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Abstract: The evaluation of the piezoelectric properties of ferroelectric ceramics generally has
a high level of uncertainty, due to incomplete poling, porosity, domain wall clamping and other
effects. In addition, the poling process is often difficult and dangerous, due to the risk of breaking or
damaging the sample. A method is described for the evaluation of the potential intrinsic piezoelectric
response that a ceramic would have after full poling, without poling it. The method relies on the
fact that any material undergoes an elastic softening below the ferroelectric transition temperature,
whose magnitude can be expressed in terms of the intrinsic piezoelectric and dielectric coefficients of
the material. Such a softening is equivalent to an electromechanical coupling factor averaged over all
the components, due to the unpoled state of the sample, and can be deduced from a single temperature
scan of an elastic modulus of a ceramic sample, spanning the ferroelectric and paraelectric states.
The strengths, limits and possible applications of the method are discussed.
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1. Introduction

Measuring the piezoelectric coefficients of ferroelectric (FE) ceramics is often afflicted by great
uncertainty and may be a difficult task. The variability in the measured values of the effective
piezoelectric constants d∗ij of nominally identical materials may be quite large. As an example,
pure BaTiO3 may be prepared in the same laboratory following different procedures and obtaining
different grain sizes and microstructures with d∗33 ranging between 30 and 350 pC/N [1], but values as
high as 500 pC/N have been reported [2]. The extrinsic contribution from the motion of the domain
walls may be a consistent part of the total piezoelectric response, so that the nature of the domains
and mobility of the domain walls certainly contributes to the variability of the results from sample
to sample; in addition, since the domain wall contributions are frequency dependent and nonlinear,
techniques probing different strain amplitudes and frequencies obtain different results on a same
sample. Yet, there are other factors determining the measured d∗ij, and a major difficulty is obtaining
complete poling of the ferroelectric domains, with the spontaneous polarization Ps as parallel as
possible to the applied field. Incomplete poling is common [3], and affects the measured values of the
effective piezoelectric coefficients, which are proportional to the macroscopic polarization. Poling is
only partial if the local field felt by each domain is lower than the coercive field necessary to move
the domain walls and switch the polarization. Common causes of insufficient magnitude of the local
poling field are: limitations of the maximum applied field and/or particular geometry of the sample;
limitation of the applicable field in order to avoid breaking of the sample; reduction of the local
field, with respect to the average field, due to porosity or microstructure. It should be added that the
coercive field is not necessarily well defined, since it depends on the degree of pinning of the domain
walls from defects, which in turn may depend on the thermal and electrical history of the sample.
Another effect preventing the reorientation of the spontaneous polarization is the elastic clamping
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from the neighbouring domains, so that the motion of 180◦ domain walls is much easier than the same
process involving reorientations of Ps by other angles, and therefore involving also a reorientation of
the spontaneous strain. For example, in ceramic BaTiO3 it has been estimated that only 12–13% of the
required 90◦ switching may occur during poling, from the smallness of the polarization with respect to
the theoretical value after full domain reorientation, and from the change of the sample size during
thermal depoling [3–5]. Recent in situ synchrotron diffraction techniques provide now powerful tools
to explore the complexity of the switching phenomena in ceramics [6].

These effects result in uncertainties in the determination of the piezoelectric coefficients of a
material, which, according to the accepted methods, require the use of several samples with different
geometries [7]. Even if the samples are cut from the same block and poled with the same procedure,
the degree of polarization and hence the piezoelectric coefficients may be different, and it is difficult,
if not impossible, to determine when full poling has been achieved.

Recently, in order to overcome some of these difficulties, methods have been developed, based on
the excitation of several modes of piezoelectric resonance of a same sample [8,9]. In what follows still
another approach will be discussed, which has been recently described [10], and avoids altogether
the need for poling the samples. The method requires measuring the elastic compliance and dielectric
susceptibility of an unpoled ceramic sample, and it provides a measure of the piezoelectric response
different from the usual effective piezoelectric or electromechanical constants. The strengths and limits
of the method are discussed.

2. Results and Discussion

2.1. Piezoelectric Softening

The idea of evaluating the piezoelectric properties from unpoled samples is based on the fact that
the elastic constants undergo a softening of piezoelectric origin in the ferroelectric state, such that the
compliance tensor s can be written as [11]

s = s0 + d+ · χ−1 · d , (1)

where s0 is the compliance in the paraelectric (PE) state, and d and χ−1 are the piezoelectric and
reciprocal dielectric susceptibility tensors. From this expression, and with the usual approximation for
ferroelectrics ε ' χ, it appears that the compliance of the FE state is softer than that of the PE state of
the quantity

∆spiezo = d+ · ε−1 · d , (2)

and this suggests the possibility of evaluating the piezoelectric constants from the piezoelectric
softening. When measuring an elastic modulus of a ceramic, one probes a polycrystalline average
of the tensors, and we may write for simplicity ∆spiezo = d2/ε, which makes even more clear that
∆spiezo 6= 0 also for unpoled ceramics, where d is null but d2 is not. The reason is that each domain
undergoes its softening according to the local direction of the spontaneous polarization and applied
stress. Since the elastic constants are centrosymmetric tensors, domains with opposite directions of
the polarization undergo the same change in the compliance; therefore, the corresponding changes in
polarization under the probing stress cancel out but the strains do not.

The above expressions are equivalent to the well known relationships between the compliances at
constant field, sE, and constant dielectric displacement, sD [3,12]:

sD = sE
(

1− k2
)

(3)

k2 = d2/
(

sEεσ
)
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where k is the electromechanical coupling factor and the permittivity is at constant stress σ. These can
be rewritten as

sE = sD + d2/εσ, (4)

which coincides with Equation (2). In fact, in a purely elastic measurement there is no external field E,
s = sE, and the compliance of the PE phase is s0 = sP = sD, namely the compliance measured keeping
P = 0 = constant and, being also E = 0, this is equivalent to keeping D = E + ε0P = 0 = constant.

We describe now a simplified demonstration [13] of Equation (2), without considering the tensorial
nature of the formulas, in order to provide a clear physical picture of the origin of the softening in the
FE state. The compliance, as measured in a purely elastic experiment with no applied electric field,
is defined as

s ≡ sE =
dε

dσ
= s0 +

dε

dP
dP
dσ

, (5)

where ε and σ are strain and stress, s0 is the compliance at constant polarization P, coinciding with
the total compliance in the PE phase with P = 0, and the second term takes into account the fact that,
in the FE state, the probing stress modulates the polarization, which in turn modulates the strain.
This already makes clear that the additional softening in the FE state is due to a combination of direct
and converse piezoelectric effects. The equilibrium spontaneous polarization P (σ) under stress can
be found by exploiting the fact that it minimizes the free energy F = U − TS. Actually, under the
conditions of applied stress, the elastic Gibbs energy

G = F− σε (6)

[14] is minimized, since its differential is dG = −SdT− εdσ + EdP with σ rather than ε as independent
variable, and ε is found from

ε = −∂G
∂σ

. (7)

The description of the FE state is contained in the free energy F (P, T), which generally is expanded
in a series of even powers of P, according to the Landau theory of phase transitions. For deducing
Equation (2) we do not need to specify the form of F (P, T), but only that of the coupling Gc (P, σ)

between P and σ. The simplest form of such a coupling term, in a material with centrosymmetric
(non piezoelectric) PE phase, is [15]

Gc (P, σ) = −QσP2 , (8)

to be added to Equation (6), where Q is the electrostrictive coupling constant, and the electrostrictive
strain is, according to Equation (7), QP2. A piezoelectric coupling −gσP cannot be introduced,
because G must describe both the FE and PE states, and we are dealing with materials with a,
generally cubic, PE state invariant under inversion, and a term ∝ σP changes sign under inversion.
The piezoelectric strain arises in the FE state with spontaneous polarization P0, as shown in Figure 1.
In fact, the electrostrictive strain, QP2, is quadratic in P in the PE state around P = 0, but is almost
linear with slope 2QP0 in the FE state with spontaneous polarization P0 and spontaneous strain ε0.
This is at the basis of the converse piezoelectric effect, dε/dE = (dε/dP) (dP/dE) = d, whose coefficient
is d = 2QP0χ, because dP/dE = χ, the dielectric susceptibility.

The direct piezoelectric effect is, by definition, dP/dσ = d, and it is easy to verify that it is the
same coefficient as for the converse effect. In fact, P (σ) and its stress derivative can be found from the
condition of minimum elastic Gibbs energy, Equations (6) and (8)

0 =
∂G
∂P

=
∂F
∂P
− 2σQP ,
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which can be derivated with respect to σ yielding

0 =
∂2F
∂P2

dP
dσ
− 2Q P− 2σQ

dP
dσ

,

because F is a function of P only. In addition,

∂2F
∂P2 = χ−1

and the last term can be neglected because the probing stress σ is small, so that we find

dP
dσ

= 2QP0χ = d, (9)

with the same coefficient as the converse effect.

Figure 1. The two mechanisms causing the piezoelectric softening: direct and converse piezoelectric
effects arising from the electrostrictive coupling with spontaneous polarization P0.

We can now substitute our results for the FE state, dε/dP = 2QP0 and dP/dσ = 2QP0χ into
Equation (5):

s ≡ s0 + 4χQ2P2
0 = s0 + d2/χ . (10)

Finally, ε = 1 + χ, so that in the FE state one generally has 1 � χ ' ε and Equations (2)
and (10) coincide.

This result is general, since no hypothesis has been done on the form of F (P), but it does not tell
us what kind of temperature dependence we expect from P0 and χ, and hence d and ∆spiezo; yet, it is
useful to anticipate this temperature dependence, since the elastic measurement must be extended
above and below TC, in order to recognize and subtract the non-ferroelectric contribution s0 ≡ sD.

2.2. Temperature Dependence of the Piezoelectric Softening in the Simplest Case

The behaviour of P0, χ and d below the Curie temperature TC can be predicted by specifying the
free energy F (P), which describes the FE state. The minimal form of F (P) able to reproduce a FE
transition is [15]

F =
α

2
P2 +

β

4
P4 (11)

α = α0 (T − TC)
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where odd powers of P are excluded, because the minimum in the PE phase must be at P = 0;
the coefficient of the quadratic term becomes negative below TC, giving rise to minima at P0 6= 0 in the
FE phase. The condition for these minima is 0 = ∂F/∂P, whose solution is

P2
0 = α0 (TC − T) /β . (12)

The dielectric susceptibility χ is

χ−1 =
∂2F
∂P2

∣∣∣∣
P0

= 2α0 (TC − T) (13)

in the FE state and α0 (TC − T) in the PE state, that is the Curie-Weiss law. Substituting in Equation (10)
we get

s = s0 +
2Q2

β
(14)

in the FE phase. Then, for a Curie-Weiss-like FE transition, the piezoelectric softening is simply
constant, ∆spiezo = 2Q2/β, because the temperature dependencies of P2

0 and χ cancel out exactly
(Figure 2a). This s an idealized situation, and the various factors that influence the temperature
dependence of the piezoelectric softening are illustrated in Figure 2b–d.

Figure 2. Various factors that determine the actual softening in the FE phase: (a) piezoelectric softening
within the FE phase; (b) linear anharmonic stiffening of the background compliance; (c) fluctuations and
thermoelastic effect; (d) additional terms in the FE free energy with respect to the simplest expansion (11).

2.3. Anharmonic Stiffening and Electrostrictive Coefficients

The background compliance s0 is not constant, but undergoes anharmonic stiffening on cooling.
The result is an almost linear decrease of s0 (T), at least down to 100 K, in the absence of other structural
transitions. For example, the Young’s modulus Y = s−1 of polycrystalline SrTiO3 increases of 2.9%
per 100 K, while that of BaTiO3 of &1.5% per 100 K [10]. This effect can be estimated by extending
the elastic measurement well above TC, in order to extrapolate s0 (T) from a temperature region
unaffected by the precursor FE fluctuations, where only the linear anharmonic stiffening is observed.
In BaTiO3, the precursor fluctuations persist even 200 K above TC. Similarly, in systems with relaxor-like
characteristics, s0 (T) should be extrapolated from above the Burns temperature. Nevertheless,
the anharmonic stiffening is a small effect, less important than other sources of uncertainty.

Also the electrostrictive coefficients Q are expected to increase slightly and linearly with
temperature, since they also can be deduced by simple anharmonic models of inter-ionic potential [16].
Indeed, they are found to be little [17,18] or mildly [19] dependent on temperature, and composition in
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solid solutions, [18,20,21] so that, for simple FE transitions as described by Equation (11), one expects
that the steplike softening below TC remains nearly constant in a wide temperature range. Actually, one
is not interested in the dependence of Q on T, because it contributes to that of d (T) much less than P0

and ε, and the use of Equation (2) does not require the separate knowledge of P0 and Q.

2.4. Fluctuations and Thermoelastic Effect

Fluctuations are source of uncertainty, since they are not included in the treatment for deducing
∆spiezo, and, though they affect also the piezoelectric and dielectric constants, there is no guarantee
that s, ε and d are equally affected, and therefore that Equation (2) is valid also in the presence of
fluctuations. The effect of fluctuations is schematically shown in Figure 2c, together with that of
thermoelastic relaxation [22]

∆sth =
α2T
Cσ

, (15)

where α is the coefficient of thermal expansion and Cσ the specific heat. The thermoelastic effect occurs
only in measurements where the sample vibration induces a inhomogeneous hydrostatic component
of strain, as is the case of flexure. Since α is generally very peaked around TC, also ∆sth is peaked
there. In BaTiO3, it can be estimated that ∆sth ' 0.1∆spiezo only very close to TC and otherwise
negligible. Even though a sizeable decay of ∆spiezo below TC may be an intrinsic effect from a F (P)
more complicated than Equation (11) (see Section 2.6), the contribution of fluctuations is difficult or
impossible to quantify, and it is better to not consider the temperature region close to TC.

2.5. Flexoelectric and Surface Effects

Other mechanisms that may induce polarization in the PE phase are the flexoelectric and surface
effects [23], important in thin films, but generally neglected in ceramics. These effects are difficult to
measure quantitatively, with experimental values of the flexoelectric coefficients sometimes exceeding
the theoretical ones by two orders of magnitude [23,24]. Recently, it has been proposed that also the
surface of ceramics may be polarized in the PE state, with Ps pointing outside the surface, so that
the sample is overall unpoled, but under bending or inhomogeneous stress it exhibits enhanced
effective flexoelectric coefficents [24]. The polarization would be due to flexoelectric effect from the
inhomogeneous stress of the grains near the surface, which are less constrained perpendicularly to the
surface down to several micrometers.

These effects, together with fluctuations, result in the formation of spontaneous polarization
above TC with null space average, so that they cannot be revealed with macroscopic measurements of
the piezoelectric effect, but they contribute to the elastic and dielectric softenings. The elastic softening
stands out of the weak linear anharmonic background (Figures 2b and 4b), while the dielectric softening
is certainly more difficult to separate from the Curie-Weiss rise of the permittivity toward TC. It cannot
be excluded that Equation (2) partly holds also above TC, but the piezoelectric coefficient d in the PE
state would be defined locally, with little practical value.

2.6. Additional Terms in the Expansion of F (P) and Multiple Ferroelectric Transitions

In general, a faithful representation of the FE transition may require additional terms in the power
expansion of F (P), with respect to Equation (11). For example, a first order transition requires that β < 0
and at least a positive term ∝ P6. A FE transition followed by other transitions where the spontaneous
polarization P0 changes direction, as in BaTiO3, requires many more terms, fully expanded in terms of the
components of the vector P0 in order to introduce the anisotropy. The explicit expressions for ∆spiezo in
such cases may become very cumbersome and, in the few cases where they have been obtained, they have
been analyzed numerically for selected sets of the parameters [20,21,25].

This is indeed the case of many FE perovskites of practical interest, for example with a
morphotropic phase boundary between rhombohedral and tetragonal phases, as in PZT and PZT-based
solid solutions, or with a sequence of FE transitions, as in BaTiO3 and BaTiO3-based solid solutions.
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The additional FE instabilities enhance the various susceptibilities, and this is exploited for improving
the piezoelectric properties [26,27]. It is also possible to show in a simplified manner, that the
compliance, and hence also the piezoelectric coefficients, is peaked at transitions where the spontaneous
polarization changes direction, due to almost linear coupling between the transverse component of P0

and a shear strain [27,28]. Therefore, until the additional FE transitions are all describable by a same
F (P) and the fluctuations and thermoelastic effects are not important, ∆spiezo will present additional
peaks and anomalies, but Equation (2) should remain valid.

2.7. Additional Structural Transitions

Equation (2) is no more valid if other types of distortion modes are concomitantly present,
in addition to the ferroelectric mode. The typical case in perovskites is an octahedral tilt mode,
as in Na1/2Bi1/2TiO3 (NBT) or PZT with less than 50% Ti. The tilt mode mode is described by an
additional order parameter φ, for example the angle of rotation of the octahedra. Then, the free
energy F contains additional terms with even powers of φ, possible FE-tilt coupling terms containing
both P and φ, and the coupling between φ and stress σ is exactly of the form (8) of the electrostrictive
coupling, ∝ σφ2 [29,30]. As a consequence, if the coupling between FE and tilt modes is weak, with two
transitions well separated in temperature, the compliance will undergo two well separated softenings
at the two transitions, and the previous treatment is still valid at the FE transition. It is impossible to
distinguish which is the FE transition from the elastic measurement alone, but it is very easy from
the dielectric susceptibility. In fact, the latter presents a huge peak of Curie-Weiss type at the FE
transition, but only a small step at the tilt transition, if this occurs within the ferroelectric phase. This is
due to the coupling between polarization and tilting, which, for symmetry reasons, to the lowest order is
biquadratic [30], k

2 P2φ2, and simply renormalises the α
2 P2 term in the free energy (11) as 1

2
(
α + kφ2) P2 and

the susceptibility in the FE phase, Equation (13), from χ = 1/ (2α) to 1/2
(
α + kφ2). Below the tilt transition

transition temperature TT, φ passes from 0 to φ0 (T) producing a step in χ,which is positive for cooperative
(k < 0) and negative for competitive tilt-polarization coupling, but very small compared to the FE peak.

As an example, Figure 3 shows the compliance and dielectric susceptibility of PbZr0.86Ti0.14O3 [31],
where the softening at TT is smaller but of the same order of magnitude as that at TC, but the anomalies
in the dielectric susceptibility (notice the logarithmic scale) leave no doubt on the different nature of
the two transitions: polar ferroelectric at TC and nonpolar antiferrodistortive at TT. In this case the
softening below TC should be purely piezoelectric down to TT.

Figure 3. Compliance and dielectric permittivity of PbZr0.86Ti0.14O3, with anomalies at TC and the
octahedral tilting transition at TT (data from Ref. [31])
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In NBT and NBT-rich perovskites, instead, the tilt and polar modes are strongly coupled and
act together at the structural transitions [32], so that there is no way of extracting the piezoelectric
contribution from the softening [33].

2.8. Depolarization Field and Influence of the Measurement Frequency

Up to now we neglected the presence of the depolarization fields Edep created by the polarization
charges at the domain walls and grain boundaries. Let us first consider a uniformly polarized
(monodomain) sample, where Edep = −ε−1 · P. The application of an external probing stress σ changes
the polarization through the piezoelectric effect of δP = d :σ, which in turn changes the depolarization
field by δEdep = −ε−1 · d :σ; finally, through the converse piezoelectric effect, an additional strain
is generated: δε = d+· δEdep = −d+ · ε−1 · d :σ. This corresponds to a stiffening of the compliance
∆sstiff = δε/σ = −d+ · ε−1 · d, known as piezoelectric stiffening [34], and exactly cancelling the
piezoelectric softening, ∆sstiff = −∆spiezo, in the case of uniform polarization [11].

On the other hand, if the sample is unpoled and the vibration stress is uniform over a length
scale including several domains, δP = d : σ ' 0, because d ' 0. This condition holds for
forced or resonant vibrations of macroscopic samples, with sizes of several millimeters and more,
but for ultrasound experiments, the wavelength must be sufficiently long to include several domains,
otherwise, partial piezoelectric stiffening may occur, which reduces ∆spiezo. An extreme case are the
Brillouin scattering experiments, where the probe acoustic waves at∼50 GHz have λ . 0.1 µm. In this
case, the wavelength probes regions within single domains with uniform P, and ∆spiezo is considerably
or totally cancelled by ∆sstiff. A comparison between the compliance of PbZr0.55Ti0.45O3 measured
on a resonating bar at kHz and with Brillouin scattering [11], shows that in the latter experiment
only a small peak at TC, due to fluctuations, is present, but no piezoelectric softening; instead, the tilt
transition at TT � TC produces a step in both measurements, because it does not involve changes in
polarization and hence no piezoelectric softening and stiffening.

In addition to the averaging over several domains in the unpoled state, a further reduction of the
depolarization field may be effected by the free charges from ionized defects, which neutralize the
polarization charges at the DW.

2.9. Extrinsic Domain Wall Contributions

All the above formulas take into account the intrinsic piezoelectric effect, without movement
of the domain walls (DW); yet, the DW motion may considerably enhance the magnitude of the
measured piezoelectric coefficients [12,35], especially for high stress levels and low frequencies.
The relationship (1) between dielectric, elastic and piezoelectric coefficients does not necessarily hold
also for effective coefficients, that include the effect of the DW motion, even if this is within the limit of
linear response. For simplicity, let us drop the tensor notation and consider appropriate components,
e.g., the longitudinal components for an extensional or flexural vibration of a bar. Then Equation (1)
can be written as

d2 = ∆χ∆s , (16)

where the superscript in ∆spiezo is dropped and it is put in evidence that only the part ∆χ of χ

arising from the FE transition, Equation (13), must be considered (in practice for most ferroelectrics
it is χ = χ∞ + ∆χ ∼= ∆χ). A similar relationship holds for the contributions from defects with
elastic and dielectric dipoles, causing dielectric, anelastic and piezoelectric relaxations of amplitudes
δχ, δs and δd [27,36,37]:

(δd)2 = δχδs . (17)

However, even assuming that the linear contribution from DW motion satisfies this relation, the
total effective coefficients, χ̃ = ∆χ + δχ, s̃ = ∆s + δs and d̃ = d + δd, do not necessarily obey d̃2 = χ̃s̃.
It can be shown that this is true only if δs/∆s = δχ/∆χ, but there is no apparent reason for such a
relationship to be true in general.
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Therefore, Equation (1) strictly holds only for the intrinsic piezoelectric coefficients, without
contributions from DW motion, and it seems safe to limit the analysis of the piezoelectric activity in
terms of elastic softening only to measurements with low stress amplitude and linear response,
where the DW motion is reversible and minimal. At large stresses, where the elastic response
is nonlinear, one probes the irreversible motion of DW, with pinning and unpinning processes,
corresponding to the regions of the hysteresis loops with steep slopes. In these regions, the piezoelectric
coefficients are anyway ill-defined.

2.10. Polycrystalline Average of Unpoled Ceramic: A Well Defined State

The elastic moduli of ceramic samples are angular averages of the single crystal material constants,
and therefore Equation (2) must be averaged over all domain orientations. The great advantage of
using unpoled ceramics is that the orientations are really random, unless a particular texture exists,
and therefore the orientation averages are simple. Instead, the orientational averages for poled
samples are more complicated (see e.g., Ref. [38]) and provide theoretical bounds to the maximum
polarization, but the actual degree of poling of a sample depends on several factors: (i) the degree of
non−180◦ DW motion and switching, which generally is well below 100%, due to internal mechanical
constraints; (ii) DW pinning; (iii) non-uniform internal fields, due to porosity, microstructure and
defects; (iv) insufficient poling field, due to instrumental limitations, and the geometry and resistance
to fracture of the sample. As a consequence, it is possible that the degree of poling is considerably
below the theoretical maximum, but it is difficult or impossible to establish how much.

It can be concluded that the unpoled state of an untextured ceramic is much better defined than its
poled state, and therefore better suited to study the intrinsic behaviour of the material. The orientational
averages of ∆spiezo in terms of the single crystal material constants for randomly oriented domains are
easy to calculate, and the results for tetragonal, orthorhombic and rhombohedral symmetries are [10]:

∆spiezo,T =
8d2

31 + 4d31d33 + 3d2
33

15ε33
+

2d2
15

15ε11
(18)

∆spiezo,O =
3d2

31 + 3d2
32 + 3d2

33
15ε33

+

2d31 (d32 + d33) + 2d32d33

15ε33
+

d2
15

15ε11
+

d2
24

15ε22

(19)

∆spiezo,R =
8d2

31 + 4d31d33 + 3d2
33

15ε33
+

(
2d2

15 + 4d2
22
)

15ε11
, (20)

where the Voigt index notation is adopted.
Unfortunately, the single crystal materials constants are generally unknown for most ferroelectrics,

and, in order to use the above formulas for quantitative comparisons, one must express the single
crystal dij and εij coefficients in terms of the effective d∗ij and ε∗ij measured on ceramics. This is done,
for example, in Ref. [38], and we report below the result for tetragonal symmetry, assuming full poling
and adopting the original notation d∗ instead of d∗

d33 = 2.316 d∗33 − 1.113
(

d∗31 + d∗15

)
(21)

d31 = 1.760 d∗31 − 0.5565
(

d∗33 − d∗15

)
(22)

d15 = 2.316 d∗15 − 1.113
(

d∗33 − d∗31

)
(23)

ε11 = 1.222ε∗11 − 0.261ε∗33 (24)

ε33 = 1.482ε∗33 − 0.261ε∗11 (25)



Ceramics 2018, 1 220

2.11. Experimental Verification and Porosity

Up to now there is only one experimental verification of the validity of Equation (2), based on
ceramic BaTiO3 [10]. The reason it is difficult to carry out a quantitative verification is connected
with the difficulty of finding a material with reliably known piezoelectric and dielectric tensors.
In addition, the technique available in our laboratory requires samples shaped as bars longer than 2 cm
(but DMA, RUS and ultrasonic experiments can be performed on much smaller samples). The ceramic
samples must also possess the same physical properties as the crystals, apart from the unavoidable
porosity, and this excludes the usual piezoelectric materials, whose properties are heavily dependent
on composition, additives and preparation protocols. The material of choice is therefore pure BaTiO3,
though it has the complication of strong FE fluctuations extending 200 K above TC, and two additional
FE transitions below TC.

The comparison between ∆spiezo , Equation (18), deduced from the Young’s modulus of ceramic
bars of BaTiO3 measured at kHz and the literature data for dij and εij is described and discussed in
detail in Ref. [10], and here only a brief account is given. A major problem in comparing materials
constants measured on ceramics with single crystal data is porosity, whose effect can be estimated
only with great uncertainty. In Figure 4a the compliances of three different samples from different
laboratories (sample 1 measured in Ref. [39] and samples 2 and 3 in Ref. [10]) differ of factors up
to 4, even though the porosities from the Archimedes method differ at most of a factor of 3 and the
dependence of s on porosity is definitely nonlinear. In fact, the shape of the pores has a major influence
and is difficult to assess. Nonetheless, by rescaling in Figure 4b the softer s (T) curves of the more
porous samples on the stiffer curve of sample 1 well above TC, one finds a fair agreement between all
the curves also below TC. This encourages one to use the data of porous ceramics even to evaluate the
material intrinsic piezoelectric properties, based on the effect of porosity in the PE phase. Notice that,
if one wants to deduce piezoelectric coefficients from the elastic softening and permittivity measured
on porous ceramics, also the permittivity must be renormalised for taking into account the porosity,
but the effects of porosity on the elastic and dielectric responses may be different, so that there is no
guarantee that the same rescaling factor applies to s and ε. For reducing the uncertainty one should
reduce the porosity.

The s0 (T) has been extrapolated from >800 K, since already below that temperature its linear
dependence is obscured by the rising precursor softening from the FE fluctuations and polarization
induced by flexoelectric and surface effects. After subtraction of s0 (T) one gets ∆spiezo (T) (Figure 4c),
which can be compared with the averaged expression, Equation (18), where the single crystal dij and
εij are inserted. Even for BaTiO3, there are no accepted values for these parameters, and the two
curves are calculated using values measured on a set of single crystals [40], and values obtained from
a Landau free energy, that reproduce many experimental data on BaTiO3 [41].

The agreement between the measured and calculated ∆spiezo is good only in the plateau of
s (T) below TC and well above the transition temperature TOT between the FE tetragonal (T) and
FE orthorhombic (O) phases. In this temperature region the fluctuations of the polarization should
be minimal, and indeed both the calculated curves cross the experimental ones there. Notice that
longitudinal fluctuations of the polarization are present near and above TC, but transverse fluctuations
are expected above TOT, where they are associated with the change of direction of the spontaneous
polarization (Figure 4d).
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Figure 4. (a) Compliance of three samples of BaTiO3 from different laboratories and with different
porosities; (b) After rescaling to the stiffer sample, with smaller porosity, in the PE phase; the dashed
line is s0 (T) extrapolated from >800 K; (c) After subtraction of the extrapolated s0 (T) ; curves 4 and
5 are ∆spiezo calculated from different sets of the ε and d tensors from the literature; (d) Change
of the magnitude of the polarization vector P at the PE/FE transition , with the corresponding
longitudinal fluctuations in red, and change of the direction of P at the transition between tetragonal
and orthorhombic FE phases, with transverse fluctuations.

As discussed in Section 2.6, ∆spiezo should include also the peaked softenings at TOT and TRO,
and it is not clear if the fluctuations together with surface and flexoelectric effects may explain the
difference between the measured and calculated curves, away from the plateau of s (T). It is true that
also the calculated curves do not agree with each other, but there seems to be a systematic difference
between the temperature dependencies of the measured and calculated piezoelectric softenings.
The motion of domain walls may also be responsible for such deviations, but the analysis of the s (T)
and elastic energy loss curves measured at different frequencies [42] suggests that the contribution of
DW relaxation is negligible, at least in curves 2 and 3.

It can be concluded that, at least in a limited temperature region below TC where complications
from fluctuations and multiple FE transitions are excluded, there is quantitative agreement between
the piezoelectric softening measured on unpoled ceramic BaTiO3 and that calculated from the known
piezoelectric and dielectric tensors.

In ferroelectrics with a single or at least more isolated FE transition, the situation should be
more clear. For example, PbTiO3 doped with Ca has only one transitions from C-PE to T-FE, and no
tendency to octahedral tilting. Indeed, preliminary measurements (Figure 5) of the Young’s modulus
at kHz show a situation very close to the simple case in Figure 2c. Further piezoelectric and dielectric
measurements are in progress [43] on samples from the same material, in order to make a quantitative
comparison between the softening of Figure 5 and Equations (18) with (21)–(25).
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Figure 5. Preliminary measurement of the compliance of a sample of (Pb,Ca)TiO3.

2.12. Usefulness of the Elastic Assessment of the Potential Piezoelectric Properties of Unpoled Samples

The use of Equation (2), and hence Equations (18)–(20), to extract the intrinsic piezoelectric
coefficients dij seems particularly promising in combination with Resonant Ultrasound Spectroscopy
(RUS) experiments on unpoled ceramics, from which the full tensors sE

ij in the FE state and s0
ij = sD

ij
in the PE state can be extracted. This type of experiments has been done for extracting the elastic
tensor sE

ij of unpoled PZT-4 in the FE state [44], and by piezoelectrically exciting a poled PZT-8 ceramic
sample [9], so obtaining the full piezoelectric and elastic tensors in the FE state. The latter method
is certainly a considerable improvement with respect to the traditional methods requiring sets of
different samples, but still the piezoelectric coefficients depend on the degree of poling. Measuring
unpoled samples over the full FE and PE temperature range would avoid also this source of uncertainty.
The analysis of the full resonance spectrum of a poled ceramic disc [8] is similar to the piezoelectrically
excited RUS [9], though with a larger sample.

At present, few laboratories measure the full elastic tensor with the RUS technique, and the
more common acoustic measurements adopt forced (Dynamic Mechanical Analyzer = DMA, torsional
pendulum) or resonant vibrations of bars, or ultrasonic propagation in pellets. While the ultrasonic
experiments allow longitudinal and transverse waves to be excited, the other methods provide only
one type of modulus, Young’s or torsional. In these cases it is impossible to extract the three or
more components of dij, but the piezoelectric softening can still provide useful information. This is
particularly true when studying new materials, or the effect of new types of doping or preparation
protocols. In these cases, it is possible that varying some composition or preparation parameter,
renders the poling of the sample less effective or impossible, for example due to increased conductivity
or coercive field. A comparison of the piezoelectric softenings of the series of unpoled samples would
provide a reliable indication of the potential piezoelectric response, that each sample would have
if it would be fully poled, without the need for actually poling it, and therefore before optimizing
composition and process in order to make poling easier.

A possible course of action in similar instances is illustrated in Figure 6. Figure 6a shows
three hypothetical compliance curves obtained by varying a material parameter, for example doping.
Increasing doping lowers TC and changes the amplitude of ∆spiezo, but the main differences between
the magnitude of the compliances are due to different porosities. Therefore, in Figure 6b the curves are
normalized in order to overlap in the PE phase, where it is assumed that doping has little effect on the
elastic properties. This is done by choosing a temperature T0 well above TC, where s0 (T) increases
linearly, due to anharmonic effects, as explained in Section 2.3. Then, each curve is normalized by
s0 = s0 (T0) (Figure 6b). In this manner, the comparison between different ∆spiezo is not or little
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affected by porosity. The validity of this procedure is confirmed by tests on BaTiO3 (Figure 4a,b).
The anharmonic stiffening of s0 (T) is generally linear with very good approximation down to 100 K,
so that it is easy to extrapolate it in FE phase and obtain ∆spiezo. According to Equation (2) or (16),
a measure of the piezoelectric response is provided by

d̃ =
√

ε∆spiezo/s0 (26)

It is adimensional, because one uses the normalized ∆spiezo, in order to eliminate the influence
of different porosities, but one may as well normalize the s (T) curves to that with lower s0,
presumably from the denser sample: if sn is s0 of the n−th curve, than one extracts its ∆spiezo from
s̃ (T) = s (T)× (s0/sn) and calculates d̃ =

√
ε∆s̃piezo with the correct dimensions. The point is that,

in this context, the absolute value of d̃ is of little interest, since it does not correspond to any d∗ij or dij,

but to a combination of them; what is important is the evolution of d̃, measured in the same manner
for the whole series of samples, with changing doping or the process parameters.

Figure 6. (a) Hypothetical compliance curves obtained by varying a material parameter, for example
doping; (b) The same curves after normalization to s0 (T) in the PE phase, in order to remove the
dependence on porosity; (c) Dielectric permittivity measured of the same samples or compositions;
(d) Effective piezoelectric coefficient, with the effect of different porosities removed.

Also the dielectric permittivity is influenced by porosity, but in opposite manner with respect to
the compliance, being reduced. If ε were reduced by the same factor as s, the effect of porosity would
be automatically cancelled in ∆spiezo, without any correction. Unfortunately, this is not necessarily true
(see e.g., Equation (18) in [45]), so that a quantitative analysis would require the use of Equation (26),
where also ε is rescaled in order to cancel the effect of porosity. This is not as easy as for the compliance,
since the FE instability causes a Curie-Weiss peak in ε, rather than a step below TC, whose contribution
extends to the PE phase. Therefore, rather than simply renormalising ε with its value at some T0 > TC,
one should extract the high frequency limits ε∞ and use ε/ε∞ in Equation (26). For qualitative
purposes, it seems appropriate to use d̃ or simply d, and use the variation from sample to sample in s0

as an indication of the uncertainty introduced by changes in porosity.
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Figure 6c shows the permittivity curves ε (T), necessary to obtain d̃ (T). Only the part below TC
is useful, and, in case of high conductivity, it is convenient to use high enough a frequency, e.g., 1 MHz,
to minimize the lossy conductivity contribution. The final result of this example in Figure 6d shows
that doping decreases TC, but the piezoelectric response of the material is even increased, thanks to
the increase of ε with lower TC. This type of information is obtained without poling the sample,
and calculating an effective d̃ according to Equation (26). The conclusion is valid even if doping
introduces free carriers or strong DW pinning, which make actual poling impossible. Yet, one knows
that the particular type of doping improves the intrinsic piezoelectric properties, and further material
engineering can be attempted, in order to make poling easier.

Figure 7 presents another hypothetical instance, where doping transforms the FE transition into
charge/orbital order, similarly to the manganite or nickelate perovskites. Below the onset of these
types of transitions, a stiffening rather than softening is observed [46,47], so that it is easy to see by
simple inspection that the FE transition is suppressed by doping.

Figure 7. Hypothetical compliance curves obtained by doping in a manner that changes the FE
transition into an orbital/charge order transition.

2.13. Piezoelectric Softening Versus Electromechanical Coupling Factor

The knowledge of sD ≡ s0 and sE = sD + ∆spiezo , see Equation (4), suggests another manner of
exploiting the piezoelectric softening, defining the quantity k̃ as

k̃2 = ∆spiezo/sE . (27)

This is formally identical to the electromechanical coupling factor k, which is also of practical interest.
The difference between k and k̃ is that the latter is measured on an unpoled ceramic, and therefore it
should be an average of the three k∗ij. An analysis in order to deduce expressions of k̃ in terms of k∗ij is not
yet done, but it seems promising to interpret the piezoelectric softening in terms of electromechanical
coupling, because it does not require the knowledge of the dielectric tensor. Following the discussion on
the piezoelectric coefficients, the electromechanical coupling defined by Equation (27), measured on an
unpoled ceramic, should provide an average of the k∗ij, that the ceramic would have when fully poled.
In this case, porosity would be much less problematic than when using Equation (2) to deduce intrinsic
dij, since there is no need for knowing the compliance of the fully dense material: one simply measures
the effective electromechanical coupling of the porous material under study.

3. Materials and Methods

The compliance curves shown here are all defined as s (T) = 1/E (T), where E is the Young’s
modulus of ceramic bars 25–40 mm long, 4–5 mm wide and 0.6–1.2 mm thick. The dynamic Young’s
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modulus is measured by suspending the bars on thin thermocouple wires in vacuum or <0.2 mbar
He exchange gas, electrostatically exciting their flexural resonant modes. Up to the first three odd
modes can be probed during a same temperature scan, with frequencies in the ratios 1:5.4:13.3, with a
fundamental resonance frequency 1–3 kHz, depending on the sample size and material. The vibration
is detected including the same exciting electrode in a resonant circuit at ∼ 13 MHz, whose frequency
is modulated bu the change of sample/electrode capacitance. The method is described in Ref. [48].
The Dynamic Mechanical Analyzer is another technique for obtaining the same dynamic modulus,
though with forced vibrations at lower frequencies and higher amplitudes [49].

The samples were cut from ceramic bars prepared by standard solid state reaction, as described
in Ref. [31] for PZT, Ref. [42] for BaTiO3, while the powders for PCT were prepared with a sol-gel
process [50]. The porosities in Figure 4a were estimated as p = 1− ρ/ρth, with ρth = 6.02 g/cm3 and ρ

was measured with the Archimedes method. The porosity of sample 3 was probably underestimated,
judging from the long equilibration time for measuring its weight in water [10]. The higher porosity of
sample 3 and presumably its conformation more similar to fissures explains the considerably reduced
Young’s modulus.

4. Conclusions

Below the paraelectric to ferroelectric transition, a material undergoes an elastic softening of
piezoelectric origin. The relationship, Equation (1), between piezoelectric, elastic and dielectric
coefficients dij, εij and sij is contained in the standard thermodynamic theory of ferroelectricity, and it
is demonstrated here in a intuitive manner. Though this relationship has never been exploited for
practical purposes, it offers an alternative method for evaluating the intrinsic piezoelectric response
of a ferroelectric material. The advantage over the traditional methods is that it can be used with
unpoled ceramics, where it provides a measure of the intrinsic piezoelectric response, that a material
would have after full poling, without poling it. Not only this allows one to get rid of the uncertainties
connected with the actual level of poling of a sample, but also to probe the piezoelectric activity of
samples which cannot be poled at all, for example due to excessive coercive field or conductivity.

In combination with dielectric permittivity and Resonant Ultrasound Spectroscopy experiments,
where the full elastic tensor can be extracted, it is in principle possible to obtain both the elastic
and piezoelectric tensors from a single measurement spanning the FE and PE states. With more
traditional measurements of the Young’s modulus or torsional modulus at acoustic and subacoustic
frequencies, it is not possible to separate all the components of the piezoelectric tensor, but to evaluate
an angular average of them. The piezoelectric softening can also be evaluated from ultrasonic
experiments, provided that the wave length probes several FE domains, so that any change induced in
the depolarization field averages to zero.

Abbreviations

The following abbreviations are used in this manuscript:

C cubic
DMA Dynamic Mechanical Analyzer
DW domain wall
FE ferroelectric
O orthorhombic
PE paraelectric
R rhombohedral
RUS Resonant Ultrasound Spectroscopy
T tetragonal
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