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Abstract: Dynamic separation and direct edge loading of hip replacement bearings can be caused
by many factors, including implant positioning, implant design, changes in device over time,
surgical variations and patient variations. Such dynamic separation and direct edge loading can
lead to increased wear. Different input kinematic conditions have been used for experimental hip
simulator studies to produce clinically relevant elliptical contact wear paths between the bearings
during gait. The aim of this study was to investigate the influence of input kinematics (two axes of
rotation simulation conditions (without abduction/adduction) and three axes of rotation simulation
conditions (with abduction/adduction and different loading profiles) and variations in component
positioning (different levels of medial-lateral translational mismatch at standard and steep cup
inclination angles) on the occurrence, severity of edge loading, dynamic separation and wear of size
36 mm ceramic-on-ceramic hip bearings on an electromechanical hip joint simulator. The results
showed that, overall, either of the two axes or three axes input profiles were equally valid in providing
a suitable preclinical testing method for assessing the occurrence and severity of edge loading and
wear under edge loading conditions. In terms of component positioning, as cup inclination and
medial-lateral translational mismatch increased, so did dynamic separation, axial load at the rim,
severity of edge loading and wear.
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1. Introduction

Low wear rates of ceramic-on-ceramic hip replacements have been reported under standard gait
conditions from hip simulator studies, despite variations in wear rates and the presence of stripe wear
patterns being observed in clinical retrievals [1–3]. Such stripe wear patterns are understood to be
caused by high contact stresses occurring between the femoral head and the rim of the acetabular cup as
a result of direct edge loading [1,4–7]. It has been shown that for ceramic-on-ceramic bearings, steep cup
inclination angle alone did not result in stripe wear in in vitro simulator studies [8]. It was only when
Nevelos et al. introduced microseparation and edge loading to the simulation cycle that the stripe
wear pattern, elevated wear rates and a bimodal particle distribution were produced, hence replicating
clinical wear rates, wear patterns and wear particles [9–11].

Clinically, separation of the head from the cup has been observed using fluoroscopy during
different patient activities including the walking gait cycle [12]. Dynamic separation can be defined as
the distance between the femoral head and actebular cup bearing centres during gait. It is important
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to note that there is actually no loss of contact between the femoral head and the acteabular cup.
Dynamic separation and direct edge loading (as opposed to non-direct edge loading, i.e., following
impingement) can be caused by many factors, including implant positioning, implant design, changes
in device over time, surgical variations and patient variations [8,10,13–19]. Variation in implant
positioning includes rotational positioning around three anatomical axes, and translational positioning
along three anatomical axes. Specifically, rotational positioning of the acetabular cup can be described
as cup inclination (rotation about the anterior-posterior (A-P) axis), version (rotation about the
superior-inferior (S-I) axis) and tilt (rotation about the medial-lateral (M-L) axis). The translational
position of the femoral head and the acetabular cup can be defined as the position of the centres of
the rotations of the acetabular cup and femoral head relative to each other along the medial-lateral,
anterior-posterior and/or superior-inferior axes. It is the mismatch between the femoral head and
acetabular cup centres in the simulator that is required to replicate the dynamic separation observed
in vivo [10]. Original hip simulation studies from Leeds fixed the level of dynamic separation along
the medial-lateral axis as the input to produce stripe wear, which in effect predetermined the level
of severity. This original methodology was termed ‘microseparation’. More recently, varying levels
of medial-lateral translational positioning mismatch have been used as inputs, resulting in different
levels of dynamic separation (which can be greater than the originally defined level of 0.5 mm
microseparation), and hence the occurrence and severity of edge loading [20]. In this new approach,
the level of separation (severity of edge loading) is an output of the system. This approach means that
the influence of factors such as design, head diameter, coverage angle, etc., on the level of dynamic
separation and severity of edge loading, and hence wear, can be studied. This two stage approach of
determining the biomechanical outputs of dynamic separation and severity of edge loading (stage one)
and wear (stage two) has been recently described by O’Dwyer Lancaster–Jones et al. [20]. It allows a
large number of biomechanical conditions to be evaluated, informing the conditions of subsequent
wear studies.

The design and complexity of hip joint simulators and the selection of input parameters has
varied [21,22]. Hip joint motions and loads have been typically applied using electromechanical,
hydraulic or pneumatic systems. Both two axes (flexion/extension and internal/external rotation) and
three axes (flexion/extension, internal/external rotation and abduction/adduction) of rotation conditions
have been used for experimental hip simulator studies to produce clinically relevant elliptical contact
wear paths between the bearings during gait [23,24]. The international standard ISO 14242-1 [25]
describes three axes of rotation conditions to simulate the full range of physiological motion based
on the standard walking cycle. In the past, it has not been uncommon for simulation of the standard
walking cycle for two axes of rotation profiles to have been used with increased magnitudes of
flexion/extension angular displacements and phasing to replicate the equivalent of three axis of rotation
and to compensate for the lack of abduction/adduction motion [24]. The effects of these two different
simulation approaches are now investigated in combination with the recent advances in the approach
to simulation of dynamic separation and edge loading.

The aim of this study was to:

1. Investigate the occurrence and severity of edge loading and dynamic separation under
different levels of medial-lateral translational mismatch at standard and steep cup inclination
angles (biomechanical study), under two axes of rotation simulation conditions (without
abduction/adduction) and three axes of rotation simulation conditions (with abduction/adduction)
with different loading profiles.

2. Determine the wear of ceramic-on-ceramic bearings under edge loading conditions at standard
and steep cup inclination angles (wear study), under two axes of rotation simulation
conditions (without abduction/adduction) and three axes of rotation simulation conditions
(with abduction/adduction and different loading profiles).
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2. Materials and Methods

Ceramic-on-ceramic (BIOLOX®delta) 36 mm diameter hip replacement bearings (PINNACLE®,
DePuy Synthes Joint Reconstruction, Leeds, UK), with a nominal diametric clearance of 100 micrometres,
were investigated using an electromechanical hip joint simulator (ProSim EM13, Simulation Solutions,
Stockport, UK) [26] (Figure 1). The femoral head was placed onto a vertical spigot with a 12/14 taper and
the acetabular cup was press fit into a metallic shell (PINNACLE®, DePuy Synthes Joint Reconstruction,
Leeds, UK). In the ProSim EM13, the angular rotations (flexion/extension, adduction/abduction and
internal/external rotation) were all applied to the femoral head, and the axial loading was through
the cup.

Ceramics 2019, 2 FOR PEER REVIEW  3 

 

Ceramic-on-ceramic (BIOLOX®delta) 36 mm diameter hip replacement bearings (PINNACLE®, 
DePuy Synthes Joint Reconstruction, Leeds, UK), with a nominal diametric clearance of 100 
micrometres, were investigated using an electromechanical hip joint simulator (ProSim EM13, 
Simulation Solutions, Stockport, UK) [26] (Figure 1). The femoral head was placed onto a vertical 
spigot with a 12/14 taper and the acetabular cup was press fit into a metallic shell (PINNACLE®, 
DePuy Synthes Joint Reconstruction, Leeds, UK). In the ProSim EM13, the angular rotations 
(flexion/extension, adduction/abduction and internal/external rotation) were all applied to the 
femoral head, and the axial loading was through the cup. 

 
Figure 1. ProSim EM13 hip joint simulator with hip replacements under edge loading conditions. 

This study was in two parts. Part one consisted of biomechanical studies to investigate the 
magnitude of dynamic separation, maximum load at the rim at 0.1 mm of dynamic separation and 
the severity of edge loading under different levels of translational mismatch conditions at cup 
inclination angles equivalent to 45° and 65° in vivo [27,28]. The 45° cup inclination angle is currently 
considered a target inclination angle during surgery, whereas the 65° angle is considered a steep cup 
inclination angle. Following the biomechanical investigations, part two of the study involved 
determining the wear and stripe wear pattern of ceramic-on-ceramic bearings with a medial-lateral 
translational mismatch of 4 mm at 45° and 65° cup inclination angles. 

Six ceramic-on-ceramic bearings were used for the biomechanical study (part 1). Three axes 
(Figure 2a) and two axes (Figure 2b) of rotation conditions [24,25] with 0, 1, 2, 3 and 4 mm of 
translational mismatch were applied between the head and cup bearing centres for cups inclined at 
45° (n = 3) and 65° (n = 3). Zero mismatch represented standard concentric conditions, which included 
an offset due to the radial clearance between the femoral head and acetabular cup under axial loading 
conditions (Figure 3a). The two axes of rotation input conditions consisted of internal/external 
rotation out of phase with the flexion/extension profile and increased range of motion to compensate 

Figure 1. ProSim EM13 hip joint simulator with hip replacements under edge loading conditions.

This study was in two parts. Part one consisted of biomechanical studies to investigate the
magnitude of dynamic separation, maximum load at the rim at 0.1 mm of dynamic separation and the
severity of edge loading under different levels of translational mismatch conditions at cup inclination
angles equivalent to 45◦ and 65◦ in vivo [27,28]. The 45◦ cup inclination angle is currently considered a
target inclination angle during surgery, whereas the 65◦ angle is considered a steep cup inclination angle.
Following the biomechanical investigations, part two of the study involved determining the wear and
stripe wear pattern of ceramic-on-ceramic bearings with a medial-lateral translational mismatch of
4 mm at 45◦ and 65◦ cup inclination angles.

Six ceramic-on-ceramic bearings were used for the biomechanical study (part 1). Three axes
(Figure 2a) and two axes (Figure 2b) of rotation conditions [24,25] with 0, 1, 2, 3 and 4 mm of translational
mismatch were applied between the head and cup bearing centres for cups inclined at 45◦ (n = 3) and
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65◦ (n = 3). Zero mismatch represented standard concentric conditions, which included an offset due
to the radial clearance between the femoral head and acetabular cup under axial loading conditions
(Figure 3a). The two axes of rotation input conditions consisted of internal/external rotation out of
phase with the flexion/extension profile and increased range of motion to compensate for the lack of
abduction/adduction motion. The three axes of rotation input condition used the conditions described
in the international standard ISO 14242-1 [25], which included abduction/adduction motion.
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Figure 2. Joint simulator input profiles for (a) three axes of rotation and (b) two axes of rotation
conditions [24,25].

Twenty-four 36 mm diameter ceramic-on-ceramic bearings were used for the wear studies (part
2). Two axes of rotation conditions at 45◦ (n = 6) and 65◦ (n = 6) cup inclination angles with 4 mm
translational mismatch was applied for three million cycles. Three axes of rotation conditions at 45◦

(n = 6) and 65◦ (n = 6) cup inclination angles with 4 mm translational mismatch was applied for three
million cycles.

The medial-lateral translational mismatch was set by offsetting the cup medially from the femoral
head to obtain the required level of mismatch (Figure 3b). The medial-lateral spring was set to its
free length at the required level of translation mismatch (0, 1, 2, 3 or 4 mm). The centre of rotation
was fixed for the femoral head and the cup was allowed to translate along the medial-lateral (and
anterior-posterior) axis. A spring with a spring constant of 100 N/mm was used to apply a medial-lateral
load, consistent with previous studies [10,20]. The head and cup were concentric when the spring was
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fully compressed (Figure 3c). The separation between the head and cup (Figure 3d) occurred before,
during and after the swing phase, when the axial load was low enough to allow the head and cup to
separate. Linear Variable Displacement Sensors (LVDTs) were used to set the translational mismatch
between the bearing centres and to measure the medial-lateral dynamic separation during the gait cycle.
A six axis load cell above each cup (Figure 1) measured the output axial force and medial-lateral force.
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Figure 3. (a) Concentric conditions without a medial-lateral spring, (b) rotational positioning and
translational surgical positioning, (c) semi-concentric head and cup conditions at peak load during the
stance phase and (d) dynamic separation between the head and cup during the gait cycle.

The lubricant used throughout was 25% new-born calf serum supplemented with 0.03% sodium
azide to minimise bacterial growth. For the wear simulation studies, the serum was changed
approximately every 330,000 cycles.

For the biomechanical studies, the simulator was run for 500 cycles at 1Hz, with 128 data points
recorded during each cycle. The severity of edge loading was determined by calculating the area
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under the axial force and medial-lateral force curves during edge loading due to dynamic separation,
as discussed in a previous study [20]. The load at the rim during edge loading conditions was
determined when the relative medial-lateral displacement between the head and cup centre of rotation
was 0.1 mm.

Gravimetric and geometric measurements were carried out at one million cycle intervals. At each
measurement interval, the components were removed from the simulators and cleaned in accordance
with a standard operating procedure. The gravimetric wear was determined using a microbalance
(Mettler Toledo XP205 analytical balance, Greifensee, Switzerland), which had a readability of 0.01 mg.
The change in mass was converted to volumetric wear using a density of 4.37 × 10−3 g/mm3 for
BIOLOX®delta. The geometric measurements were carried out using a coordinate measurement
machine (Legex 322, Mitutoyo, Japan). Redlux software (Southampton, UK) was used to construct
a three-dimensional map of the acetabular cup and femoral head surfaces. Mean values and 95%
confidence limits were determined, and two way ANOVA was used for statistical analysis of the wear
rates (two variables of inclination angle and number of rotation axes) with significance levels taken at
p < 0.05.

The data associated with this article is openly available from the University of Leeds data
repository [29].

3. Results

The medial-lateral dynamic separation between the head and cup centres of rotations under
two axes and three axes of rotations with 1, 2, 3 and 4 mm of translational mismatches at 45◦ and
65◦ cup inclination angles is shown in Figure 4. No dynamic separation was observed with zero
mismatch. Similar values of dynamic separation were observed under two axes and three axes of
rotation conditions. The magnitude of dynamic separation increased as the level of medial-lateral
translational mismatch increased from 1 mm through to 4 mm. The largest magnitude of dynamic
separation during gait occurred with 4 mm of translational mismatch at a 65◦ cup inclination angle.
Under two axes of rotation conditions the dynamic separation was greater at a 65◦ cup inclination
angle compared to 45◦ at 1, 2, 3 and 4 mm of translational mismatch conditions. This was the same for
the three axes of rotation conditions, with the exception of 1 mm of translational mismatch, where a
similar dynamic separation was observed under both cup inclination angles (Figure 4).
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Figure 4. Dynamic separation (mean ± 95% confidence limits, n = 3) of 36 mm diameter BIOLOX®delta
ceramic-on-ceramic bearings under two axes and three axes of rotation conditions with 45◦ and 65◦ cup
inclination angle conditions and 1, 2, 3 and 4 mm of medial-lateral translational mismatch conditions.

The load at the rim, measured when the separation between the head and cup reached 0.1 mm
following heel strike under two axes and three axes of rotation conditions with 1, 2, 3 and 4 mm of
translational mismatch at 45◦ and 65◦ cup inclination angles, is shown in Figure 5. Larger mean rim
loads were observed for ceramic-on-ceramic bearings under three axes compared with two axes of
rotation conditions. The rim load increased as the levels of translational mismatch increased under
both two axes and three axes of rotation conditions. The highest mean value measured was at 4 mm
of mismatch with a 65◦ cup inclination angle condition. The lowest rim loads occurred at 1 mm of
translational mismatch at 45◦ and 65◦ cup inclination angles. No rim loads due to dynamic separation
were observed with zero translational mismatch conditions.
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Figure 5. Load at the rim at 0.1 mm of dynamic separation (mean ± 95% confidence limits, n = 3)
of 36 mm diameter BIOLOX®delta ceramic-on-ceramic bearings under two axes and three axes of
rotation conditions at 45◦ and 65◦ cup inclination angles with 1, 2, 3 and 4 mm of medial-lateral
translational mismatch.

The severity of edge loading under two axes and three axes of rotation conditions with 1, 2,
3 and 4 mm of translational mismatch at 45◦ and 65◦ cup inclination angles is shown in Figure 6.
There was an increase in the severity of edge loading due to dynamic separation as the translational
mismatch between the head and cup increased. The largest severity of edge loading occurred at 4 mm
of translational mismatch conditions at a 65◦ cup inclination angle. The severity of edge loading was
similar under two axes and three axes of rotation conditions.
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Figure 6. Severity of edge loading (mean ± 95% confidence limits, n = 3) of 36 mm diameter
BIOLOX®delta ceramic-on-ceramic bearings under two axes and three axes of rotation conditions
with 45◦ and 65◦ cup inclination angles and 1, 2, 3 and 4 mm of medial-lateral translational mismatch
conditions (offset deficiency).

Following on from the biomechanical investigation, the wear rates of ceramic-on-ceramic bearings
were determined under edge loading conditions with 4 mm medial-lateral translational mismatch for
both 45◦ and 65◦ cup inclination angles (Figure 7). There was no significant difference between the
mean wear rates under two axes and three axes of rotation conditions (p = 0.50, two way ANOVA).
There was a significant increase in the wear rate at a 65◦ cup inclination angle compared with a 45◦ cup
inclination angle (p < 0.01, two way ANOVA).

Stripe wear patterns were observed on the femoral heads under edge loading conditions (Figure 8).
The maximum wear penetration depths on the heads were observed within the wear stripe region.
The wear stripe patterns generated under the two axes of rotation condition were different to those
generated under the three axes of rotation condition, with more of a ‘two pronged’ stripe shape being
observed under the three axes of rotation condition. A steeper cup inclination angle of 65◦ resulted in
a stripe wear pattern on the femoral head that was located more superiorly compared to the stripe
wear pattern with a 45◦ cup inclination angle.
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Figure 8. Wear on the femoral head at 45◦ and 65◦ cup inclination angles under two axes and three
axes of rotation conditions (negative values indicate wear).

4. Discussion

The aim of this study was to investigate the influence of input kinematics and variations in
component positioning on the severity of edge loading and wear of ceramic-on-ceramic hip bearings
on an electromechanical hip joint simulator.

Both the three axes and two axes of rotation input conditions (Figure 2) resulted in similar
maximum dynamic separation during gait at 2, 3 and 4 mm of medial-lateral translational mismatch.
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Applying three axes of rotation resulted in higher rim loads during edge loading at 0.1 mm of separation
compared with the rim loads when the two axes of rotation conditions was applied. It is anticipated
that the differences in loading rate and profile between the two conditions (Figure 2) contributed to
the different rim loads at 0.1 mm of separation. The load at the rim measurement showed an increase
at higher levels of medial-lateral translational mismatch, however, for a wider assessment of edge
loading, the severity of edge loading throughout the cycle was also considered. When measuring
the severity of edge loading across the complete gait cycle, similar results were observed when two
axes and three axes of rotation conditions were applied. There were no significant differences in wear
rates between the two input conditions. However, there was a difference in the stripe wear pattern
on the femoral head (Figure 8), which appeared to have more of a ‘two pronged’ stripe shape under
the three axes of rotation condition. The similar dynamic separation, severity of edge loading and
wear, yet difference in axial load at the rim, indicates that the output of axial load at the rim may have
limited usefulness.

These results show that, overall, either of the two axes or three axes input profiles shown in Figure 2
were equally valid in providing a suitable preclinical testing method for assessing the occurrence and
severity of edge loading and wear under edge loading conditions. However, the increased complexity
of simulation in three axes, although more closely replicating physiological joint biomechanics and
in vivo conditions, does need to be considered.

This study has shown higher levels of dynamic separation, axial load at the rim, severity of edge
loading and wear as cup inclination and medial-lateral translational mismatch increases, consistent with
a previous study [20]. The larger rim loads and severity of edge loading at higher levels of mismatch
correlates to the increased wear rates, showing the advantages of the recently described two phase
approach used to study the mechanics of hip replacements under a range of conditions. Through the use
of a biomechanical stage, the occurrence and severity of edge loading can be investigated before wear
simulation is carried out to assess the tribological performance of hip replacement bearings. A similar
wear rate at a 45◦ cup inclination angle with 4 mm of translational mismatch was reported in a previous
study for ceramic-on-ceramic bearings of the same size and type (0.3 mm3/million cycles, compared to
0.21 mm3/million cycles in this study under two axes of rotation conditions) [20]. However, higher wear
and severity of edge loading was reported at a 65◦ cup inclination angle with 4 mm of translational
mismatch in the same previous study (1 mm3/million cycles, compared to 0.37 mm3/million cycles in
this study under two axes of rotation conditions) [20]. Differences in simulator design and mechanics
could have contributed to the difference in the severity of edge loading and wear rates between the
two studies. The previous study was performed using the Leeds II Physiological Anatomical Hip
Simulator, which is a hydraulic simulator that has two axes of rotation conditions and used the same
input profiles as the two axes of rotation conditions described in this study (Figure 2b). This does
nonetheless demonstrate how the approach to setting the medial-lateral translational mismatch can be
replicated across different designs of hip simulators. Further, the approach can clearly differentiate
the wear performance of ceramic-on-ceramic bearings. It is important to note that in new product
development and regulatory testing, simulations would be used in a comparative approach to an
existing predicate device with clinical history, and results of different devices should not be compared
across different simulation methods.

Although the wear rates of ceramic-on-ceramic bearings observed in this study and previous
studies are low (<1 mm3/million cycles), there is a demand for hip replacements to function under
a wide range of conditions in younger and more active patients for longer term durations. Further,
since most current composite ceramic-on-ceramic bearings are zirconia-based, hydrothermal ageing
of zirconia can be a concern in the longer term [30,31]. Therefore, future studies should consider a
wider range of parameters, including the influence of ageing, as well as variations in version angle
and variations in anterior-posterior translational positioning (anterior-posterior offset deficiency).
These latter two factors are understood to vary clinically, and these may also impact on the long term
success of hip replacements in the future.
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5. Conclusions

The input kinematic conditions in terms of two axes of rotation simulation conditions (without
abduction/adduction) and three axes of rotation simulation conditions (with abduction/adduction and
different loading profiles) did not influence the occurrence, severity of edge loading, dynamic separation
or wear of 36 mm ceramic-on-ceramic bearings under different levels of medial-lateral translational
mismatch at standard and steep cup inclination angles. However, the occurrence, severity of edge
loading, dynamic separation and wear of 36 mm ceramic-on-ceramic bearings was influenced by
variations in component positioning, with a significantly higher wear rate for a 65◦ cup inclination
angle compared to a 45◦ cup inclination angle (with 4 mm medial-lateral translational mismatch).
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