL of nutrient
broth (NB) was inoculated with bacterial culture from a PCA plate and incubated for
24 ± 2 h at 37 ◦C. A 100 µL aliquot of this culture was then used to inoculate fresh NB
(10 mL), which was then incubated for 24 ± 1 h at 37 ◦C. A 1 mL aliquot of this broth
culture was centrifuged at 13,000× g for 5 min and the supernatant discarded. The cell
pellet was resuspended in 1 mL Ringers diluent solution and the resulting suspension
diluted 1 in 10 with Ringers solution. The viable bacteria in the inocula were enumerated
by colony counting on PCA (37 ◦C, 24 h).

2.5.1. Growth Experiments

Growth experiments were carried out using a Bioscreen C instrument, which measures
optical density changes in liquid media in microtiter plate wells. Each well contained 120 µL
NB of 2.5× normal concentration (NB2.5), 150 µL 1 g/L test compound (control: sterile
distilled water), and 30 µL bacterial suspension (sterility control: sterile distilled water).
The final concentration of the antimicrobial compounds in the test wells was therefore
0.5 g/L. Plates were loaded into the Bioscreen C, which was set at 37 ◦C with optical density
measurements at 600 nm every 30 min for 24 h.

2.5.2. Statistical Data Analysis of the Bacterial Cultures

All experiments were performed in triplicate and repeated once, giving six replicates in
total. At the end of the experiment, the collected data were exported to Microsoft Excel for
processing. For each triplicate measurement, the data were adjusted for initial absorbance
by subtracting the mean of the time zero values from all measurements. Semi-log graphs
were plotted of optical density (OD) against time, the period of maximum exponential
growth was selected and the growth rate over the selected period was calculated using
the formula

Growth Rate =
ln(ODt2/ODt1)

t2 − t1
(1)

where t1 is the first time point of the selected exponential growth period and t2 is the last.
The growth rates of the controls and the test wells in each individual Bioscreen run were
normalized by dividing each individual value by the mean of the three control values. Data
from the different runs were then combined, and the normalized growth rates in the test
wells were compared with those in the control wells. Lag phases were approximated by
determining the time before an increase in absorbance (of at least 0.01 absorbance units)
was observed at the start of growth.

2.6. Fluorescence Analysis for the Detection of ROS Levels

For the detection of intracellular reactive oxygen species (ROS) levels generated during
cell culture with the eluates of nanobioceramics, we employed the cell-permeable ROS-
sensitive probe Dihydroethidium (DHE). Measurement of fluorescence was performed
on the supernatant received from cell culture wells before the addition of DMSO at each
time point (1, 3, and 5 days) at two concentrations (125 and 250 µg/mL) for the three
tested materials. The received supernatant from cell culture wells without tested materials
was used as control. For fluorescent measurements, an excitation wavelength of 480 nm
and emission wavelength of 576 nm were used. Oxidation of DHE 5 µM (incubated for
1 h) in supernatants was monitored by measurement of the fluorescence in 96-well black-
walled microplates (Corning®, Sigma Aldrich, Merck KGaA, Darmstadt, Germany) using a
TECAN Trading ASC Fluorescence Multimode Microplate Reader. The relative fluorescence
is expressed as “% maximal emission” as determined with the software “Magellan”.
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3. Results
3.1. Morphological and Structural Characterization of Synthesized Bioceramic Nanopowders
3.1.1. Thermogravimetric Results

The thermal behavior of the synthesized material is depicted in Figure 1.
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Figure 1. TG-DTA thermograph of the initial synthesized material.

The TG-DTA analysis performed on the material under study (Figure 1) showed a
total mass loss of 70% up to 835 ◦C, which occurred in four steps:

(a) 25–190 ◦C: Mass loss of about 31.6%, which was associated with an endothermic
peak at 142 ◦C. It was attributed to the loss of adsorbed water and the degradation of
HNO3. As reported in the literature, there are two forms of water “trapped” in the
crystalline cell structure of the sol–gel-based nanopowder when it is in the gel state:
the unbound water inside the gel structure and water [81–83].

(b) 190–333 ◦C: Mass loss of about 13%, which was associated with an endothermic peak
at 276 ◦C. It was attributed to incineration of organic residues of ethanol and ace-
tone [84]. In addition, in this temperature range, the decomposition of the chemically
adsorbed water was attributed to the decomposition of the polycondensation reaction.

(c) 333–640 ◦C: Mass loss of about 23.1%, associated with an endothermic peak at 560 ◦C.
According to the literature, it is attributed to the decomposition of calcium nitrate
tetrahydrate, which is first converted to anhydrous calcium nitrate Ca(NO3)2 (elimi-
nating H2O at about 350 ◦C) and then it decomposes into CaO and NO2 [85,86].

(d) 640–835 ◦C/1000 ◦C: Mass loss of 1.4% due to dehydroxylation [81,83], achieved
above 850 ◦C. When the viscous flow began and the hydroxyl groups reacted, the
particles came closer together on the surfaces of the gels, thereby eliminating the inner
pores and gaps. This was consistent with the Heat Flow curve, since there was no
indication of a decomposition process, while at the same time there was no significant
loss of mass at that particular temperature range and above.

The results of the above study showed a large mass loss (69%) up to 835 ◦C. This was
due to the fact that the thermal behavior of the material was measured after the aging



Ceramics 2021, 4 634

stage of 75 ◦C but before the drying stage (usually up to 750–800 ◦C). For this reason, the
material had “retained” large quantities of bound and unbound H2O, water vapor, gases,
nitrates, and other byproducts created during its preparation process, resulting in a greater
evaporation rate at 75 ◦C.

The Heat Flow curve showed a double exothermic peak, which started at 835 ◦C and
ended at about 970 ◦C, with the most intense one located at 945 ◦C. This double peak was
attributed to multiple crystallization mechanisms, such as these of enstatite, bredigite, and
wollastonite [87,88]. This was supported by the FTIR and XRD analysis of samples C2 and
C3, as discussed in the respective paragraph below. In addition, a low intensity exothermic
peak observed at 1053 ◦C was probably attributed to poor crystallization. Finally, at 1336 ◦C
an intense endothermic peak was observed with zero mass loss, which was attributed to
melting of the material. It is important to mention that no further mass loss was observed
from 835 ◦C (initiation of crystallization) until the end of the thermal measurements,
suggesting a material with stable structure, without significant mass fluctuations.

3.1.2. FTIR Analysis of Heat-Treated Bioceramic Materials

The obtained FTIR spectra before immersion in SBF are presented in Figure 2.
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All three materials, regardless of their heat treatment temperature, exhibited the
characteristic broad bands of silicate glass [89]. Specifically, the FTIR spectra of the studied
materials revealed two strong and broad bands at 1200–900 cm−1 with a shoulder at about
1220 cm−1—which were attributed to the asymmetric stretching vibrations of Si–O–Si [90]—
and at 580–400 cm−1—which were attributed to the rocking vibration of the O–Si–O
bond [91–94]. Additional common features in the FTIR spectra of the three materials were:
(a) a weak band at 1640 cm−1 and a wide one at 3600–3200 cm−1, which were mainly
associated with the bending and stretching vibrations of the O–H bond, respectively, owing
to the presence of moisture in the sample; (b) a weak band at 3780 cm−1, which was
attributed to a hydroxyl group of non-bridged silanoles (single silanols); and (c) a very
weak and wide band in the spectral area of 1500–1400 cm−1, which was attributed to the
asymmetric C–O stretching vibration of the CO3

−2 group.
The FTIR spectrum of C1 was attributed mainly to a silicate glass while the spectra

of C2 and C3 revealed new sharp bands that were indicative, as expected, of the creation
of crystalline phases. More specifically, for C1, except for the characteristic wide silica
bands, the weak bands at 930 and 470 cm−1 were indications of calcium and/or calcium-
magnesium silicate phases [58,95–97]. For C2, the main crystalline phase identified by the
FTIR spectrum was that of diopside (CaMg(Si2O6)), because of the bands at 958, 670 and
632 cm−1. Also, the bands at 690 and 745 cm−1 indicated the contribution of magnesium
silicate phases such as enstatite (MgSiO3). Finally, for C3, the main crystalline phase
identified was that of wollastonite (CaSiO3) owing to the bands at 896, 681, 642 and
565(shoulder) cm−1.

3.1.3. XRD Results

The XRD patterns are presented in Figure 3.
From the XRD patterns presented in Figure 3 we observed that there were differences

between the samples as they progressively turned from almost amorphous (C1) to more
crystalline (C2, C3). Concerning C1, except for the calcium siliceous phases, the Mg
incorporation into the silicate lattice was confirmed by the XRD peaks in those areas where
broad but characteristic peaks appeared. These peaks were attributed to diopside (#71-
1497), bredigite (#36-0399), calcium silicate (#33-0303, #45-0156), and calcium-magnesium
silicate (#34-1350, #89-1484). The diffraction pattern of C2 showed evidence of more
crystalline phases, such as diopside (#86-0932, #78-13, #76-0524), enstatite (#76-0524),
merwinite (#35-0591), hillebrandite (#42-0538), calcium-magnesium silicate (#34-1350, #34-
1216, #72-1498, #72-1499), and calcium silicate (#49-1672, #33-0303). Concerning C3, the
two main crystalline phases were those of wollastonite (#42-0547, #72-2297, #72-2284) and
bredigite (#36-0399). Moreover, as observed in the previous samples, there were more clear
indications of diopside (#83-1818, #71-1494), calcite (#83-1762), and magnesium silicate
(MgSiO3) (#34-1350, #87-2037), which again verified the incorporation of Mg in the calcium-
silicate network. The percentage of amorphous phases was calculated to be 78.5% for C1,
38.4% for C2 and 8.8% for C3. Some of the identified phases were not verified from the
FTIR analysis, as the synthesized materials consisted mainly of calcium-silicate compounds,
which presented a high overlapping in the MIR area.



Ceramics 2021, 4 636
Ceramics 2021, 4 FOR PEER REVIEW  9 
 

 

 
Figure 3. X-ray diffraction patterns of C1 (835 °C), C2 (1000 °C), and C3 (1100 °C) before the immer-
sion in SBF (0 day). 

3.2. In Vitro Apatite-Forming Ability in Simulated Body Fluid (SBF) 
The results of the FTIR analysis of the samples after immersion in SBF are presented 

in Figure 4. After the first day of immersion in SBF, the spectrum of C1 remained un-
changed, whereas the spectra of C2 and C3 exhibited a weak band at ~580 cm−1, indicating 

Figure 3. X-ray diffraction patterns of C1 (835 ◦C), C2 (1000 ◦C), and C3 (1100 ◦C) before the
immersion in SBF (0 day).



Ceramics 2021, 4 637

3.2. In Vitro Apatite-Forming Ability in Simulated Body Fluid (SBF)

The results of the FTIR analysis of the samples after immersion in SBF are presented in
Figure 4. After the first day of immersion in SBF, the spectrum of C1 remained unchanged,
whereas the spectra of C2 and C3 exhibited a weak band at ~580 cm−1, indicating the
formation of a precursor calcium-phosphate phase (Ca-P). After the third day of immersion,
the characteristic hydroxyapatite (HCAp) bands of bending vibration of phosphate group
at 604 and 566 cm−1 were revealed, while in all samples a new weak band at 800 cm−1 was
presented, attributed to the symmetrical stretching vibration of the Si–O–Si bond formed
by the condensation of silanol groups. The above characteristic bands, attributed to the
formation of HCAp, increased in intensity and became more distinct after increasing the
immersion time in SBF, indicating that the formation of HAp was time-dependent for all
samples. After 10 days of immersion, the sharpening and the shifting of the broad band
at 1100–900 cm−1, especially in the spectrum of C1, indicated the formation of a thick
HAp layer.

This was further confirmed by the following XRD patterns of the samples after their
immersion in SBF for 0, 3, 5, and 10 days (Figure 5), and SEM images collected after the
immersion in SBF for 0 day (Figure 6) and 3, 5, and 10 days (Figure 7). The gradual
intensity of the hydroxyapatite peaks—which increased at around 32◦ 2θ—was indicative
of its progressive formation on the surface of the samples, while its onset started at 72 h
for all nanobioceramics. After 72 h of immersion, the high amount of amorphous phase
was decreased in all the samples, while the HAp and calcium-phosphate percentage
calculated by Rietveld analysis increased. More specifically, concerning C3, all the identified
crystalline phases of calcite, magnesium silicate, diopside and wollastonite were gradually
decreased as hydroxyapatite crystallized. Hydroxyapatite percentages were 16.0% at the
3rd day of immersion, 71.1% at the 5th, and 76.1% after 10 days of immersion. Similarly,
for C2 at the 3rd day of immersion hydroxyapatite was 29.6%, at the 5th day 32.6%, and at
the 10th day 80.1%. Concerning C1, the percentages of hydroxyapatite varied from 64.3%
at the 3rd day to 78.8% at the 5th day and 83.4% for the 10th day.
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Figure 5. XRD patterns of all heated samples before and after 3, 5, and 10 days in SBF.
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Figure 6. SEM-EDS analysis of the samples before the immersion in SBF (0 day): (a,d,g) SEM microphotographs, (b,e,h) 
microphotograph of backscattered electrons, (c,f,i) indicative EDS spectra (spectrum 1 in figures b,e,h) of each sample. 
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3.3. Mitochondrial Activity-MTT Assay

MTT assay results confirmed nontoxic biological behavior in most cases (Figure 8).
Although at day 1 a decrease in cell proliferation was observed, indicating a mild cytotoxic-
ity even at the lower concentration, at days 3 and 5 this result was compensated. At day
3 a statistically significant increase in mitochondrial activity (p < 0.01) and consequent
cell proliferation was presented for C1, while a minor increase was reported for C2 and
C3. The MTT assay performed with higher concentration eluates (250 µg/mL) revealed a
nontoxic biological behavior for all tested materials as verified by the comparable values
between tested and control groups. At day 5, an increase in cell proliferation was reported
for the C1 group for both concentrations, while C2 presented comparable values to control.
A statistically significant decrease in cell proliferation for the C3 higher concentration group
compared to the C3 lower concentration group was recorded (p < 0.01) at the two examined
time points (day 3, day 5), indicating a dose-dependent cytotoxicity in this group. Overall,
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we support that the MTT assay results confirmed a nontoxic biological behavior for all
tested bioceramic materials (C1, C2, and C3) at the lower concentration (125 µg/mL).
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3.4. Antibacterial Assay

The results of the growth experiments for C1, C2, and C3 are presented in Table 1.
Maximum growth rates are given in the form of the ratio between the test compound and
the control, rather than as absolute values.

Table 1. Effect of compounds C1, C2, and C3 (0.5 g/L) on the maximum growth rate of seven food-related bacteria as
determined by optical density measurements in the Bioscreen C instrument.

Compound C1 Compound C2 Compound C3

Bacterium Ratio
Test: Control t Test 1 Ratio

Test: Control t Test 1 Ratio
Test: Control t Test 1

Bacillus cereus 0.86 0.001 0.87 0.001 0.87 0.001

Staphylococcus aureus 0.83 0.049 0.88 0.096 0.86 0.071

Listeria monocytogenes 1.01 0.932 1.00 0.987 0.90 0.165

Escherichia coli 0.97 0.238 1.03 0.226 0.94 0.071

Salmonella enterica ser.
Typhimurium

0.79 0.095 0.91 0.011 0.97 0.235

Salmonella enterica ser.
Enteritidis

0.90 0.013 0.81 0.000 0.87 0.000

Pseudomonas aeruginosa 0.93 0.000 0.89 0.002 0.97 0.234

1 t test of normalized control data versus normalized test data.
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A large degree of inhibition was not observed in any of the bacteria when challenged
with any of the three antimicrobial compounds. Statistically significant (p < 0.05) decreases
in growth rate were observed in B. cereus and S. enterica ser. Enteritidis with all three
compounds, and in S. aureus, S. enterica ser. Typhimurium and P. aeruginosa with one or two
of the compounds. However, the largest reduction in growth rate was to 83% of the control
value, so the biological significance of the small degrees of inhibition observed is very
limited. Large significant increases in lag phase or decreases in maximum optical density
were not observed with any combination of bacteria and antimicrobials (data not shown).

3.5. Oxidative Activity of Bioactive Glass Nanoceramics

To gain further knowledge about the role of ROS production in gingival human
fibroblasts after contact with the synthesized nanomaterials, their oxidative activity was
determined by the fluorescent method. In Figure 9, a significant increase in ROS production
after treatment with all the tested nanomaterials was observed when compared with the
untreated cells (control) (p < 0.01).
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In details, Figure 9A shows that C1 induced the higher increase in ROS in the low-
est tested concentration (125 µg/mL) (p < 0.01) after 3 days of incubation while C2 and
C3 did not present any significant difference between the tested time points. Further-
more, the presence of ROS was observed at all time points; however, fluctuations among
different materials and incubation times, following the distinct trend on MTT analysis,
were observed.

4. Discussion

In general, silica-based bioactive materials present high biocompatibility, bioactivity,
and positive biological effects of their reaction products after implantation in bone and
tissue applications [10,98–100]. They are used in various applications in bone regeneration
and drug delivery. They can stimulate biological and molecular mechanisms of the body
and regenerate damaged bone tissue. Most bioceramic systems are based on calcium
phosphates such as Bioglass 45S5 and 1393, hydroxyapatite (HA), and β-tricalcium phos-
phate (β-TCP), while calcium-silicate ceramics such as akermanite Ca2Mg (Si2O7) have
also shown similar biological behavior and high bioactivity [11,101–103]. Selecting the
appropriate chemical composition is important for the design of a bioactive material for
bone tissue engineering. Silicon (Si) is an essential trace element involved in metabolic
activity as it plays an important role in processes related to bone growth. Calcium (Ca)
promotes the proliferation of osteoblasts, their differentiation, and extracellular matrix
maturation (ECM) calcification. Finally, magnesium (Mg) is a very important trace element
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in bone metabolism and plays a critical role in cellular differentiation and accelerating bone
remodeling (osteoconductivity) [8,20,55–59,104–107].

In the present study the ternary composition 55SiO2-35CaO-10MgO (in mol %) was
selected for its high content of calcium and magnesium in relation to similar systems that
have shown promising results [58,108]. This nanobioceramic was synthesized with the
sol–gel method for the purpose of being incorporated into biopolymeric implants, possibly
enhancing their mechanical properties, but also enabling them to induce osteogenesis and
biointegration. Thermal treatment was performed to induce different crystalline phases
that could have a positive effect on bioactivity. According to the thermal analysis, C2 and C3
samples were crystalline glass-ceramic materials, while C1 was primarily amorphous. All
materials, regardless of the thermal treatment, consisted of nanoparticles, as was revealed
by DLS measurements and TEM analysis presented in a previous study [66]. The thermally
treated specimens presented similar bioactive behavior by developing the double peak of
apatite even after 3 days of immersion, which agreed with the literature [105,109–113]. The
most amorphous material after immersion in SBF revealed a high amount of apatite even
from the 3rd day of immersion, while the C2 and C3 nanobioceramics, which were more
crystalline, presented a gradual increase in hydroxyapatite percentages. An interesting
observation was that C3, from even the 5th day of immersion, had a considerably high
percentage of hydroxyapatite (71.1%), suggesting that the onset and crystallization of
hydroxyapatite may be affected by the amount and type of crystalline phases. Despite that,
all materials after 10 days of immersion presented similar percentages of hydroxyapatite
formation, a finding that supported their potential use as regenerative materials in bone
tissue engineering. Goudouri et al. synthesized an Mg-containing silicate glass–ceramic
to be used as a scaffold for cementum/alveolar bone regeneration in the system 60SiO2-
30CaO-10MgO (in mol %) and reported no apatite or calcium-phosphate layer formation
even after 10 days in SBF when the glass was heated to 1050 ◦C. The findings of the present
study suggested that an increased amount of calcium along with a decrease in silica content
are necessary for increased bioactivity, especially after high temperature thermal treatment.

Regarding cell viability, variations were observed in mitochondrial activity between
the positive control and the tested materials. A significant increase in cell viability was
observed for C1 and C2 at day 5 of cell culture. Dose and time dependence were observed
on cell viability only for C1, whereas it was not observed for C2 and C3. For only C3, there
was a time dependence (day 3) on cell viability. Despite minor differences, it can be safely
concluded that all concentrations were at nontoxic levels.

Previous studies have shown that degradation of bioceramics may regulate the growth
and metabolism of various cells by releasing ions such as Si, Ca, P, and Na into the culture
medium. Cell viability has been demonstrated by previous studies revealing that, despite
the fact that ions such as Mg, Ca, Na, etc., can play an important role in numerous processes
related to bone formation, at high doses in the environment they are questionable, because
of toxic effects they may induce [112,114]. So, it must be ensured that metal ion release
dosages are within a range of nontoxic yields in order to ensure cell viability [59,115–117].
The results of the present study confirmed the bioactivity of the produced materials. They
supported the finding that bioactive materials present high surface reactivity and allow
surface remodeling when they come in contact with fluids such as cell culture medium.
In the literature a cascade reaction after immersion of such materials in DMEM has been
reported: first, a rapid exchange of alkali ions with hydrogen (H+ or H3O+) occurs, leading
consecutively to the formation of a silica-rich surface layer [118]. However, the described
burst release of alkali ions leads to a strong increase in local pH, potentially resulting in
pH-dependent cytotoxicity [119–122]. This is the reason that preconditioning was proposed
as a procedure necessary before cell seeding. It supported that in case of bioglass 45S5-BG-
based scaffolds 2 weeks of preconditioning were necessary before cell seeding [123] and
72 h in 45S5 granules. In the present study only 24 h preconditioning of tested materials in
DMEM was performed. Previous studies have shown that cell viability and proliferation
in the presence of bioactive ceramics is cell type- and composition-dependent [21,124–131].
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The amount of Mg in this study was the smallest in the ternary composition (55SiO2-
35CaO-10MgO in mol %) compared to silicon and calcium. The investigation of ion release
from these nanobioceramics, calculated by inductively coupled plasma spectrometry (ICP),
showed that both Si2+ and Ca2+ ion release increased gradually in the first 24 h, whereas
Mg2+ ions remained at steady and much lower values. This implied that Mg remained in the
calcium silica network or in the developed crystalline phases [66], and its poor ion release
was not sufficient to induce a significant enhancement of cell proliferation [66]. The MTT
assay results could be correlated with the ion release during preconditioning. Increased
alkali ion release combined with inadequate Mg ion release could explain the cytotoxicity
observed at day 1 in all tested groups [66]. As already mentioned, this cytotoxicity could
be characterized as pH-dependent. The range of the time periods for the passivation—
proposed in other studies concerning bioactive materials—was broad, varying from 1 h
to 24 days [132] and depended on the fluid used and the composition of the material.
As cell viability was continuously higher with longer periods of passivation, extended
preconditioning may be necessary in order to enhance the biocompatibility of the tested
materials. Boccaccini et al. [132] supported the notion that dynamic passivation is an
effective way to increase the compatibility of BGs for cell culture settings. In our study
a passive preconditioning model was used. A dynamic one could be more effective
concerning cell viability even at day 1. All these different parameters (material, time,
fluid, passive or dynamic preconditioning) should be fields for future study, in order
to establish the most beneficial preconditioning protocol for the tested materials before
cell seeding [133]. However, our results at days 3 and 5 confirmed that the synthesized
materials presented a biocompatible behavior, as besides the pH-dependent cytotoxicity at
day 1, an increase in cell viability and proliferation was reported in all tested groups at the
time points that followed.

However, various studies have shown that extracts of bioactive glasses and glass-
ceramics can have a limited effect on fibroblast proliferation and that the type of released
ions as well as their concentration are critical in monitoring cell response [134–138]. Con-
trary to bulk materials, the biological response of nanomaterials is highly dependent on
their specific surface area [139], environment pH, particle size (nano, micro), pore size,
composition, synthesis, and cell type cultures, so it was difficult to compare the present re-
sults with previous findings in the literature. In the study of Tavakoli et al. [140], increased
genotoxicity was recorded in periodontal fibroblasts when the concentration of bioactive
glass nanoparticles in the eluates was higher than 4 mg/mL. In the present study a low con-
centration of nanobioceramic nanoparticles was used in the eluates (1 mg/mL), and thus,
the ion content of the extracts may not have been adequate to trigger a strong biological
effect on cells. Furthermore, the majority of studies with modified calcium-silicate ternary
systems have used human mesenchymal stem cells (hMSCs), osteoblasts, or cementoblasts
as the main body of research has been devoted to applications of these materials in ortho-
pedics and dentistry for bone regeneration, etc. Future research is needed to evaluate the
biological behavior of these materials at higher concentrations and in direct contact with
the cells. Despite differences in the effect of ions released from various bioactive materials
on cells, a profound effect on the expression of some critical growth factors and important
proteins, including the vascular endothelial growth factor, basic fibroblast growth factor,
epidermal growth factor, collagen I, and fibronectin has been recorded in most of these
studies [119–122,138,141]. These findings elucidated the enormous potential of bioactive
glasses and glass-ceramics in soft tissue regeneration and wound healing [141,142]. The
nanobioceramics in the present study led to a favorable behavior on gingival fibroblasts,
suggesting that they can also be used with promising results in soft tissue regeneration.

The role of reactive oxygen species (ROS) in cellular processes is a critical parameter
for the cells’ fate. Intracellular ROS generation can be used as an index of mitochondrial
alterations and oxidative stress induced by the interaction of cells with biomaterials [143].
An enhanced production of ROS and oxidative damage can disturb mitochondrial func-
tion, affecting cell viability [144,145]. Also, many studies have shown that active radicals
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(such as O2−, H2O2, etc.) are strongly related to the antibacterial properties of materi-
als [146]. By being strong oxidants, some ROS (such as OH, O2− and H2O2) can cause
damage to microorganisms, ensuring their destruction, while oxygen radicals can inter-
act with the components of the bacterial cell as well as other cell components (such as
mitochondria), causing irreversible changes in their cell-wall structure, which can lead to
bacterial death [146–149]. It is well known that the effects of ROS on cellular functions
are dose-dependent, because at low levels ROS play a major role in cell survival signaling
processes such as proliferation, differentiation, and wound healing through the activation
of a number of growth factors. However, high levels of ROS may damage cells because
they are injurious to cell survival by causing inflammation, inducing apoptotic pathways,
and even leading to cell death [150–153]. For example, Hunang et al. [154] confirmed
that mesoporous silica nanoparticles (MSNs) significantly promoted A375 cell prolifer-
ation owing to the decrease in endogenous reactive oxygen species in cells. Also, He
et al. [155,156] compared mesoporous silica nanoparticles with a covalently grafted drug
delivery system exhibiting a remarkable inhibition effect on ROS levels and on the prolif-
eration activity of LX-2 cells in the long term. Furthermore, Asharani et al. [157] showed
that Ag-nanoparticles increased the production of ROS in a dose-dependent manner and
reduced the ATP content of the cells, which in turn resulted in damage to cell mitochondria
and apoptosis at a later stage. Calcium-silicate nanomaterials are capable of provoking
an oxidizing effect as they have hydroxyl groups on their surface [101,102,115,158–161].
In the present study, the antibacterial experiments for these materials, showed a weak
antibacterial effect, which could not be correlated with the significant increase in ROS levels
generated in the presence of nanobioceramic eluates. However, this increase in ROS levels
was inadequate to significantly affect mitochondrial activity and induce cytotoxicity in
gingival fibroblasts cells. Different antioxidant mechanisms may be implicated in bacteria
and cells that need further clarification. Further research work is needed to investigate
their oxidative behavior at the level of interaction with cells for prolonged culture times
and their capacity to induce osteogenic differentiation of mesenchymal stem cells.

5. Conclusions

Crystalline and relatively amorphous nanobioceramics were successfully synthesized
by the sol–gel method and subsequently subjected to different thermal treatments. All
materials presented apatite formation in SBF and biocompatibility with human periodontal
fibroblasts. The similar expressions of ROS in the presence and absence of nanobioceramic
eluates was correlated with the limited antibacterial activity of the materials and verified
the absence of oxidative stress on cells from the presence of released ions. Nanobioceramics
synthesized in the context of this study possess a multitude of attractive physicochemi-
cal and biological properties that make them suitable candidates for bone regeneration
applications, as fillers in nanocomposite scaffolds, or as grafts in bone cavities and peri-
odontal lesions.
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