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Abstract: Tailoring electrical and mechanical properties in the fluorite oxides family is of great interest
for technological applications. Other than doping and substitution, entropy-driven stabilization is an
emerging technique for new solid solutions formation and enhancing or exploring new functionalities.
However, there is a high number of possible combinations for higher-order diagram investigations,
and the current state of the art shows limited possibilities in predicting phase formation and related
properties. In this paper, we expand the compositional space of fluorite oxides in ZrO2-HfO2-CeO2-
Nb2O5-RE2O3 systems. X-ray diffractometry and scanning electron microscopy measurements
showed the formation of cubic fluorite-type structures when processing compositions at 1600 ◦C.
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1. Introduction

Fluorites are one of the most important family of oxides with a wide range of promi-
nent members in the field of energy materials. Their chemical formula can be expressed as
AO2, where A is a cation in a 4+ oxidation state. The most common representatives are
ZrO2 and CeO2 and their solid solutions [1,2]. Compounds structured with fluorite-type
cubic symmetry may be tailored to possess a wide range of properties, such as electrical
properties, and to withstand high temperatures, high temperature gradients and mechani-
cal stresses, which make them suitable for various technological applications not limited to
ion conductors [3,4], thermal barrier coatings [5–7], ferroelectrics [8,9] or sensing [10].

Recently, a new strategy to enhance or discover new properties was reported and
consisted of entropy-driven stabilization of fluorite-type structures [11–15]. To achieve this,
a complex multi-component solid solution is designed by mixing at least five precursor
oxides in an equimolar ratio.

The purpose of the present study is to further expand the compositional space in such
systems and to explore the influence of pentavalent cation oxide (Nb2O5) and trivalent rare
earth oxide’s introduction. The phase formation and microstructure of four compositions
are reported in ZrO2-HfO2-CeO2-Nb2O5-RE2O3 type systems (RE = Y, Yb, Nd, Gd). To the
best of our knowledge, phase formation in the mentions systems has not been reported
yet. However, binary and ternary systems based on ZrO2 and CeO2 were extensively
studied. The ZrO2-HfO2 system shows complete solubility over the whole composition
range with three regions of solid solutions: monoclinic, tetragonal and cubic [16]. In the
case of ZrO2-CeO2 and HfO2-CeO2 systems, there is evidence of limited mutual solubility
in the solid-state [17,18]. Phase equilibria in ternary ZrO2-HfO2-CeO2 were reported by
Andrievskaya et al. [17,19] and showed the formation of a mixture of the three polymorphs
near the equimolar region of the diagram for processing temperatures of 1250 and 1500 ◦C.
Gild et al. [13] reported successful preparation via high energy ball milling and spark
plasma sintering of eight compositions with five cations in equimolar amounts designed by
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the addition of a four-principal-cation Hf0.25Zr0.25Ce0.25Y0.25O2-δ. The obtained materials
showed low thermal conductivities, which the authors state is a result of multiple different
cation species. In this context, the addition of Nb2O5 to Hf0.25Zr0.25Ce0.25Y0.25O2-δ or
other compositions with hafnium, zirconium and cerium oxide core might contribute
to enhancing the properties of the materials by balancing the charge and thus avoiding
oxygen vacancies formation.

2. Materials and Methods
2.1. Materials Processing

Ceramic samples belonging to equimolar region of ZrO2-HfO2-CeO2-Nb2O5-RE2O3 type
(RE = Y, Yb, Nd, Gd) systems were synthetized by solid-state route. The compositions will be
referred to as follows: ZHCNY for 0.2ZrO2–0.2HfO2-0.2CeO2-0.2Nb2O3-0.2Y2O3, ZHCNYb
for 0.2ZrO2-0.2HfO2-0.2CeO2-0.2Nb2O3-0.2Yb2O3, ZHCNNd for 0.2ZrO2-0.2HfO2-0.2CeO2-
0.2Nb2O3-0.2Nd2O3 and ZHCNGd for 0.2ZrO2-0.2HfO2-0.2CeO2-0.2Nb2O3-0.2Gd2O3.

First, for all compositions, a 20 g mixture was prepared by hand milling for 60 min
in the presence of isopropanol (Sigma-Aldrich, St. Louis, MO, USA ACS reagent ≥99.5%)
using an agate mortar and pestle, starting from high purity oxides: ZrO2 (Sigma-Aldrich,
St. Louis, MO, USA 99% trace metals basis), HfO2 (Sigma-Aldrich, St. Louis, MO, USA
98%), CeO2 (Sigma-Aldrich, St. Louis, MO, USA ≥ 99%), Nb2O5 (Sigma-Aldrich, St. Louis,
MO, USA 99.9% trace metals basis), Y2O3 (Sigma-Aldrich, St. Louis, MO, USA 99.99% trace
metals basis), Yb2O3 (Sigma-Aldrich, St. Louis, MO, USA 99.9% trace metals basis), Nd2O3
(Sigma-Aldrich, St. Louis, MO, USA 99.9% trace metals basis) and Gd2O3 (Sigma-Aldrich,
St. Louis, MO, USA 99.9% trace metals basis). The precursor composition for each mixture
is summarized in Table 1.

Table 1. Precursor amount for heterovalent equimolar quinary oxide system of ZrO2-HfO2-CeO2-Nb2O5-RE2O3 type
(RE = Y, Yb, Nd, Gd).

Precursor

Composition 0.2ZrO2-0.2HfO2-
0.2CeO2-0.2Nb2O3-

0.2Y2O3
(ZHCNY)

0.2ZrO2-0.2HfO2-
0.2CeO2-0.2Nb2O3-

0.2Yb2O3
(ZHCNYb)

0.2ZrO2-0.2HfO2-
0.2CeO2-0.2Nb2O3-

0.2Nd2O3
(ZHCNNd)

0.2ZrO2-0.2HfO2-
0.2CeO2-0.2Nb2O3-

0.2Gd2O3
(ZHCNGd)

ZrO2 3.2787 g 2.9486 g 3.0539 g 3.0055 g

HfO2 5.6009 g 5.0370 g 5.2168 g 5.1341 g

CeO2 4.5796 g 4.1185 g 4.2656 g 4.1979 g

Nb2O5 3.5364 g 3.1804 g 3.2939 g 3.2417 g

Y2O3 3.0043 g - - -

Yb2O3 - 4.7155 g - -

Nd2O3 - - 4.1697 g -

Gd2O3 - - - 4.4209 g

The powder mixtures were then pressed into 13 mm pellets using a 10-ton force
4555 Manual Bench Top Pellet Press Equipment (Carver, Inc., Wabash, IN, USA). The
green bodies were then subjected to several thermal treatments performed in the range of
1300–1600 ◦C in an HT 18 High Temperature Furnace (Nabertherm, Lilienthal, Germany).
The presintering heat treatment stage was performed at 1300 ◦C in air, with a heating rate
of 5 ◦C/min, a dwell time of 6 h and a cooling rate at the normal speed of the oven. After
the presintering stage, the samples were ground in an agate mortar and reshaped into
13 mm pellets under 400 MPa uniaxial pressure. The sintering stage was performed at
1400, 1500 or 1600 ◦C in air and with a heating rate of 5 ◦C/min, a dwell time of 6 h and a
cooling rate at the normal speed of the oven.
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2.2. Materials Characterization

Room-temperature X-ray diffraction (XRD) measurements were performed on the
heat-treated sample for phase composition determination. The analyses were carried out
on Empyrean equipment (PANalytical, Almelo, The Netherlands), using Ni-filtered Cu-Kα

radiation (λ = 1.5418 Å) with a step size of 0.0263◦ and counting time per step of 510 s in the
2θ range of 20–80◦. Phase search and match, as well as Rietveld refinement of structures,
were performed in HighScore Plus 3.0.e software (PANalytical, Almelo, The Netherlands)
coupled with the ICDD PDF4+ 2021 database (Newtown Square, PA, USA).

The microstructure and elemental distribution were investigated by scanning electron
microscopy—SEM—operated at 30 kV coupled with energy dispersive spectrometer—EDS
(Inspect F50, FEI, Hillsboro, OR, USA). The average grain size distribution was determined
using OriginPro 9.0 software (OriginLab, Northampton, MA, USA) by considering size
measurements on ≈500 grains performed by means of image processing software (ImageJ
1.50b, National Institutes of Health and the Laboratory for Optical and Computational
Instrumentation, Madison, WI, USA).

3. Results and Discussion
3.1. Phase Composition

Phase composition was studied by XRD measurements and subsequent Rietveld
refinement of patterns. The obtained and matched XRD patterns, as well as angular range
from 27 to 31◦ 2θ, are presented in Figure 1 and the corresponding phase content for
different heat treatment conditions are summarized in Table 2.

Table 2. Phase content for samples treated at 1300, 1400, 1500 and 1600 ◦C belonging to equimolar ZrO2-HfO2-CeO2-Nb2O5-
RE2O3 systems (RE = Y, Yb, Nd, Gd).

Sample Thermal Treatment
Temperature Monoclinic—P2/m Tetragonal—

P4/mmm Cubic—Fm-3m RENbO4—
Monoclinic—P2/m

ZHCNY 1300 ◦C 17.1% ± 0.5% 22.3% ± 0.5% 5.9% ± 0.5% 54.6% ± 0.5%
1400 ◦C 0.8% ± 0.5% 64.9% ± 0.5% 3.2% ± 0.5% 31.0% ± 0.5%
1500 ◦C 0.0% 68.0% ± 0.50% 0.0% 32.0% ± 0.5%
1600 ◦C 0.0% 0.0% 76.2% ± 0.5% 23.8% ± 0.5%

ZHCNYb 1300 ◦C 7.0% ± 0.5% 29.6% ± 0.5% 16.0% ± 0.5% 47.4% ± 0.5%
1400 ◦C 0.0% 22.3% ± 0.5% 45.3% ± 0.5% 32.4% ± 0.5%
1500 ◦C 0.0% 0.0% 68.2% ± 0.5% 31.8% ± 0.5%
1600 ◦C 0.0% 0.0% 70.9% ± 0.5% 29.1% ± 0.5%

ZHCNNd 1300 ◦C 9.5% ± 0.5% 56.1% ± 0.5% 34.4% ± 0.5% 0.0%
1400 ◦C 33.7% ± 0.5% 6.1% ± 0.5% 41.3% ± 0.5% 18.9% ± 0.5%
1500 ◦C 25.5% ± 0.5% 2.4% ± 0.5% 49.6% ± 0.5% 22.5% ± 0.5%
1600 ◦C 0.0% 0.0% 70.0% ± 0.5% 30.0% ± 0.5%

ZHCNGd 1300 ◦C 18.4% ± 0.5% 30.8% ± 0.5% 2.0% ± 0.5% 48.8% ± 0.5%
1400 ◦C 0.0% 28.5% ± 0.5% 28.6% ± 0.5% 42.9% ± 0.5%
1500 ◦C 0.0% 0.0% 59.5% ± 0.5% 40.5% ± 0.5%
1600 ◦C 0.0% 0.0% 63.4% ± 0.5% 36.6% ± 0.5%

After thermal treatment at 1300 ◦C, the composition is complex for all studied samples,
and it consists of three solid solutions of cubic [20], tetragonal [21] and monoclinic [22]
symmetries and RENbO4 of monoclinic symmetry, where RE is the rare earth ion in the 3+
oxidation state. The peak profiles are broad and show a low intensity, which suggests a
limited mutual solubility of the precursor oxides in this temperature condition (Figure 1).
The increase of the heat treatment temperature to 1400 ◦C shows two kinds of effects on
the studied compositions: ZHCNNd forms a higher content of lower symmetry P2/m
solid solutions at this temperature approximated at 33.70%, whereas in the case of ZHCNY,
ZHCNYb and ZHCNGd, an increase in the content of tetragonal P4/mmm and cubic
Fm-3m solid solutions was evidenced. A further increase in the temperature to 1500 ◦C is
beneficial in stabilizing higher-ordered solid solutions of tetragonal symmetry in the case
of ZHCNY and cubic symmetry in the case of ZHCNYb and ZHCNGd. The ZHCNNd
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composition shows a remanent P2/m solid solution at 1500 ◦C, but with a decreased content.
XRD results after processing at 1600 ◦C show a binary phase composition consisting of
fluorite-type cubic Fm-3m solid solution and RENbO4 (RE = Y, Yb, Nd, Gd).
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Figure 1. XRD patterns corresponding to samples heat-treated at 1300, 1400, 1500 and 1600 °C belonging to equimolar 
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Figure 1. XRD patterns corresponding to samples heat-treated at 1300, 1400, 1500 and 1600 ◦C belonging to equimolar
ZrO2-HfO2-CeO2-Nb2O5-RE2O3 systems (RE = Y, Yb, Nd, Gd).
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3.2. Microstructure

Figure 2 depicts SEM images and corresponding EDS maps for the equimolar quinary
compositions after thermal treatment at 1600 ◦C.

The microstructure of the ZHCNY sample is heterogeneous and shows grains with an
average size of 8.56 ± 2.60 µm and macropores, which are placed intra- and intergranular.
The corresponding EDS maps show niobium and yttrium aggregation, which is in good
agreement with XRD results, where the formation of YNbO4 was evidenced. Moreover, in
these areas, a melting and recrystallization process is evidenced by plate-like grains and
low-angle junctions. This effect is most probably caused by the lower melting temperature
of Nb2O5 of 1512 ◦C [23]. The ZHCNYb sample also shows a heterogeneous microstructure,
with grains of an average size of 6.53 ± 4.24 µm and intergranular pores. In this case, the
ceramic has pronounced recrystallization plate-like grains, probably caused by a lower
melting temperature of Yb2O3 (2355 ◦C [24]) compared to Y2O3 (2425 ◦C [25]) and, as a
result, a lower porosity.

The ZHCNNd sample shows a typical particulate composite microstructure, where
NdNbO4 is placed in a (Zr,Hf,Ce)O2 matrix. In these processing conditions, the SEM image
evidences also intragranular and intergranular cracks formation.

In the case of the ZHCNGd sample, the average grain size is the lowest in the studied
series (3.72 ± 1.65 µm). The grains are well defined and are of polyhedral shape with
round edges.
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Figure 2. Microstructure and elemental distribution of samples treated at 1600 ◦C belonging to ZrO2-HfO2-CeO2-Nb2O5-
RE2O3 equimolar systems (RE = Y, Yb, Nd, Gd).

4. Conclusions

Four compositions in ZrO2-HfO2-CeO2-Nb2O5-RE2O3 type systems (RE = Y, Yb,
Nd, Gd) were studied over the temperature range of 1300–1600 ◦C. XRD results showed a
complex composition at lower temperatures and a binary composition at 1600 ◦C, consisting
of cubic fluorite-type oxide and RENbO4. Phase formation in ZrO2-HfO2-CeO2-Nb2O5-
RE2O3 type systems (RE = Y, Yb, Nd, Gd) shows the obtaining of single fluorite-type
polymorphs when RENbO4 is present in the composition when compared to a mixture of
three polymorphs obtained at 1250 and 1500 ◦C in a ZrO2-HfO2-CeO2 system. Therefore,
RENbO4 might reduce the temperature of higher symmetry cubic phase formation in the
temperature range of 1400–1600 ◦C. The microstructure of the ceramics processed at the
highest temperature is heterogeneous and shows evidence of melting and recrystallization
due to the partial volatilization of Nb2O5. Moreover, measurements on the SEM images
showed coarse-grain ceramics formation.
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