

Fabricating MOF/polymer composites via freeze casting for water remediation

Coral Rogers ¹, Daniel Pun ¹, Qingshan Fu ², Haifei Zhang ^{1,*}

- ¹ Department of Chemistry, University of Liverpool, Oxford Street, Liverpool, L69 7ZD, United Kingdom;
- ² College of Material Science and Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
- * Correspondence: zhanghf@liverpool.ac.uk; Tel.: +44-151-7943545.

Table 51. Description of chrosary 010-00 samples prepared and tested.	
Sample Name	Sample Description
CM/UiO-66-1	Chitosan (medium molecular weight) with UiO-66 nanoparticles with the
	weight ration of chitosan:UiO-66 = 1:1
CM/UiO-66-2	Chitosan (medium molecular weight) with UiO-66 nanoparticles with the
	weight ration of chitosan:UiO-66 = 1:2
CH/UiO-66-1	Chitosan (high molecular weight) with UiO-66 nanoparticles with the weight
	ration of chitosan:UiO-66 = 1:1
CM/UiO-66-NO ₂ -1	Chitosan (medium molecular weight) with UiO-66-NO2 nanoparticles with
	the weight ration of chitosan: $UiO-66-NO_2 = 1:1$
CM/UiO-66-NH2-1	Chitosan (medium molecular weight) with UiO-66-NH2 nanoparticles with
	the weight ration of chitosan:UiO-66-NH $_2$ = 1:1
CM/UiO-66-1 (HT)	This sample is heat treated (HT) in a vacuum oven at 90 °C for 24 h.
CM/UiO-66-1 (BT)	This sample is base treated (BT) by immersing in 1M NaOH solution for 15
	min.
CM/UiO-66-1 (GA)	This sample is chemically crosslinked with glutaral dehyde (GA)

Table S1. Description of chitosan/UiO-66 samples prepared and tested.

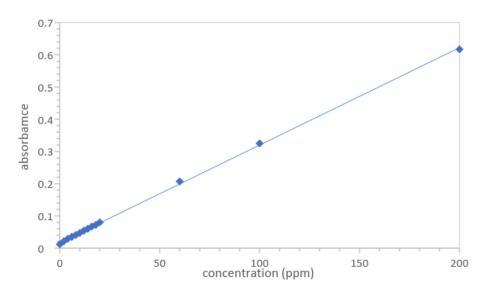


Figure S1. The calibration curve used to calculate the MCPP solution concentration.

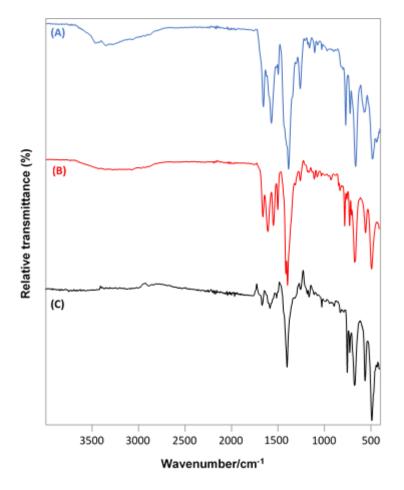
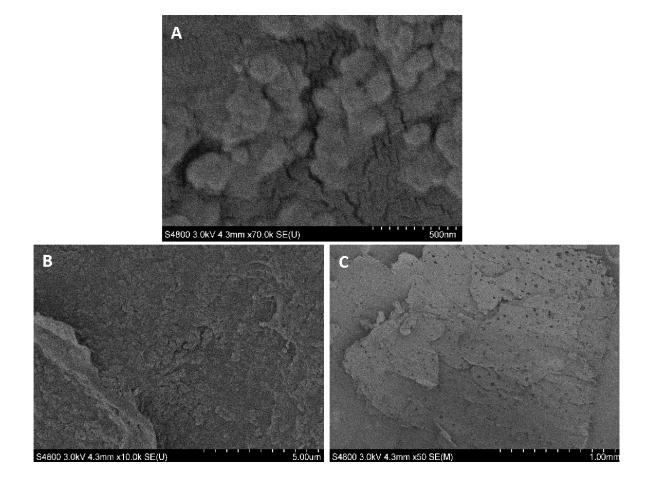
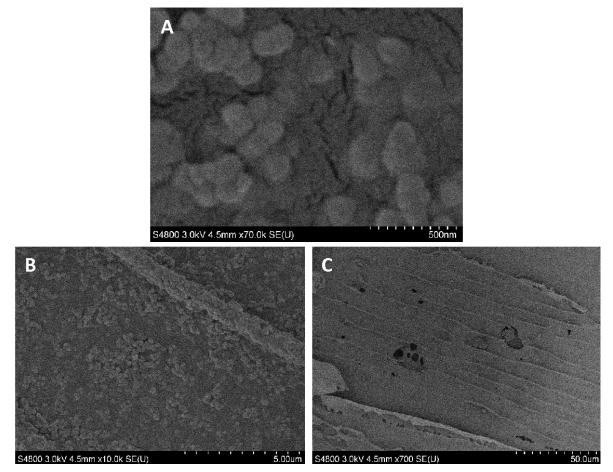
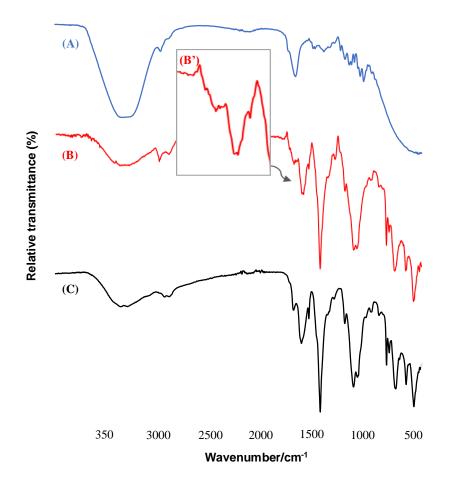




Figure S2. FTIR spectra of the MOF nanoparticles (A) UiO-66-NH₂, (B) UiO-66-NO₂, and (C) UiO-66.



2 of 6

Figure S3. SEM images of chitosan (medium molecular weight)/UiO-66 composites at different magnifications. The UiO-66 nanoparticles (A,B) can be clearly seen. An ice-templated layered structure is also observed (C).

Figure S4. SEM images of chitosan (medium molecular weight)/UiO-66-NH₂ composites at different magnifications. The UiO-66-NH₂ nanoparticles (A,B) and the ice-templated structure (B,C) can be clearly seen.

Figure S5. FTIR spectra confirm the crosslinking of chitosan by glutaraldehyde. (A) glutaraldehyde solution, (B) glutaraldehyde-crosslinked CM/UiO-66-1 monolith and (B') zoomed in section of B, (C) un-crosslinked CM/UiO-66-1 monolith.

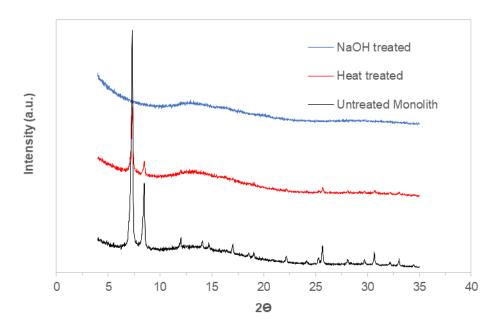
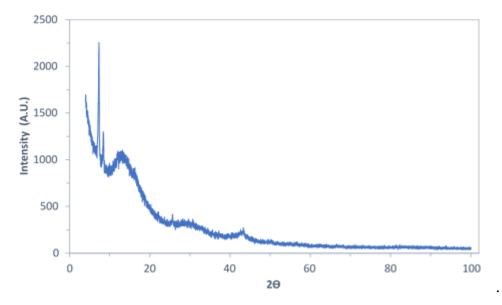
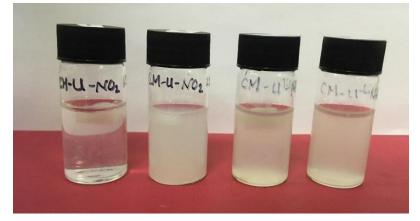
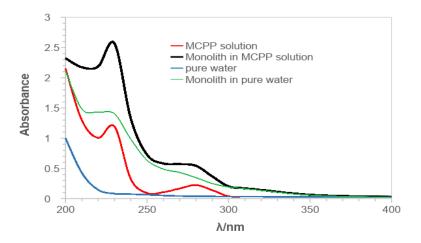


Figure S6. PXRD patterns of the chitosan (medium molecular weight)/UiO-66-NO₂. composite and after heat treatment and NaOH treatment, respectively.


Figure S7. The PXRD patterns of the chitosan (medium molecular weight)/UiO-66-NH2 composite.

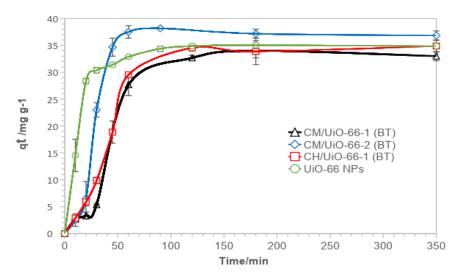

Figure S8. The photo shows the stability of the samples after adsorption testing; immersed in 10 mL of 60 ppm MCPP solution for 3 h. From left to right: CM/UiO-66-NO₂-1 (heat treated), untreated CM/UiO-66-NO₂-1, CM/UiO-66-NH₂-1 (heat treated), and untreated CM/UiO-66-NH₂-1. After heat-treatment, the monoliths are still there, floating in the solution, whilst the untreated monoliths are completely disintegrated.

Figure S9. The photo shows the stability of the base-treated composite monoliths with UiO-66-NO₂ or UiO-66-NH₂ after adsorption testing; immersed in 10 mL of 60 ppm MCPP solution for 6 h. From left to right: CM/UiO-66-NO₂-2, CM/UiO-66-NO₂-1, CM/UiO-66-NH₂-2, CM/UiO-66-NH₂-1.

Figure S10. UV absorbance profile after the base-treated CM/UiO-66-NO₂ monolith is immersed for 2 h in MCPP solution and water.

Figure S11. Profiles of the adsorbed quantity of MCPP versus soaking time by immersing the based-treated CM/UiO-66 composites (10 mg) or dispersing UiO-66 nanoparticles in 10 mL of aqueous solution of MCPP (60 ppm).

Figure S12. The photo shows the glutaraldehyde-crosslinked CM/UiO-66-1 monolith can be easily picked up after six hours immersed in MCPP solution.

© 2018 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).