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Abstract: High strength transparent Y2O3 ceramics were fabricated from commercial powders
using spark plasma sintering (SPS) technique by optimizing the heating rate. The heating rate
significantly influenced the microstructures and the optical/mechanical properties of the Y2O3

ceramics. Grain growth was limited accordingly with increasing the heating rate. The ball milling
process of the commercial Y2O3 powders is likely to further enhance the sinterability during the SPS
processing. The dense Y2O3 ceramics, which were sintered by SPS with 100 ◦C/min, showed good
transmittance range from visible to near infrared (IR). For a high heating rate of 100 ◦C/min, the
in-line transmittance at a visible wavelength of 700 nm was 66%, whereas for a slow heating rate of
10 ◦C/min, it reduced to 46%. The hardness Hv tends to increase with increasing the heating rate and
rigorously followed the Hall–Petch relationship; that is, it is enhanced with a reduction of the grain
size. The toughness KIC, on the other hand, is less sensitive to both the heating rate and the grain size,
and takes a similar value. This research highlighted that the high heating rate SPS processing can
fabricate fully dense fine-grained Y2O3 ceramics with the excellent optical and mechanical properties.

Keywords: Y2O3; transparent ceramics; spark plasma sintering; optical properties; mechanical
properties; heating rate

1. Introduction

Transparent polycrystalline Y2O3 ceramics are known as promising optical materials
in various applications such as high intensity discharge lamps, missile domes, heat resistive
windows, and host material in ceramic lasers and scintillators owing to their significant
physical and chemical properties of low thermal expansion, high thermal conductivity, a
broad transparency range from violet to infrared light, and high corrosion resistance [1–6].
However, the fabrication of transparent Y2O3 ceramics is quite challenging work because
the Y2O3 ceramics are known to be difficult to sinter, due to the high melting point of Y2O3
(2430 ◦C). Normally, the typical and conventional preparation methods of the transparent
polycrystalline Y2O3 ceramics are hot pressing, hot isostatic pressing, and pressureless
sintering at high temperatures [7–9]. Although such high-temperature sintering processes
can attain transmittance, those usually cause intense grain growth, and hence, result in the
poor mechanical properties, which make it difficult to use in industrial applications.

To restrain the grain growth, spark plasma sintering (SPS) technique has recently
attracted many attentions as an alternative method to obtain dense and fine-grained
ceramics at low temperatures and short processing time [10–14]. The SPS method is an
advanced sintering technology that combines uniaxial pressure and high heating rate
by applying an electrical pulsed current directly to the sintering dies. In addition, the
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SPS has been regarded as a new field-activated sintering technique, which is related to
the current enhanced thermal processes at the free surfaces of the particles, especially
in nanopowders [10]. This suggests that the nanocrystalline ceramic powders can be
recognized as the best candidates for the densification by SPS. Recently, fine-grained
transparent ceramics such as Al2O3 [15], Y3Al5O12 [16], MgO [17], MgAl2O4 [18] and
ZrO2 [19] have successfully been fabricated by the SPS technique.

In the last decade, SPS has also been successfully applied to produce dense Y2O3
materials at relatively lower sintering temperatures with a shorter sintering time [20–23].
For example, Chaim et al. [5] reported the fabrication of Y2O3 ceramics with a relative
density higher than 98% using SPS at 1400 ◦C for 5 min. Zhang et al. [24] prepared
transparent Y2O3 with an in-line transmission Tin of 68% at a wavelength λ of 700 nm
by using high pressure SPS technique at 1050 ◦C under an uniaxial pressure of 300 MPa.
Yoshida et al. [25] have reported the fabrication of the translucent polycrystalline Y2O3
ceramics at a relatively lower temperature of 950 ◦C with a slow heating rate of 2 ◦C/min
by SPS. Ahmadi et al. [26] reported the fabrication of transparent Y2O3 ceramics with
Tin ≈ 11–54% at λ = 400–800 nm and Tin ≈ 80% at λ = 3–5 mm by the SPS technique at
1500 ◦C from commercial powders. Most of the works, however, are mainly focused on
the densification, microstructure and mid-infrared transmission spectra behavior of the
Y2O3 ceramics fabricated by the SPS technique under the low heating rates and the long
sintering times. The systemic study on the effects of heating rates on the microstructure,
optical and mechanical properties are highly limited.

In this work, therefore, transparent Y2O3 ceramics are fabricated by the SPS technique
at 1250 ◦C under 70 MPa with the heating rate range of 10–100 ◦C/min. The effect of the
heating rate on the microstructural evolution, optical and mechanical properties of the
Y2O3 ceramics sintered by SPS was systematically examined.

2. Materials and Methods
2.1. Preparation and Processing of Y2O3 Powders

Commercially available Y2O3 nanopowder (BB-type, Shin-Etsu Chemical Co., Ltd.,
Tokyo, Japan, purity: 99.9%) was used as a starting material. The as-received powders
were deagglomerated by a ball milling technique in non-aqueous solvent using zirconia
grinding media for 72h, and dried at 60 ◦C in a dry oven for 8h. The dried powders were
ground and then sieved through a 200-mesh sieve for granulation.

The obtained Y2O3 nanopowders were densified with a SPS machine (LABOX, Sinter
Land Inc., Niigata, Japan). The powders were loaded into a graphite mold with an inner
diameter of 10 mm. The interior of the graphite mold was covered with graphite papers.
The outside of the mold was covered with a thermal insulator carbon felt to suppress any
heat losses from the mold surface. The SPS process was carried out at 1250 ◦C with various
heating rates and a dwelling time of 10 min under a uniaxial pressure of 70 MPa. During
the sintering, the surface temperature of the graphite mold was measured using an optical
pyrometer (IR-AH, Chino Corp., Tokyo, Japan) through a hole made in the carbon felt.
Since the as-sintered samples showed dark gray color, those were post-annealed at 1000 ◦C
for 10 h in air to eliminate oxygen vacancies, residual carbon impurities and strains. For
the visible and near IR light transmittance measurements, both surfaces of the annealed
composites were polished with diamond pastes to ∼1.0 mm in thickness.

2.2. Characterization Techniques

X-ray diffraction (XRD) analysis of the Y2O3 powders and the sintered ceramics
were performed with RINT-2500 diffractometer (Rigaku Co., Ltd., Tokyo, Japan) using
Cu Kα radiation and operated at 40 kV and 300 mA. Microstructures of the ceramics
were observed by a field emission scanning electron microscopy (FE-SEM, model SU-8000,
Hitachi Ltd., Tokyo, Japan). For transmission electron microscopy (TEM) observations,
the as-received and ball milled Y2O3 powders were uniformly dispersed into ethanol by
applying ultrasonic. The solution dispersed with the powders was dropped on a carbon-



Ceramics 2021, 4 58

coated Cu grid. TEM observation was performed with a JEOL 2010F microscope (200 kV)
equipped with dispersive X-ray analysis (EDS) detector. The transmission in the wave-
length range of λ = 0.25–1.6 µm was measured by using a double-beam spectrophotometer
(SolidSpec-3700DUV, Shimadzu) equipped with an integrating sphere.

Hardness (Hv) and toughness (KIC) of the ceramics were examined using a Vickers
hardness tester (MVK-E, Akashi Seisakusho, Ltd., Toda, Japan). The ceramic surfaces were
carefully polished by using diamond slurries with 9, 3, and 1 µm diameter. After thermal
annealing at 1000 ◦C for 10 h to remove residual stresses, the hardness (Hv) and toughness
(KIC) measurements were conducted at a load of 2 N for 15 sec. Hv and KIC were evaluated
using the following Equation (1) [27] and Equation (2) [28], respectively.

Hv = 0.1891
(

F
4a2

)
(1)

KIC = 0.16(c/a)−1.5
(

Hva1/2
)

(2)

where F is the test load, a is the half average diagonal length of the indentation, c is the
average length of the cracks obtained from the center of the indentation to the crack tip.

3. Results and Discussion
3.1. Microstructure Evaluation

Figure 1 shows the XRD patterns of the Y2O3 nanopowders before and after the ball
milling, and the Y2O3 ceramic after the SPS processing at 1250 ◦C. The XRD patterns of
both the nanopowders and the ceramic can be indexed only by cubic Y2O3 phase (PDF No.:
01-075-3096) and no any ZrO2 impurity second phase is observed.
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Figure 1. XRD patterns of Y2O3 nanopowders with and without ball milling and the ceramic after
SPS processing at 1250 ◦C.

Heating rate dependent microstructure of the Y2O3 ceramics, which were fabricated
at 1250 ◦C under 70 MPa, is shown in Figure 2a–f. All the ceramics show highly dense
microstructures, irrespective of the heating rate condition. Although a few hundreds of
nanometer-sized residual pores are observed at multiple grain junctions, those tends to
decrease with increasing the heating rate, as shown in the low magnification SEM images
by the circles in Figure 2a,b. The grain growth, however, was limited accordingly with
increasing the heating rate; it was ~499 nm at a heating rate of 10 ◦C/min but was reduced
to ~164 nm at 100 ◦C/min. This heating rate dependent grain size conflicts with the results
reported by Yoshida et al. [25] They have fabricated the Y2O3 ceramics by using SPS with
the sintering temperature range of 850–1050 ◦C at the various heating rates between 2
and 50 ◦C/min, and reported that dense Y2O3 with the finest grain size of 190 nm was
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fabricated at 950 ◦C for a slower heating rate of 2 ◦C/min. The reason of the conflicting
results has been unclear. Nevertheless, the different powder conditions caused by the
ball milling process may play a main role for the conflicting sintering results of the Y2O3
ceramics between the present and the previous works.
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Figure 2. Microstructures of the Y2O3 ceramics fabricated with various heating rate; low magnifica-
tion images of the samples fabricated at (a) 10 and (b) 100 ◦C/min, and high magnification images of
the samples fabricated at (c) 10, (d) 20, (e) 50 and (f) 100 ◦C/min.

Figure 3 shows the photographs of the Y2O3 ceramics fabricated from the as-received
and the ball milled powders under the same sintering conditions of 1250 ◦C and 70 MPa
with 100 ◦C/min, respectively. The sample fabricated from the as-received powders
is opaque in the center area and translucent in the outside area. On the other hand, the
sample fabricated from the ball milled powders shows uniform and high transparence. This
result suggests that despite the same sintering conditions, such as sintering temperature,
heating rate, loading pressure, and holding time, etc., the powder condition might play an
important role in the sintering behavior, resulting in the lower porosity (Figure 2) and the
transmittance (Figure 3) in the ball milled powders.
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(b) ball milled nanopowders, respectively.

The transparent Y2O3 ceramic indicates that the powders after the ball milling can be
accelerated the densification behavior during the SPS processing. Two possible reasons
may contribute to the sintering phenomenon. First, the defects formed on the powder
surfaces may enhance the current effect during the SPS processing. For the ball milled
powder, large amounts of defects will be introduced on the powder surface during the
milling process and act as a preferential electric flow channel to enhance the conductivity
of Y2O3, thereby, the sintering kinetic enhanced by electric current can be realized during
the SPS sintering. Second, the powder size reduced by the milling process may be related
to the current effect during the SPS processing. According to Chaim [10], surface current
flow is proportional to the surface area of the particle, whereas the current flow through the
bulk of the particle is proportional to the particle volume. The ratio of these currents is then
proportional to the particle’s radius of curvature according to the following equation: [10]

Isur.

Ibulk
≈ πd2

π/6d3 =
6
d

(3)

where Isur. is the surface current, Ibulk is the volume current, d is the particle’s radius of
curvature. Therefore, according to the equation, as the particle size decreases, the relative
contribution of the surface current significantly increases. This will enhance homogeneous
accumulation of the charge over the particles, and in turn, leads to the initiation of the
surface dielectric breakdown at the smaller particles, finally results in the accelerated
densification even at lower temperatures.

To examine the microstructure of the powders, TEM observations were performed
before and after the ball milling process in Figures 4 and 5. The microstructures suggest
that the surface dielectric breakdown might also be the case of Y2O3 in our work, because
the particle size of the ball milled powder is much smaller than that of the as-received
powders. Before the ball milling process, the as-received Y2O3 powder, which consists of
the plate- and fiber-like particles (Figure 4a), shows a sharp spot ring SAD pattern. This
suggests that the as-received powders have relatively good crystallinity as typically shown
in the high-resolution (HR-) TEM image in Figure 4b. In contrast, after the ball milling
process, the fiber-like particles become shorter and the plate-like particles consist of several
tens nanometer scale crystals, as typically shown in Figure 5a,b, respectively. Irrespective
of the high energy ball milling processes by the ZrO2 media, no detectable Zr impurity
can be found in EDS spectra, except for minor Cu signal of the grid (Figure 5c). Since
SAD of the ball milled powder becomes diffuse rather than that of the as-received powder,
large strains might be generated in the Y2O3 powders during the ball milling processing,
resulting in the fine particles. These factors might increase the accumulation of the charge
over the particles to accelerate the surface breakdown.
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Figure 5. (a) BF-TEM and SAD pattern of the ball-milled Y2O3 powder. (b) Magnified BF- and
HR-TEM images of the plate-like particle. (c) EDS spectra taken from (a).

Furthermore, in order to examine the speculation above, the ball milled powders
were sintered under the conductive and insulative SPS set-up conditions. The ball milled
powders were loaded into the graphite die. For the conductive set-up, the both sides
of the loaded powders were sandwiched by the electrically conductive graphite papers,
whereas for the insulative set-up, those were sandwiched by the electrical insulator BN
coating. The shrinkage behavior during the SPS processing apparently change with the
set-up conditions, as shown in Figure 6a, irrespective of the same heating condition.

Figure 6b gives a comparison of the shrinkage rate (dL/dt) evaluated from the punch
displacement L of the graphite dies shown in Figure 6a. The sintering behavior is clearly
related to the SPS set-up of the powders. The conductive set-up shows a little bit larger
shrinkage slope between 800 ◦C and 900 ◦C than the insulative set-up and the maximum
(dL/dt)-value at around 920 ◦C. For the insulative SPS set-up, on the other hand, the maximum
(dL/dt)-value shifts to higher temperature of 1080 ◦C. Beyond the maximum values, (dL/dt)
gradually decreases with increasing the temperature and changes from shrinkage to expansion.
The (dL/dt)-values become almost zero at around 1250 and 1350 ◦C for the conductive and
insulative set-ups, respectively, as indicated by the arrows in Figure 6a,b. This result suggests
that for the conductive set-up, the ball milled powders may be affected from the pulsed DC
power during the SPS sintering, resulting in the accelerated densification process. This would
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be another reason why the effect of the heating rate obtained in this work does not correspond
to those of the previous works [25].
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For the Y2O3 ceramic, the accelerated densification behavior in the high heating rate
is likely to be related to the applied power during the SPS processing. Figure 7 shows
the applied power during the SPS processing of the Y2O3 ceramics at the high and slow
heating rates. As shown in Figure 7, the power during the sintering is apparently higher in
the high heating rate of 100 ◦C/min than in the slow heating rate of 10 ◦C/min. In order
to fully understand the power effect on the SPS processing, additional experiments are
necessary. Nevertheless, since Y2O3 ceramics show electrical conductivities depending on
the temperature, defects, impurities and atmosphere [29,30], the heating rate dependent
power would influence the sintering kinetic of the Y2O3 ceramics and accelerate the
sintering behavior as shown in Figure 6.
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3.2. Optical Properties

Figure 8 gives the optical properties of the Y2O3 ceramics fabricated with various
heating rates; the transmittance data were measured after the post-annealing at 1000 ◦C for
10 h. The Y2O3 ceramics sintered by SPS showed discoloration caused by oxygen vacancy
formation, which is a common phenomenon after the SPS processing in vacuum. By the
post-annealing, the in-line transmittance efficiencies (Tin) improved from 30% to 66% for
the Y2O3 ceramic sintered by SPS at 100 ◦C/min.
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With increasing the heating rate, the Tin-value increase at the whole wavelength from
the visible to near-IR ranges (Figure 8a). At a wavelength of λ = 700 nm, the Tin-value
gradually increases with the heating rate and exhibits about 46, 49, 64, 66% for each
sample fabricated at the heating rates of 10, 20, 50, 100 ◦C/min, respectively. The Tin-value
obtained at the higher heating rate of 100 ◦C/min is comparable to the value (68%) reported
by Zhang et al., [24] in which the Tin-value of 68% was fabricated by using expensively
high-pressure method (300 MPa). In contrast to the previous work, the present work can
attain the high Tin-value of 66% using the conventional pressure of 70 MPa at the high
heating rate.

Figure 8b shows the total transmittance efficiencies (Ttotal) of the same samples shown
in Figure 8a. In contrast to Tin, the Ttotal-value takes almost the similar higher values
of ≈80% in all the samples, independent of the heating rates. Since Ttotal is the whole
summation of the transmitted light in all directions and is less sensitive to the porosity and
microstructure, it would take the similarly high value of ≈80%.

To understand the heating rate dependent optical properties, the Tin- and Ttotal-values
of the samples sintered at 10 and 100 ◦C/min were illustrated in Figure 8c for comparison.
The difference between the Tin- and Ttotal-values is smaller in the high heating rate of
100 ◦C/min than in the slower heating rate of 10 ◦C/min. The difference between the
Tin- and Ttotal-values can be ascribed to the light scattering factors. Normally, the optical
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transmittance of the sintered polycrystalline materials is influenced by the light scattering
caused by the residual pores, grain/interface boundaries and second/amorphous phases.
Figure 8c suggests that the heating rate dependent optical property is likely to be caused
by the difference of the density of the light sources formed in the materials. In particular,
the residual pores seem to be the main scattering source of the present Y2O3 ceramics, as
discussed below.

The scattering coefficient γsca can be roughly calculated from the Tin- and Ttotal-values
by the following equation: [31]

γsca = −
ln Tin

Ttotal

t
, (4)

where t is the sample thickness. According to the formula, the wavelength dependent
scattering coefficient γsca can be evaluated under Tin > 0 as shown in Figure 9a. With
increasing the heating rates from 10 to 100 ◦C/min, the γsca-values of the Y2O3 reduce
from ~35 to 15 cm−1 at the wavelength of λ = 300 nm, and then, monotonously decrease to
less than 5, 4, 2 and 2 cm−1 at λ = 300–600 nm, respectively. For the heating rates higher
than 50 ◦C/min, the γsca-values finally become negligibly small at λ > 600 nm.
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For Y2O3 with the isotropic cubic crystal structure, since the birefringent scattering
at the grain boundaries is negligible, other microstructural factors, such as the pores, are
likely to be the main scattering source. It is well known that when the wavelength of the
incident light became of a scale similar to that of the residual pores, the light scattering
factor arising from the pores become significant [32]. As shown in Figure 2a,b, a few
hundreds of nanometer-sized residual pores were observed at the multiple grain junctions
and tend to decrease with increasing the heating rate. As compared to Tin of the pore-free
Y2O3 single crystal (~80%) [33], Tin of the sintered Y2O3 polycrystals exhibits similar values
at the longer wavelength of > 1200 nm, but it decreases with approximately 20% lower at
the shorter wavelength (600 nm), which is comparable values of the observed pores. Thus,
the residual pores having the hundreds of nanometer size (Figure 2a,b) can be regarded
as a main light scattering source at the wavelength range of λ < 0.6 µm. Furthermore,
the relationship between the scattering coefficient and the wavelength to the minus fifth
power (λ−4) shows almost linear relation as shown in Figure 9b, indicating that Rayleigh
scattering caused by the pores is the main factor responsible for the reduced transmittance
as well. Therefore, the different scattering coefficients caused by the different residual pore
size and the porosity formed in the samples (Figure 2a,b) would be the main reason for the
heating rate dependent transmittance efficiency of each sample.



Ceramics 2021, 4 65

3.3. Mechanical Properties

The Vickers hardness Hv and the grain size of the Y2O3 ceramics are presented in
Figure 10 as a function of the heating rate. For comparison, Hv and the grain sizes of
the Y2O3-MgO nanocomposite sintered at 1250 ◦C under 70 MPa [34] and Y2O3 ceramic
fabricated at 1130 ◦C under 100 MPa are also shown by the triangles and the circles in
Figure 10, respectively. The measurement results show that as the heating rate increases,
the hardness increases and the grain size tends to decrease; Hv increases from 9.4 GPa to
11.0 GPa accompanied with the decrease in the grain size from 499 nm at 10 ◦C/min to
164 nm at 100 ◦C/min. For the Y2O3 ceramic sintered at a higher pressure of 100 MPa, the
hardness (13.1GPa) is much higher than that (11.0 GPa) of the sample sintered at the low
pressure of 70 MPa owing to its smaller grain size of 74 nm. These results suggest that the
hardness is relating closely to the microstructure of the materials; that is, the increasing
hardness would be related to the reduction of the grain size. On the other hand, it shows a
slightly higher hardness of 11.9 GPa for the Y2O3-MgO composite sample fabricated at the
same temperature of 1250 ◦C and the pressure of 70 MPa, suggesting that the hardness is
likely to follow the mixture rule at the sub-micro grain range as well.
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comparison, Hv and grain size of the Y2O3-MgO nanocomposite sintered at 1250 ◦C under 70 MPa (tri-
angles) [34] and Y2O3 ceramic fabricated at 1130 ◦C under 100 MPa (circles) are also given, respectively.

Recently, the grain size dependent hardness has been reported in the nano-grained
monolithic ceramics and nanocomposite, such as MgAl2O4, ZrO2, Al2O3 and Y2O3-
MgO [34–37]. Reducing the grain size of these ceramics can significantly increase
strength and hardness and this phenomenon can be described by the Hall-Petch rela-
tionship [35,38–42]. The hardness value of the Y2O3 obtained in this work are replotted
in Figure 11 following the Hall–Petch formula,

Hv = H0 +
k√
d

(5)

where H0 is the intrinsic hardness dependent on frictional lattice resistance to dislocation
motion, k is the material-specific strengthening coefficient and d is the average grain
size. For comparison, the data reported in our previous works [34,43] in the Y2O3-MgO
composites and the reported Y2O3 data in the literatures [26,44,45] are also plotted by the
open and closed symbols, respectively. As shown in Figure 11, although the data scatter
slightly, the trend of Hv-values monotonously increases by decreasing the grain size for
the Y2O3 samples. The present data show a single linear dependence and fit well with
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the Hall–Petch relationship. The Hall–Petch behavior has already been reported in the
Y2O3-MgO composites in our previous work as shown by the open symbols in Figure 11.
The slope of the Y2O3 data (black line) was identical to that of the Y2O3-MgO composite
results (blue line). Furthermore, the slightly higher hardness for the Y2O3-MgO composites
than those of the monolithic Y2O3 indicates that the general trend follows the mixture
rule very well owing to the much higher hardness in the MgO polycrystals than in the
Y2O3 polycrystals. The Hall–Petch behavior apparently indicates that the reduction of
the grain size to the nano scale, which attained by optimizing the powder and sintering
processes, is effectively contributed to the enhancement of the mechanical properties of the
Y2O3 ceramics.
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In contrast to the hardness, the fracture toughness KIC in Figure 12 takes almost the
similar value ranging from 1.1 ± 0.08 to 1.43 ± 0.19 MPa·m1/2 and the effect of grain size
is not remarkable. This trend is similar to the results reported for the fine-grained ceram-
ics. [46–48] The crack bridging and branching have generally been explained as to be the
primary source of toughening mechanisms. According to our previous study, [34] however,
when the grain size decreases to several hundred nanometers or a few micrometers, the
bridging mechanism does not work as an effective toughening mechanism and the fracture
toughness takes almost the same value to the intrinsic material toughness. If this is also the
case for the present samples, the toughness would be independent of the grain size also in
the monolithic Y2O3 even in the smaller grain size of ≈150 nm.
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Y2O3 and can be explained by the mixture rule because the toughness of the monolithic
MgO is slightly larger than that of Y2O3 [49–51].

Accordingly, the optimizing the SPS condition, for example optimizing the heating
rate, can improve the sinterability of the ball milled Y2O3 powders. This is beneficial to
obtain fully dense fine-grained Y2O3 ceramics with the enhanced optical and mechanical
properties. Although the effect of reduced grain size is not remarkable on the toughness,
it is confirmed to be effective for improving the hardness, which is comparable to that of
Y2O3-MgO composites.

4. Conclusions

High transparent and full-density Y2O3 ceramics were successfully fabricated using
the ball milled nanopowders and followed by the SPS technique with various heating
rates. With increasing the heating rate, the grain growth was limited accordingly from
499 nm at a slow heating rate of 10 ◦C/min to 164 nm at a high heating rate of 100 ◦C/min.
The in-line transmittance efficiency Tin gradually increase and exhibit about 46, 49, 64
and 66% at 700 nm for each sample fabricated with the heating rates of 10, 20, 50 and
100 ◦C/min, respectively. The Tin for the sample sintered by SPS at the high heating rate of
100 ◦C/min was comparable to the value (68%) reported from the sample fabricated by high
pressure SPS technique. With increasing the heating rate from 10 ◦C/min to 100 ◦C/min,
Hv increases from 9.4 GPa to 11.0 GPa due to the reduction of the grain size from 499 nm to
164 nm. The enhanced hardness can be interpreted by the Hall-Petch relation as a function
of the grain size. On the other hand, KIC takes a similar value and the effect of grain size is
not remarkable.
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