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Abstract: ZrO2 (3Y-TZP) matrix composites with 30 vol % Zr metallic particles were obtained by
spark plasma sintering (SPS) using a colloidal processing method. The microstructure and mechanical
properties of this novel ceramic–metal composite have been studied. The fracture toughness of
composites is slightly higher than the values corresponding to monolithic zirconia. Scanning electron
microscope (SEM) observations of the crack path show that the major contributions to toughening are
the resulting crack blunting and branching that occurs at crack tips in the metallic particles before
the onset of crack propagation. Plastic deformation of the metallic particles is strongly influenced
by the constraint induced by the different phase arrangements. This system can be considered
as a particulate composite with a periodic residual stress field, in which the metal phase is under
strong compression due to the residual thermal stresses as a consequence of the coefficient of thermal
expansion mismatch. Therefore, the plastic deformation of the metallic particles in this composite is
likely to be reduced to a large extent.

Keywords: wet processing route; ceramic–metal composites; spark plasma sintering (SPS);
microstructure; mechanical properties

1. Introduction

Zirconia (3Y-TZP) is an extensively used material for many structural and biomedical applications
due to its excellent biocompatibility, chemical inertness and good tribological and mechanical
performance [1–4]. However, the major limitation of zirconia-based ceramics is still their low
fracture toughness. Brittle ceramics can be toughened by introducing a ductile phase into them. When
second phase metallic particles are incorporated into a brittle matrix, there are several toughening
mechanisms that may operate, but the maximum benefit is derived from the plastic deformation of the
metallic particles, i.e., crack blunting and bridging an advancing crack [5–7]. The bridging ligaments
exert closure stresses, which reduce the stress intensity at the crack tip and offer resistance to further
crack opening or propagation.

The magnitude of these crack closure stresses on the crack wake is based upon a stress–strain
relation of the metal ligaments, which is influenced by the properties of the reinforcing metal itself and
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the constraint (i.e., ligament yield stress, diameter, orientation, inclusion volume fraction and the nature
of the ceramic/metal interface) [8–10]. Unfortunately, the addition of micrometric metallic particles can
lead to the significant degradation of strength and fatigue resistance [11]. The difficulty with fabricating
a truly homogeneous ceramic–metal composite lies in achieving the required dispersion and spatial
distribution of the phases at different scales. Commercial approaches to producing these composites
involve dry powder metallurgical techniques, yielding a discrete metal phase dispersed in an otherwise
homogeneous ceramic matrix material [12]. Therefore, these routes suffer from a lack of control of the
microstructure. Homogeneous dispersion of metallic powders in ceramic powders can be very hardly
attained on account of their different density. On the other hand, the dimension of the metallic particles
is usually limited to those of the commercially available metallic powders. Consequently, for the
fabrication of reliable and multifunctional ceramic–metal composites, the ability to control the fraction
and structure (dispersion, size distribution, geometry, interface, etc.) of both phases is mandatory, and
this can be achieved by following a wet processing route. In previous works [12–14], the behavior
of ceramic–metal particulate suspensions was studied to adjust their rheological parameters in order
to attain the stability that leads to homogeneous compacts. It has been demonstrated that with
optimal conditions (appropriate selection of solids loading and surfactant addition) is possible to
form a network that trapped the metal particles and thus to avoid its segregation in order to obtain
reproducible microstructures free of agglomerates with the metal particles homogeneously distributed
in the final compacts after sintering. Using this concept, new biocomposites (biocermets) have been
designed and fabricated with some interesting properties. Several studies on zirconia that has been
reinforced with biometals such as titanium [15,16], niobium [17–20] and tantalum [21,22], have been
reported in the literature. However, the study of the zirconia–zirconium composite system has been
very scarce, and only a few papers have been published. Virkar et al. [23] prepared by hot-pressing
in Ar mixtures of zirconium oxide–zirconium 2-phase alloys powders with a composition of 40 at %
Zr-60 at % O (23 vol % metal phase). Complete densification occurred in 3 h at 1873 K. Microstructural
examination revealed that the oxide grains were completely isolated from each other by a thin film of
the metal phase. During investigations into the mechanical properties of Zr–ZrO2-x composites, the
metal did not wet the oxide grain boundaries in the range of the stability of the tetragonal polymorph
of zirconia, and after a long annealing treatment the solid metal was expelled from the composite.
Since the furnace atmosphere was reducing to ZrO2−x, the loss of metallic zirconium from the bulk
must have occurred by the exudation of zirconium, undoubtedly by solid-state diffusion. Therefore,
the mechanical properties (fracture strength and Young´s elastic modulus) of these ceramic–metal
composites were not improved [24].

Spark plasma sintering (SPS) has become a popular technique for ceramic–metal
consolidation [25–29]. Its prominent feature is to pass a direct current (DC) through the small
graphite die that contains the ceramic–metal powders. These powders can be consolidated to high
density in a much-shortened sintering time: a typical SPS cycle takes less than a few minutes, relative
to hours for hot-press or conventional sintering, indicating the high efficiency of SPS. On the other
hand, it is a powerful route to prevent the oxidation of the metals components and minimizing
two-phase reactions.

Zirconium was selected as a metal second phase because of its biocompatibility, low
electrochemical potential, high corrosion resistance and mechanical engineering properties. Zirconium
(density = 6520 Kg/m3; melting point = 2127 K) has a tensile strength of about 330 MPa, yield
strength of 230 MPa and Young’s modulus of 95 GPa at 20 ◦C [30]. Many studies demonstrate
excellent biocompatibility of zirconium in a variety of situations including orthopedic and dental
applications [31].

The aim of this paper was the fabrication of a new zirconia (3Y-TZP)-Zr composite by a wet
processing route and subsequent SPS. The microstructure and mechanical properties of this novel
ceramic–metal composite have been studied.
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2. Experimental Procedures

2.1. Starting Materials

The following commercially available powders have been used as raw materials: (1) Tetragonal
zirconia polycrystals (3Y-TZP, 3 mol % Y2O3; TZ-3YE, Tosoh Corp.), with an average particle size of
d50 = 0.26 ± 0.05 µm, a Brunauer, Emmett and Teller (BET) specific surface area of 16 ± 3 m2/g. (2)
Zirconium (Sigma-Aldrich, 99.2% purity) with an average particle size d50 = 5.65 ± 0.15 µm.

2.2. Powder Processing

Zirconia/Zr slurries with a solid load of 70 wt % were prepared using pentanol as liquid media
with 70/30 proportion (in vol %) of zirconia (3Y-TZP) and zirconium. The mixture was homogenized
by milling with zirconia balls in polyethylene containers at 150 rpm during 24 h and then dried at
333 K during 12 h. The use of pentanol prevents any further potential oxidation of Zr particles during
ball-milling homogenization as a consequence of the protection loss of the passive film onto their
surface by wear. The resulting powders were ground in an agate mortar and subsequently passed
through a 100 µm sieve. The obtained powders were placed in a die-punch setup made from isostatic
graphite (grade C4, DonCarb Graphite, Rostov, Russia) and compacted by spark plasma sintering
(SPS, FCT Systeme GmbH, HP D-25 SD, Effelder-Rauenstein, Germany) following this procedure: (i)
The samples were heated from room temperature to 873 K at a rate of 600 K/min, using a pressure of
~10 MPa; (ii) From 873 K to 1373 K a heating rate of 200 K/min and a pressure of ~10 MPa was used;
(iii) From 1373 K to 1573 K a heating rate of 50 K/min and pressure of 80 MPa was used, and this final
temperature and pressure were maintained for one minute. The temperature is controlled using a
central pyrometer focusing on the bottom of a borehole inside the upper punch, 5 mm above the top
of the sintering compact. This guarantees a correct temperature measurement, independent of the
sample properties or size.

The sintering cycle was performed under vacuum conditions. The sintered specimens had
diameters of 20 and 50 mm and a thickness of 2–4 mm in order to obtain machined specimens for the
flexural strength and toughness determination, respectively (Section 2.4). For comparison, zirconia
powders were densified by SPS following the same sintering cycle.

2.3. XRD Characterization

X-ray diffractometry (XRD) analyses of these samples were carried out in a D8 diffractometer
(Bruker AXS Inc., Madison, WI, USA) using CuKα radiation (λ = 1.5405981 Å) working at 40 kV and
30 mA in a step-scanning mode with a step size of 0.01◦ and a scan speed of 0.06◦/min at diffraction
angles 2θ ranging from 20◦ to 70◦. Analyses of the crystal phases were found using the following ICSD
codes: 62,994 (t-ZrO2), 41,572 (m-ZrO2) and 43,700 (zirconium).

The monoclinic phase content of different surfaces was calculated from 27◦ to 33◦ using the Garvie
and Nicholson method [32].

Xm =
Im(111) + Im

(
111
)

Im(111) + Im
(
111
)
+ It(101)

(1)

where It and Im represent the integrated intensity (area under the peaks) of the tetragonal (101)t and
monoclinic (111)m and (−111)m peaks. The monoclinic volume fraction was then obtained using the
equation proposed by Toraya et al. [33].

Vmtot =
1.311Xm

1 + 0.311Xm
(2)
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2.4. Microstructural Characterization

The microstructure of the sintered specimens was studied by scanning electron microscopy (SEM,
Phenom G2, The Netherlands) on surfaces polished down to 1 µm with diamond paste using a
polishing machine RotoPol-22 (Struers, Copenhagen, Denmark) at a speed of 150 rpm and a force of
30 N. The zirconia specimens were thermally etched at 1523 K for 30 min. To measure the zirconia
average grain size, a linear intercept method (LIM) was used [34].

2.5. Mechanical Characterization

The Vickers hardness, Hv, was measured using a Vickers diamond indenter (Leco 100-A, St. Joseph,
MI, USA) on polished surfaces, with an applied load of 9.8 N, and with an indentation time of 10 s.
The magnitude of the Vickers hardness was determined according to,

Hv = 1.854 P/d2 (3)

where P is the applied load (in N) and d is the diagonal length (in mm).
The sizes of the corresponding indentations were determined by scanning electron microscopy.

The hardness results were averaged over 10 indentations per specimen of each composition. The density
of the compacts was measured according to the Archimedes method [21].

Fracture toughness was measured by the single edge notched beam (SENB) technique on machined
specimens (five of each composition) with dimensions of 3.0 × 4.0 × 45 mm3. The tests were performed
at room temperature using a 5 kN universal testing machine AutoGraph AG-X (Shimadzu Corp.,
Tokyo, Japan) at a crosshead speed of 0.5 mm/min with span 40 mm. Notch was introduced by using a
diamond blade (saw). This method and formulas for fracture toughness calculations were reported
elsewhere [21].

Biaxial flexural strength was measured by using the piston-on-3-ball method (ISO 6872 standard).
A disc of the material to be tested (Ø 20mm, thickness 1.3–1.5 mm) was placed upon three balls
sitting 120◦ apart on a 10 mm diameter circle, with the polished surface as the tensile face. The piston
directly applied the load to the unpolished face at the center of the circle defined by the three balls.
The experiments were performed at room temperature using the same testing device applied for
toughness determination, with a piston speed of 1 mm/min until failure occurred. To obtain the average
strength and elastic modulus, twelve specimens of each composition were tested. Details of calculation
procedures have been reported in previous works [22].

3. Results and Discussion

3.1. XRD Study

Figure 1 shows typical X-ray diffraction patterns in the 2θ range from 20◦ to 70◦ for polished
surfaces of monolithic 3Y-TZP and 3Y-TZP/Zr composites. As it can be observed, the monolithic
zirconia (Figure 1A) is fully tetragonal, whereas in the case of the zirconia/Zr composite a small amount
of monoclinic zirconia can be seen (Figure 1B). The peaks of Zr metal are clearly distinguished. No other
phases are detected, as would be expected due to the chemical compatibility of both components at the
processing temperature. However, it should be noted that the zirconium peaks are shifted towards
lower values of 2θ, or in terms of interplanar distance, higher d spacing values in comparison with the
reference pattern (ISCD code: 43700).
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Figure 1. X-ray diffractometry (XRD) patterns of monolithic 3Y-TZP ceramic (A), and 3Y-TZP/Zr
composite (B) sintered by spark plasma sintering (SPS) at 1573 K.

An average increasing in d spacing of 0.0216 Å (approximately 2.8%) is observed, which indicates
that zirconium particles are under a strong compressive residual stress field, which is induced during
cooling from the sintering temperature due to the coefficient thermal expansion (CTE) mismatch
between t-ZrO2 (α = 10.8 × 10−6 K−1) and Zr (α = 5.8 × 10−6 K−1). Thus, when these composites
cool down from the sintering temperature, the reinforcement contracts less than the matrix; the metal
particles are subjected to compressive stress, and residual tensile stresses are accumulated in the
zirconia matrix. Therefore, the effects of the residual stress due to this CTE mismatch between 3Y-TZP
and Zr have to be taken into consideration in relation to the transformability of t-ZrO2. Generally, the
phase transformation is promoted by an applied stress, and the transformation rate increases with
the stress.

When the residual tensile stress is imposed on t-ZrO2 grains, phase transformation can occur easily
with aid of the stress, which explains the appearance of the (11-1) peak corresponding to monoclinic
zirconia in the XRD pattern of composite (Figure 1B).

The calculation of the average thermal residual stresses induced both in the zirconia matrix and
zirconium particles has been carried out by applying the formulation developed by Taya et al. [35],
based on the modified Eshelby’s model. Since the fraction of porosity in 3Y-TZP/Zr composites is very
small (≈2 vol %), the simplified equations proposed by Taya et al. for composites without voids have
been used. The following input parameters have been employed:

The volume fraction of zirconium particles, fZr (0.3); Poisson’s coefficients and Young’s moduli of
zirconia matrix and zirconium, νZrO2 (0.23)/νZr (0.34) and EZr (95 GPa)/EZrO2 (200 GPa) respectively,
and the CTE misfit strain, α∗, which has been calculated by integrating with respect to temperature
from 1573 K (the sintering temperature) to 298 K (room temperature) and using αZr = 5.8 × 10−6 K−1

and αZrO2 = 10.8 × 10−6 K−1 [35]. The calculated average thermal residual stresses in the particulate,
< σ >Zr, and in the ZrO2 matrix, < σ >ZrO2 are

< σ >Zr= −870 MPa

< σ >ZrO2 = 373 MPa
(4)

Therefore, the tensile stress fields in the vicinity of the zirconium grains promote the spontaneous
transformation of 3Y–TZP particles from the tetragonal phase to the monoclinic phase.

The obtained results from the Equations (1) and (2) showed that in the monolithic 3Y-TZP only
1 vol % of the available tetragonal zirconia transformed to monoclinic symmetry during failure (Table 1).
Meanwhile, in the 3Y-TZP/Zr composites, it went only 2 vol % with an initial 11 vol % in the polished
ceramic–metal composites.
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Table 1. Densities and mechanical properties of all studied specimens, as well as volume fractions
of tetragonal “t” and monoclinic “m” zirconia in polished and fractured surfaces and the resulting
transformability of tetragonal zirconia.

Specimen Density
[% th]

Young’s
Modulus
E [GPa]

Flexural
Strength
σf [MPa]

Hardness
HV [GPa]

Fracture
Toughness KIc

[MPa·m1/2]

Volume Fractions
of t- and m-ZrO2 [vol%] Transformability

of t-ZrO2 VtransPolished Fractured

t m t m

ZrO2 99 199 ± 4 1071 ± 99 14.4 ± 0.3 3.8 ± 0.1 99 1 98 2 1
ZrO2/Zr 98 166 ± 5 825 ± 63 12.8 ± 0.2 4.1 ± 0.1 89 11 87 13 2

3.2. Microstructure Study

An electron micrograph of the ZrO2-Zr composite is shown in Figure 2A. In this micrograph,
the darker and bright phases are zirconia and zirconium grains, respectively. A duplex grain size
distribution of zirconium particles is observed. Wet processing of zirconia and zirconium powders
using pentanol as the liquid medium allows obtaining compacts wherein the zirconium particles are
uniformly dispersed in the matrix, without the presence of large agglomerates of metal or ceramic
particles. It is known concerning the capability of alcohols to electrostatically stabilize suspensions
containing small ceramic particles by the formation of an electrical double layer with a net negative
charge on the particle surface [36–39]. The mechanisms proposed to explain the electrical double layer
formation in organic liquid media are based upon donor–acceptor interactions between particle surface
and organic liquid [36]. In the case of amphoteric oxides, like titania or zirconia, which have a point of
zero charge (PZC) ≈6 [40,41], the mechanism proposed by Damodaran and Mougdil [42] to explain
the surface charge of oxide particles and electrical double layer formation in alcoholic media can be
summarized in the following steps: (1) The adsorption of two alcohol molecules on the oxide particle
surface; (2) the ionization and formation of RO− and ROH2

+; (3) capture of H+ from the oxide surface
by RO−; (4) and the desorption of ROH and ROH2

+. Zeta potential measurements show that the values
become less negative as the molecular size of the alcohol increases, due to their dielectric constant
decreasing, and therefore, their tendency to ionization on the surface also diminishes. On the other
hand, the adsorption of generated ROH2

+ increases for alcohols with larger molecular size, which
partially neutralizes the surface negative charge [39]. Thus, alcohol having smaller molecular size,
like methanol, should form more easily the electrical double layer and yield more stable suspensions.
However, Farrokhi-rad et al. [39] found out the opposite behavior for the series methanol, ethanol,
isopropanol and butanol, the methanolic suspension being the less stable. In order to explain this result,
Farrokhi-rad et al. took into account the effect of the viscosity of different alcohols on the diffusion
coefficient given by the Stokes–Einstein equation [43], which is directly related with the tendency of
particles to form agglomerates:

D =
kbT

6πηr
(5)

where kb is Boltzmann’s constant, T is absolute temperature, r is the particle radius and η is the
viscosity of the medium. Since, generally speaking, the zeta potential of ceramic particles is low in
pure alcohols, these can diffuse more rapidly and increase the frequency of collisions with each other
due to Brownian motion in a medium with low viscosity, and as a consequence, the formation of
agglomerates is favored. In the case of pentanol used in this study, the viscosity (3.619 × 10−3 Pa·s) [44],
is higher than those of the alcohols above mentioned. Thus, although a low charge on the particles is
expected (assuming than the surface of both ceramic, ZrO2 and passivated Zr particles are chemically
similar), the higher viscosity decreases the diffusion as well as the tendency to the formation of large
and hard agglomerates. On the other hand, the adsorption of pentanol molecules, which have larger
molecular size, onto the surface of particles does not rule out, as it was mentioned before.
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Figure 2. SEM micrographs of a polished surface of the zirconia–zirconium composite (A) (ceramic
matrix: dark; zirconium particles: bright) and a thermally etched monolithic zirconia (B).

This would create a steric hindrance that contributes to avoiding collisions between particles
that can yield hard agglomerates. Hence, the pentanolic ZrO2/Zr suspension prepared in this
work, with a high solid load (70 wt %), can be considered as a partially stabilized one with weak
interparticle forces that can create easily breakable particle networks, which avoid the segregation by
sedimentation of the larger size fraction of Zr particles during drying, and prevent the formation of
hard agglomerates. Consequently, microstructures with the metal phase homogeneously dispersed,
without large agglomerates, which can act in a detrimental way for mechanical properties, and with a
continuous ceramic/metal concentration ratio are obtained.

SEM micrograph of the polished and subsequently thermally etched surface of zirconia ceramic
is shown in Figure 2B. It is important to mention that after thermal etching no difference has been
found between the ceramic matrix grain sizes of the 3Y-TZP and 3Y-TZP/Zr composites. According to
LIM the zirconia average grain size for monolithic zirconia and composite is about 0.32 and 0.29 µm,
respectively. Consequently, the presence of the zirconium particles has not affected the grain growth
of zirconia.

3.3. Mechanical Properties

The mean biaxial flexural strength, Young’s modulus, hardness and fracture toughness for the
studied specimens are presented in Table 1. The Young’s moduli of the composite were found to be close
to values predicted by the rule of mixtures of Voigt and Reuss models. Considering EZrO2 = 200 GPa
and EZr = 95 GPa [30], the prediction from these models is 169 GPa. These values are reasonably
close to the experimental ones (≈166 GPa), taking into account that a small fraction of porosity (≈2%)
is present.

The mean biaxial flexural strength values corresponding to ZrO2 and ZrO2/Zr were found to be
1071 ± 99 MPa and 825 ± 63 MPa, respectively. As a direct consequence of the smaller critical grain
size in ZrO2, the bending strength of the monolithic ceramic is higher than the strength corresponding
to zirconia/metal composites. On the other hand, it is important to point out, the apparent increase
in strength due to the transformation-induced compressive stresses on the surface of the composites.
The average fracture toughness of ZrO2/Zr composites was found to be 4.1 MPa·m1/2, slightly higher
than the value obtained for the monolithic zirconia (3.8 MPa·m1/2). The modest monolithic zirconia
toughness value can be explained by the low transformation of zirconia during fracture.
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The hardness value observed for ZrO2/Zr composites was 12.8 GPa (Table 1). This value is higher
than that expected from the rule of mixtures (Voigt model) [45], which is given by

Hcomp = fZrO2 ·HZrO2 + fZr·HZr (6)

where fZrO2 , HZrO2 , fZr, and HZr denote volume fractions and hardness of the ceramic matrix and
Zr particles, respectively. By taking HZrO2 = 14.4 GPa from Table 1, and HZr = 1.5 GPa [30], then
Equation (6) yields a hardness value of 10.5 GPa. Thus, the measured hardness is ≈22% higher than the
value expected by the rule of mixtures. This fact could be related to hardness increasing of zirconium
particles due to the compressive residual stresses to which they are subjected [46].

Fractographic studies of the materials showed no clear evidence of bridging and plastically
deformed zirconium particles and matrix–reinforcement interfacial decohesion (Figure 3). Fracture of
the Zr particles occurred predominantly by cleavage. The compressive stress in the metal particles
produces that the crack is only attracted by the particle and generates the crack trapping by the ductile
phase. This was attributed mainly to the constraint imposed by the rigid matrix and residual stresses
surrounding the metal particles.

Figure 3. Fracture surface of ZrO2/Zr composite obtained by SPS after the bending test.

On the other hand, if the strength of the ceramic–metal bond is too strong, then there will
be no debonding, and the particle will be almost fully constrained, giving little opportunity for
plastic stretching. In this particular case, the irregularly shaped zirconium particles are mechanically
interlocked with the matrix. The perfect bonding imposes lateral constraints on the inclusions,
prohibiting the full advantage of the particle’s ductility. As pointed out in Ashby et al. [47], the
force-displacement curve for a bonded (constrained) particle is quite different than that for an
unconstrained material, as measured in an ordinary tensile test. The degree of constraint is an
important factor affecting the amount of energy absorbed in stretching, thus the fracture toughness.

Figure 4 shows the SEM image of crack microstructure details along the path of a crack produced
by a Vickers indentation. SEM observations on crack paths suggest the occurrence of both crack-tip
blunting and renucleation by zirconium grains as operating toughening mechanisms in these composites.
The crack can be arrested at the Zr phase particle, such that it must renucleate on the other side.
Consequently, the stress reduction at the crack-tip becomes the primary source of the increased
fracture toughness.
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Figure 4. SEM image of crack microstructure details along the path of a crack produced by a
Vickers indentation.

XRD analyses of the polished surfaces of monolithic zirconia materials revealed the predominance
of t-ZrO2 (Table 1). Additionally, the results proved that the fraction of transformed zirconia slightly
increases during the fracture process (Table 1). It can be concluded that SPS zirconia has no presence
of any transformation toughening mechanism. This may be attributed to the nanoscale nature of
the zirconia grains, below the critical transformation size. On the other hand, it was found that the
high t→m transformation in the polished ceramic-metal composites (11%), together with its low t→m
transformability (2%). Thus, the zirconia transformability in the studied materials is not relevant for
the increase of the average fracture toughness.

The results obtained in this investigation suggest that toughness mechanisms associated with
ductile phases and operating under crack propagation are very sensitive to plastic properties (yield
stress) of the reinforcement. This property plays a very important role in the crack growth resistance
of these ZrO2/Zr composites. In the case of the Zr particle constrained in a zirconia matrix the
threshold to plastic deformation is much higher than in the case of more ductile metal like Nb or
Ta particles reinforced a zirconia matrix [17–22]. Therefore, the crack-tip energy was not used to
plastically deform the metal particles, as in the case of the ZrO2/Nb or ZrO2/Ta composite. The crack
propagation resistance in the ZrO2/Zr composites can be attributed to crack–particle interaction intrinsic
mechanisms, including crack renucleation (in the matrix and/or particle), crack branching or crack
blunting. Thus, the bridging of metal reinforcements may not be a universally effective method in
improving the crack growth resistance of zirconia ceramics, and depends on the intrinsic properties of
the metal reinforcement, and also of the extrinsic properties like the nature of the interfaces between the
dissimilar materials, constrain of the metal particle and residual stress distribution in the ceramic–metal
system. On the other hand, in these particular composites with limited plastic deformation of the metal
particles, there is a way to avoid the conflicts between the mutually exclusive properties of toughness
and fatigue resistance present in other zirconia–metal ceramic systems [11] through the presence of
toughening mechanisms that results in a local decrease of stress at the crack-tip. Further investigations
will focus on how these intrinsic toughening mechanisms analyzed in this study affect the fatigue
mechanical behavior of zirconia/zirconium composites.

4. Conclusions

The wet processing method and the Spark Plasma Sintering (SPS) technique have been used to
obtain zirconia/Zr compacts with high densities (98% of the theoretical density) and microstructures
with uniformly distributed metallic particles.
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No clear evidence of bridging as the main reinforcement mechanism by the plastic deformation of
zirconium particles has been observed. This can be related to the constraint of metal particles due
to the large compressive thermal stress field to which they are subjected, together with the strong
bonding with the rigid ceramic matrix, which avoid the plastic stretching of metal particles.

The dominant toughening mechanisms operating in the present ZrO2–Zr composite are crack
blunting and branching, which were strictly limited to the increases of the composite´s toughness value.
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